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Although retinal input relayed through the lateral geniculate
nucleus (LGN) of the thalamus clearly drives responses in the
primary visual cortex (V1), LGN afferents account for only a
small fraction of the synapses onto V1 neurons1–7. The primary
source of synaptic input to neurons in primary visual cortex, at
least in terms of numbers, is excitatory input from other nearby
cortical neurons. What role do these local recurrent connections
have in shaping the responses of V1 neurons to visual stimuli?
One interesting idea is that recurrent connections amplify weak
feedforward input signals from the LGN8 and increase neuronal
selectivity8–11. Neurons in the primary visual cortex are selective
for a number of stimulus characteristics, including the orientation
and direction of motion of light bars or gratings. Previous stud-
ies have suggested that cortical amplification may enhance ori-
entation tuning9–11 or direction selectivity8. Experiments in which
cortical connections are disrupted by cooling or shocking the
cortex suggest that recurrent connections do indeed amplify input
signals, but they do not support the idea that this cortical ampli-
fication increases orientation or direction selectivity12,13. Thus,
the functional role of recurrent connections in primary visual
cortex remains unknown.

In previous models, cortical amplification has been used to
increase neuronal selectivity8–10. Here we show that cortical
amplification can also act to decrease selectivity. The effect on
selectivity depends on the pattern of connectivity within the cir-
cuit. If neurons with similar selectivities excite each other, and
those with different selectivities inhibit each other, selectivity is
enhanced. If, on the other hand, neurons excite each other inde-
pendently of their response tuning, selectivity is decreased. This
is interesting with respect to the primary visual cortex where the
responses of a class of neurons, the complex cells, exhibit little
sensitivity to the spatial location of visual stimuli within their
receptive fields.

Neurons in the primary visual cortex can be divided into two
classes, simple and complex, based on the spatial separation or
overlap of their responses to light and dark stimuli14, and on their
responses to bars14 and sinusoidal gratings15,16. Here we focus on
the responses to sinusoidal gratings. Simple cells are selective not
only for the orientation of a grating, but also for its spatial fre-
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quency (the inverse of the distance over which the grating pattern
repeats) and spatial phase (the position of the light and dark stripes
of the grating within the receptive field). Complex cells, on the
other hand, are selective for the orientation and spatial frequency
of the grating, but not its spatial phase. Simple and complex cells
can also be distinguished by the temporal modulation of their
responses to drifting and counterphase gratings15,16. Simple-cell
responses to a drifting grating are highly modulated, whereas com-
plex-cell responses are relatively unmodulated. In response to a
counterphase grating (a grating held stationary in space while its
contrast oscillates sinusoidally in time; Fig. 2), simple-cell activity
is modulated at the same frequency as the contrast of the stimu-
lus. A complex-cell response varies at twice this frequency. These
different temporal responses are a direct consequence of the lack of
selectivity of the complex cell for spatial phase.

One way in which the spatial-phase-invariant responses of
complex cells could arise is by pooling inputs with similar spa-
tial-frequency and orientation preferences but different spatial-
phase tunings. Previous models do this by having multiple
feedforward inputs, from either simple cells14 or sets of direct
LGN afferents17, converge onto a single complex cell. Another
way of generating complex-cell responses is to square and sum
the outputs of four simple cells with the same orientation and
spatial-frequency tuning but spatial-phase preferences that are
90º apart18,19. One weakness of all these models is that they do
not incorporate recurrent connections between complex cells,
which seem to be particularly strong based on measurements of
correlated firing20. We propose instead that an individual com-
plex cell receives relatively weak feedforward inputs with a
restricted range of spatial-phase preferences, and that spatial-
phase invariance arises because of strong recurrent input from
other complex cells.

In the recurrent model that we propose, complex cells are
insensitive to spatial phase because of cortical amplification via
recurrent connections. In other words, cortical amplification acts
to reduce the phase selectivity of complex cells. Whereas previous
models have used recurrent connections to increase selectivity
of simple cells8–11, we propose that recurrent connections are
most relevant for complex cells, where they have the opposite
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effect of reducing selectivity for spatial phase. This proposal is
based on the suggestion that the efficacies of recurrent excitato-
ry synaptic connections between pyramidal cells in primary visu-
al cortex are independent of the spatial-phase preferences of the
pre- and postsynaptic neurons. In a network model, we show
that connections of this form generate simple-cell responses if
the coupling is weak and complex-cell responses if it is strong.

RESULTS
We examined the effects of selective recurrent amplification by
constructing a model network representing neurons in a single
orientation column of primary visual cortex. All the neurons in
the modeled column have the same orientation tuning. Each cell
receives both feedforward and recurrent input (Fig. 1), and its
response is described by a firing rate (see Methods). Without
recurrent input, the model cells behave as simple cells because
their feedforward input is computed from a simple-cell receptive
field (see Methods). This corresponds to driving each model neu-
ron with the output of a single simple cell. An important feature
of the model is that the feedforward input is rectified, reflecting
the fact that firing rates cannot be negative. This single nonlin-
earity is sufficient to generate nonlinear complex-cell responses
in the model once recurrent connections are included.

Neurons in the network are labeled by the orientation, spa-
tial-frequency and spatial-phase preferences of their inputs
(Fig. 1). The strengths of the recurrent connections depend on
the input-selectivity labels of the pre- and postsynaptic neurons.
Because all the neurons in this model have the same orientation
selectivity, the strength of the recurrent connections cannot vary
with orientation preference. The scope of the model could easi-
ly be extended to a hypercolumn so that orientation-dependent
synaptic strengths could be included. However, because this
aspect of recurrent models has already been investigated9,10, we
focus on selectivity for spatial phase and spatial frequency.

The critical feature of the model we propose is that the
strengths of the recurrent connections do not depend on the spa-
tial-phase labels of the pre- and postsynaptic neurons. They do,
however, depend on the spatial-frequency labels. We implement
this by making the strength of the connection from a presynap-
tic neuron labeled by the preferred spatial frequency kpre to a post-
synaptic neuron labeled by kpost equal to a constant, g, multiplied
by a function of kpre – kpost. This function is chosen so that neu-
rons with similar spatial-frequency preferences excite each other
and those with different spatial-frequency preferences inhibit
each other (see Methods). The overall strength of the recurrent
coupling is determined by g. Stability of the model requires that
g be less than a maximum value gmax. A measure of the amplifi-

cation due to the recurrent connections is the gain, given by
gmax/(gmax – g). When g = 0, the gain is unity, and as g approach-
es gmax, the gain grows without bound. To keep the amplitude of
the model responses roughly the same for different levels of gain,
we reduce the strength of the feedforward input to each neuron
when we increase the gain in the model. This allows us to con-
centrate on the effects of cortical amplification on response selec-
tivity rather than on response amplitude.

The responses of one cell in the model network to a drifting
grating are shown in Fig. 2a. When recurrent connections are
absent, the response is highly modulated, like that of a simple cell.
Increasing the gain of the network decreases the relative modu-
lation of the response, and at a high level of gain there is almost
no response modulation. Fig. 2b shows responses to a counter-
phase grating for various gains. At low gain, the model response
oscillates at the same frequency as the stimulus, like the response
of a simple cell. At moderate gain, the model exhibits a second,
weaker response component in antiphase with the response at low
gain. At high gain, the two response components are approxi-
mately equal in amplitude, and the response oscillates at twice the
frequency of the stimulus, like that of a complex cell. Other neu-
rons in the network respond similarly but have different spatial-
phase and frequency selectivities (Fig. 4). Thus, the model neurons
behave as simple cells at low gain and complex cells at high gain.

A measure commonly used to distinguish simple- and com-
plex-cell responses to moving gratings is their relative modula-
tion, which is calculated as the ratio of F1, the amplitude of
response modulations at the same frequency as the stimulus, to
F0, the unmodulated component of the response. Cells are con-
sidered complex if F1/F0 is less than one21. We examined how this
ratio varies as a function of g/gmax (Fig. 3). The relationship is lin-
ear, because the spatial-phase-invariant F0 component is amplified
by the gain factor gmax/(gmax – g) while the spatial-phase-specific
F1 component is unamplified. As a result, F1/F0 is proportional to
1 – g/gmax. The model responses are complex if g/gmax is greater
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Fig. 1. The architecture of the
recurrent model. The model
neurons receive feedforward
input that is selective for ori-
entation, !, spatial frequency,
k, and spatial phase, ". All
inputs have the same orienta-
tion tuning and are given a
realistic range of spatial-fre-
quency and spatial-phase
selectivities.

Inputs

Fig. 2. The effects of recurrent input on model responses. Schematics
of drifting and counterphase gratings are shown at the top. (The
schematics are not aligned with the graphs.) In both (a) and (b), the level
of gain from top to bottom graphs is one, five and twenty. (a) The
response of a model cell to a 2-Hz drifting grating for different network
gains. (b) Responses of the same cell to a 2-Hz counterphase grating for
different gains.
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than 0.36 and simple if g/gmax is less than this value.
Figure 4a shows the spatial-phase tuning of three different

neurons that exhibit complex-cell responses, selected from a net-
work of 256 cells at high gain. Reduction of spatial-phase depen-
dence does not imply that all selectivity is absent. For example,
the cells show spatial-frequency tuning (Fig. 4b). The preferred
spatial frequency of a given cell in the network is determined by
both the selectivity of its feedforward input and its recurrent cou-
plings. The width of its spatial-frequency tuning curve is pri-
marily determined by the recurrent connections. Ranges of
preferred values for other characteristics such as orientation selec-
tivity can arise in a similar manner from appropriately tuned
recurrent connections (not shown). Thus cortical amplification
can increase selectivity for some attributes (such as spatial fre-
quency) while decreasing it for others (such as spatial phase)
within the same circuit.

In the networks discussed thus far, all cells operated at the
same gain, and thus all were simple at low gain and complex at
high gain. It is possible to construct a network in which some
cells operate at low gain and others at high gain by varying the
strength of the recurrent input from cell to cell (see Methods).
The result is a network with a mixture of simple and complex
cells (Fig. 5). Note that the different simple cells in this network
have different spatial-phase preferences.

Finally we examine how the responses of the model depend
on temporal frequency, and compare frequency–response curves
for drifting and counterphase gratings. As previously noted21,
temporal-frequency tuning curves for complex cells responding
to drifting gratings can be significantly broader than those mea-
sured in response to counterphase gratings (Fig. 6a). This result
is interesting with regard to models of complex cells, because it
provides a possible means of distinguishing between feedforward
and recurrent models.

In the recurrent model, most of the input to a complex cell
arises from other complex cells. For a drifting grating, this com-
plex-cell input is unmodulated, and for a counterphase grating,
it varies at twice the frequency of the stimulus (Fig. 2). Thus, the
frequency of the input to a complex cell in the recurrent model is
different for these two stimuli. Drifting and counterphase grat-
ings can then give rise to different temporal-frequency tuning
curves if the integration of synaptic inputs in the complex cell is
frequency dependent. One way to incorporate such a mechanism
is to introduce short-term depression at the synapses of the model.

We have recently studied how the temporal-response properties
of simple cells are affected by synaptic depression22, which has been
measured at intracortical synapses in slices of primary visual cor-
tex23. To test whether synaptic depression could have a similar role
in complex-cell responses, we included it at the synapses of the
model (see Methods). In many ways, synaptic depression of recur-
rent synapses has a similar effect on model complex-cell respons-
es as it did on simple-cell responses in our previous work22,
enhancing transients and increasing the bandpass character of the
response. In addition, synaptic depression causes the temporal-
frequency tuning curve for drifting gratings to be broader than for
counterphase gratings (Fig. 6b), as has been observed previous-
ly21. For the case of a drifting grating, as mentioned above, the
input to a complex cell in the model arises primarily from other
complex cells firing at constant rates. The broadening of the
response for a drifting grating occurs because synaptic depression
decreases the sensitivity of the postsynaptic cell to the magnitudes
of presynaptic mean firing rates24,25. When the stimulus is a coun-
terphase grating, the input firing rates oscillate. In this case, the
bandpass properties of synaptic depression sharpen the temporal-

frequency tuning curve22. The key feature of the recurrent model
that allows these curves to be different is that the complex-cell
input is different for drifting and counterphase gratings.

In the classic feedforward model of Hubel and Wiesel14, com-
plex-cell responses are the result of convergent input from a pop-
ulation of simple cells. Simple cells respond similarly to drifting
and counterphase gratings (Fig. 2). The frequencies of the inputs
to a complex cell are therefore identical, in the feedforward
model, for these two types of stimuli. Complex cells in the feed-
forward model respond differently to counterphase and drifting
gratings because the relative temporal phases, not the frequen-
cies, of their inputs are different (for a counterphase grating, the
inputs are synchronous, whereas for a drifting grating they are
asynchronous). Because the frequencies of the inputs are iden-
tical in the two cases, complex-cell temporal-frequency tuning
curves in response to drifting and counterphase gratings are pre-
dicted to be the same (Fig. 6c). For comparison, we have includ-
ed synaptic depression at the synapses of the feedforward model
(see Methods), which makes the transient and bandpass charac-
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Fig. 3. The relative modula-
tion of the response of the
model cells to a drifting 2-Hz
grating as a function of g/gmax,
the strength of the recurrent
connections relative to the
maximum stable strength.
The three cases shown in Fig.
2 are indicated by asterisks.

g/gmax

F1
/F

0

Fig. 4. At high gain, the model cells are not selective for spatial phase
but retain different selectivities for spatial frequency. (a) The spatial-
phase tuning curves of three representative neurons in a model network
of 256 cells at a gain of twenty. (b) The spatial-frequency tuning curves
of the same three neurons in the network.
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ter of its responses similar to those of the recurrent model.
The frequency dependence of synaptic depression causes the

degree of ‘complexness’ of the neuronal responses in the recurrent
model to vary as a function of temporal frequency. Furthermore,
this variation is different for drifting and counterphase gratings
(Fig. 7). The lower trace shows the relative modulation of a com-
plex-cell response (F1/F0) as a function of the temporal frequency
of a drifting grating. By this measure, the response becomes more
complex (smaller F1/F0) at the lower and higher ranges of drift fre-
quency. Another related measure is the ratio of F1 to F2 in response
to a counterphase grating, as shown in the upper trace of Fig. 7. By
this measure, the model shows an opposite trend. The F1/F2
ratio increases at higher and lower frequencies, indicating
that, for counterphase gratings, the model behavior becomes
more like that of a simple cell in these frequency ranges. It
should be straightforward to test these predictions experi-
mentally. In the feedforward model, we found that F1/F0 and
F1/F2 are independent of temporal frequency.

DISCUSSION
In both the Hubel and Wiesel model14 and our recurrent
model, the feedforward inputs to complex cells arise from
simple cells. A recent study26 provided evidence for mono-
synaptic excitatory connections from simple to complex
cells. However, complex cells can also receive input directly
from the LGN27–29, and it is possible to excite complex cells
without strong excitation of simple cells30–35. Although our
recurrent model requires only weak feedforward input, the
simple-cell input we used could be replaced by LGN input if
this were integrated in an appropriate nonlinear manner.
One feedforward model17 used voltage-dependent dendrit-
ic conductances to achieve nonlinear integration. A similar
approach could probably be used in the recurrent model.

To keep the model as simple as possible, we used purely
excitatory feedforward input. The presence of feedforward
inhibition would tend to make the neurons appear less com-
plex, because the magnitude of the unmodulated response
to a drifting grating would be reduced. This shifts the F1/F0
curve (Fig. 3) to the right, which would probably make it
more realistic. Simple cells have been estimated to operate at
a gain of about two or three12. According to Fig. 3, this would
put these cells into the complex range, but with inhibition a
model cell can remain simple even at this high a gain.

We have followed standard neural-network modeling

practice and used a first-order differential equation to describe
the firing rates of neurons in the network (see Methods). This,
of course, provides only a crude approximation of real neuronal
dynamics. The temporal dynamics of the model are not impor-
tant for producing the phase-invariant complex-cell responses.
However, the frequency–response curves of Figs. 6 and 7 could
change if the basic differential equation of the model were mod-
ified significantly.

In the proposed model, complex-cell responses arise through
recurrent amplification of simple-cell responses. Simple and com-
plex cells represent the weakly and highly coupled regimes of the
same basic cortical circuit. In the Results, we suggest ways of test-
ing this hypothesis and distinguishing the recurrent model from
feedforward models, based on comparing the amplitude and var-
ious measures of ‘complexness’ for responses to drifting and
counterphase gratings of different frequencies. A more direct,
though more difficult, way of testing the model is to manipulate
the strengths of recurrent cortical connections by pharmacolog-
ical techniques, cooling or shocking. The model predicts that any
manipulation that weakens the effects of intracortical excitation
will make complex cells act more like simple cells. Conversely,
manipulations that increase the effectiveness of recurrent exci-
tation should make simple cells respond more like complex cells.
Some results along these lines have been reported. Blocking inhi-
bition, which may increase the cortical gain by enhancing the
effect of recurrent excitation, seems to make simple cells behave
more like complex cells36 (see also D.E. Shulz et al., Soc. Neurosci.
Abstr. 19, 628, 1993). Others have also proposed a model in which
simple- and complex-cell responses are formed by the same cor-
tical circuit37,38. In that model, however, inhibition makes com-
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Fig. 5. Four representative neu-
rons from a model network with a
mixture of simple and complex
cells. The responses shown are to a
4-Hz drifting grating. The upper
two panels show two model neu-
rons with complex responses. The
neuron in the second panel has a
higher F1/F0 ratio than the neuron
in the top panel, but both are less
than one. The two lower panels
show simple cells with different
spatial-phase preferences.
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Fig. 6. Temporal-frequency tuning curves of F2 (the amplitude of the response at
twice the stimulus frequency) and F0 (the amplitude of the unmodulated
response) components in response to counterphase and drifting gratings. 
(a) Replotted data from ref. 21. The F2 temporal-frequency tuning curve of a
complex-cell response to a counterphase grating is narrower than the F0 tuning
curve in response to a drifting grating. (b) In the recurrent model with synaptic
depression, the temporal-frequency tuning curve in response to a counterphase
grating is also narrower than the tuning curve in response to a drifting grating. 
(c) In the Hubel and Wiesel feedforward model14 with synaptic depression, the
tuning curves are not significantly different.
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plex cells simple, whereas in our model recurrent excitation
makes simple cells complex.

Amplification by recurrent cortical circuitry can either increase
or decrease selectivity. Although most attention has focused on
increasing selectivity by this mechanism, decreases of selectivity
could also be important in cortical processing. Cortical amplifica-
tion through recurrent connections, used here to produce com-
plex-cell responses that are spatial-phase invariant, may be a general
mechanism for generating invariant representations of input data.

METHODS
Each neuron in the network model receives feedforward and recurrent
input. The activity of neuron i, described by a firing rate ri, is determined
by the sum of the two inputs through the standard rate-model equation

where Ii
ff and Ii

rec represent the feedforward and recurrent inputs. Stud-
ies suggest that under conditions in which a neuron receives many inputs,
the time constant in this equation, #r, is small, close to the synaptic time
constant and not equal to the membrane time constant9,39. Therefore,
we have chosen #r = 1 ms.

The feedforward input is equal to the response of a simple cell with a
Gabor receptive field and a standard temporal-response function. We
restrict the stimuli to those of optimal orientation; therefore we write
the stimulus as a function of a single spatial variable. For a stimulus with
contrast s(x,t), the feedforward input is

where the notation [ ]+ stands for rectification. The parameter A is adjust-
ed so that the amplitude of the neuron’s response remains relatively con-
stant for different levels of gain. The spatial filter is a Gabor function,

where $i determines the spatial extent of the receptive field, ki is the pre-
ferred spatial frequency, and "i is the preferred spatial phase. $i is cho-
sen such that ki $i = 2.5, which gives the neurons a realistic bandwidth. In
the model presented here, the values of "i are equally distributed over
the interval [–180°, 180°]. The value of ki ranges from 0 to 3.5
cycles/degree. The temporal response function is18

and we use % = 1/ms.
A counterphase grating is created by sinusoidally modulating the con-

trast at a temporal frequency &, s(x,t) = cos( Kx – ') cos(&t), where K is

the spatial frequency of the grating and ' is its spatial phase. In all figures
except Fig. 4b, the optimal value of K for the neuron in the figure is used.
For a drifting grating, the contrast is held constant but the spatial phase
of the grating is a function of time, s(x,t) = cos( Kx – &t) where &/K is the
drift velocity.

The recurrent input to model cell i is given by

where 0 ! gi < gmax, N is the number of cells in the network, rj is the activ-
ity of neuron j, and ki and kj represent the spatial-frequency selectivities
of the feedforward inputs to neurons i and j. The spatial-frequency tun-
ing curve width is primarily determined by $c = 0.5 cycles/deg and $s =
1 cycle/deg. In all but Fig. 5, all the values of gi are the same. In Fig. 5,
the gi values were chosen randomly over the allowed range.

We incorporate synaptic depression using a previously developed
model23,24. The feedforward input transmitted to cell i is now Di

ff Ii
ff,

where Ii
ff is calculated as described above, and 0 ! Di

ff ! 1 represents the
level of depression for the feedforward input synapse to neuron i. Di

ff is
determined by23,24

where d and #D control the rate of depression onset and the time con-
stant of recovery from depression. We took d = 0.95 and #D = 300 ms.
When depression is included, the recurrent input to neuron i is modi-
fied so that

where 0 ! Dij ! 1 represents the level of depression for the synapse from
neuron j to neuron i. It is determined by

When depression was included, synaptic transmission only occurred for
presynaptic firing rates above 0.5 Hz to stabilize the network.

In the Hubel and Wiesel feedforward model14, a complex cell arises
from M converging simple-cell inputs with a range of spatial-phase pref-
erences. When synaptic depression is added to the model, the activity of
cell i is determined by the sum of its feedforward inputs

where Ii
ff and Di

ff are calculated as described above.
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