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Abstract
Advances in experimental neuroscience have transformed our
ability to explore the structure and function of neural circuits. At
the same time, advances in machine learning have unleashed
the remarkable computational power of artificial neural net-
works (ANNs). While these two fields have different tools and
applications, they present a similar challenge: namely, under-
standing how information is embedded and processed through
high-dimensional representations to solve complex tasks. One
approach to addressing this challenge is to utilize mathemat-
ical and computational tools to analyze the geometry of these
high-dimensional representations, i.e., neural population ge-
ometry. We review examples of geometrical approaches
providing insight into the function of biological and artificial
neural networks: representation untangling in perception, a
geometric theory of classification capacity, disentanglement,
and abstraction in cognitive systems, topological representa-
tions underlying cognitive maps, dynamic untangling in motor
systems, and a dynamical approach to cognition. Together,
these findings illustrate an exciting trend at the intersection of
machine learning, neuroscience, and geometry, in which
neural population geometry provides a useful population-level
mechanistic descriptor underlying task implementation.
Importantly, geometric descriptions are applicable across
sensory modalities, brain regions, network architectures, and
timescales. Thus, neural population geometry has the potential
to unify our understanding of structure and function in biolog-
ical and artificial neural networks, bridging the gap between
single neurons, population activities, and behavior.
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Introduction
Neural circuits and artificial neural networks (ANNs)
process information by constructing and manipulating
highly distributed representations [1e4]. Patterns of
activity in these systems, across either neurons or units,

correspond to manifold-like representations (Box 1) d
lines [5], surfaces [6,7], trajectories [8e10], subspaces
[11], and clouds of points [12,13] d in a high dimen-
sional ‘neural state space’, where coordinates represent
the activities of individual neurons or units. Ap-
proaches focused on studying geometric properties of
these manifolds are becoming more widely used as
advances in experimental neuroscience expand our
ability to probe large neural populations [14], and ad-
vances in ANNs [15,16] introduce new challenges
of interpretation.

In neuroscience, driven by advances in recording tech-
niques, mainstream analysis tools have subsequently
transitioned from single-neuron approaches [17,18] to
population-level frameworks [1e3,19,20] that quantify
and decode information represented across many neu-
rons. Challenges arise when we consider large neural
populations involved in complex tasks, as neurons often
show mixed selectivity, i.e., selectivity to multiple
coding variables [21], and real-world tasks often require
robustness to nontrivial variability [6], precluding

simplistic tuning-based analyses. The geometric anal-
ysis provides an approach suitable for addressing
these challenges.

Since a number of large-scale task-optimized ANNs
have outperformed traditional neuronal models in ac-
counting for neural activity [22,23], ANNs have become
a promising model system for studying neural circuits.
One often-heard objection to the use of ANNs in
modeling neural circuits is that ANNs merely replace
one complicated system with an equally complicated

system [24]. Indeed, the challenges in interpreting
high-dimensional ANNs, containing millions of
parameters and neural populations are shared [25]. This
highlights the need for powerful population-level tools
that reveal mechanisms underlying neural network
function. From this perspective, ANNs can serve as a
testbed for developing population-level analysis tech-
niques, such as geometric approaches, even if they are
ultimately aimed at neuroscience applications.
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Box 1. Clarifications on the use of the term ‘manifold’ in neuroscience

‘Manifold’means a topological space that locally resembles a Euclidean space in mathematics. The term ‘neural manifold’ has been used to refer
to a broad set of geometric structures in neural populati‘on activity underlying various cognitive tasks, although these population structures in real
neural data are often no longer technically ‘manifolds’ in a mathematical sense, mainly due to the presence of neural noise and but also often due
to the sparse input sampling.

Object manifolds [6,7,13] or perceptual manifolds [5,12] refer to sensory neurons’ population structures that arise as a result of identity-
preserving variabilities in the input stimulus space. The term neural manifold has been used more broadly to refer to low-dimensional sub-
spaces underlying population activities embedded in high-dimensional neural state space, not only in (aforementioned) sensory brain regions but
also in motor and cognitive brain regions [11,26,27].

Point-cloud manifolds: a point-cloud with an underlying manifold structure, where the typical source of the underlying manifold variability is
stimulus variability (e.g., orientation or position) or neuronal variability (e.g., the shape of a neuron’s tuning curve). Despite the implied underlying
manifold structure, the data often manifest themselves as point clouds due to the sparse sampling of data from the available range of the stimulus/
neuronal variabilities and/or due to noise (input noise or stochastic neuronal noise).

Neural population geometry refers to the configurations of these neural manifolds embedded in ambient neural state space.
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In this review, we highlight important examples of how
geometrical techniques and the insights they provide
have aided the understanding of biological and artificial
neural networks. We begin with an overview of recent
theoretical developments linking neural population ge-
ometry to categorization capacity. We then discuss
theoretical work on characterizing representational ge-
ometries across tasks and modalities, such as recognition
and prediction in the sensory domain (perceptual

untangling) and abstraction in the cognitive domain
(disentanglement). We also discuss sensory or behav-
ioral state transitions in the head direction system and
hippocampus (topology discovery). Finally, we provide
examples for which dynamical analysis of neural popu-
lation geometry sheds light on representations in motor
control (dynamic untangling) and complex cognitive
tasks such as Bayesian inference.
The geometry of perception and decision
making
Perceptual untangling
It has been hypothesized that the role of ventral visual
stream processing is to transform the representations of
visual objects so that they become ‘untangled’, meaning
that they are transformed into a form that is linearly
separable [6,7] (Figure 1a). The concept of linear sepa-

rability goes back to the early days of ANNs [28,29], and
it still plays a central role in the analysis of neural pop-
ulation geometry. A task in which a subject must divide a
large set of stimuli into two categories requires the sep-
aration of the neural activity patterns evoked by these
stimuli into two sets corresponding to the two categories.
We know frommachine learning that this discriminability
can be achieved easily if a hyperplane can separate the
two sets of activities. Such a representation is called
linearly separable. If, instead, the separating surface must
be curved, dividing the two sets of neural population

activities is more difficult. This insight is central to a
number of the approaches we discuss.
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The idea of untangling has been extended into the
time domain [7,30]. In this case, neural population
activity corresponds to a trajectory through neural state
space. These studies posit that, at a given point in
time, it is easier to predict future neural activity if this
trajectory is straight than if it is convoluted. This led to
the hypothesis that visual processing also serves to
straighten temporal response trajectories [7]. This
‘temporal straightening hypothesis’ has been tested by

measuring the curvature of the neural trajectory of re-
sponses to natural videos in neural network models and
human perceptual space [30] (Figure 1b). Straight-
ening of response trajectories occurs when natural
video sequences, but not artificial video sequences,
are presented.

The geometry of abstraction
The principle of linear separability can also provide
insight into more complex tasks beyond categorization.
Consider a task in which two sets of stimulus-response
pairings, set A and set B, must be learned. The task
involves uncued ‘context’ switches between the use of
set A and set B. An efficient solution is to represent the

stimulus-response pairings in such a way that a transi-
tion between contexts can be accomplished by the
rotation and/or translation of a dividing surface in the
neural state space (Figure 1c). Recordings from the
prefrontal cortex, hippocampus, and results from task-
trained neural networks [31] all indicate the use of
‘disentangled’ representation, quantified by a geometric
measure called the parallelism score. These studies
provide direct neural evidence on how two different
contexts are involved in such a task, and thus, probe the
level of abstraction and type of strategy being used by

the animals and machines. An important idea here,
which will reappear in another context in the next sec-
tion, is that while abstraction is achieved, the repre-
sentation does not simply discard information about
other variables [31].
www.sciencedirect.com
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Figure 1

(a) Representation straightening for invariant object recognition (b) Temporal straightening for temporal natural video sequences. (c) Geometry of
Abstraction. Representations encoding abstraction (i.e., cross-conditional generalization) show geometry where coding directions can be rotated or
translated between conditions, known as parallelism (Right). (d) Neural manifolds arise as a result of stimulus variability. Population responses to two
object classes (dog vs. cat) in the presence of the stimulus variability (orientation) give rise to two object manifolds. Invariant object recognition becomes
the problem of classifying between two object manifolds. Axes represent the firing rates of neurons. (e) Manifold capacity is high if object manifolds are
well separated and low when object manifolds are entangled in neural state space. Part (a) adapted from Ref. [7]. Part (b) adapted from Ref. [30]. Part (c)
adapted from Ref. [31]. Part (e) adapted from Ref. [32].
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Extensions from points to manifolds
In the research covered thus far, neural population ac-
tivity during a task has been considered to be a point (in
the case of static stimuli) or a one-dimensional trajec-
tory (in the case of time-dependent stimuli) in the
neural state space. However, the same stimulus shown
repeatedly will not result in the same point in state
space being occupied; instead, neuronal variability will

cause the points from different trials to jitter. The result
is that each stimulus corresponds not to a point but to a
point cloud whose size and shape depend on the
amplitude and form of the neuronal variability.
Furthermore, the presence of other sources of variability
introduces the need to cluster responses into point-
cloud manifolds (Box 1). For example, if we want to
distinguish dogs from cats, we may want to group the
www.sciencedirect.com
responses to images for different viewing angles, sizes,
and animal breeds into one dog manifold and one cat
manifold (Figure 1d). In this perspective, the problem
of invariant object discrimination becomes that of
separating neural manifolds [12].

Determining the mechanism behind invariant object
discrimination requires us to decipher how the structure
across different instances of the same object is
processed by the layers of the sensory hierarchy. This
raises the question of how the structure of neural object
manifolds is related to the separability of object cate-
gories. Theoretical work based on concepts from sta-
tistical physics has shown that linear separability of
object manifolds, as defined by the object manifold ca-
pacity [12], a generalization of perceptron capacity, can
Current Opinion in Neurobiology 2021, 70:137–144
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be formally connected to the geometric properties of
object manifolds such as their dimension, radius and
correlation structure [12,13,33].

One result of this work is that the same level of linear
separability can be achieved across different combina-
tions of geometrical properties. For example, combina-
tions of large/small dimensionality and small/large size of

object manifolds can lead to similar capacities because
there is a tradeoff between the dimensionality and the
radius of these manifolds. The untangling hypothesis
can be extended to the idea that visual processing aims
to provide well-separated manifolds that provide infor-
mation about object identity while maintaining other
image-related variables such as pose, position, and
scale (Figure 1a,d).

In this framework, the notion of manifold capacity has
several interpretations. While the manifold capacity

measures the linear separability of object classes, it also
measures the storage capacity of object classes in a given
representation (i.e., the maximum number of object
classes that can be read out linearly). Small manifold
dimensions and radii predict high manifold capacity and
vice versa (Figure 1e). This theory has been used to
show how categorical information emerges across layer
hierarchy as a result of geometrical changes in ANNs
implementing visual object recognition [13], speech
recognition [32], and language prediction tasks [34].
These ANN models are known to have a high neural

predictivity with corresponding brain regions in the
macaque visual cortex [22,35], human auditory cortex
[36], and language processing regions [37]. In addition,
promising preliminary results in mouse and macaque
visual cortex [38,39] show that this theory can also be
used directly to characterize neural data. These exam-
ples demonstrate how the untangling hypothesis has
motivated advancements in new theoretical frame-
works, such as manifold capacity theory, allowing for a
more refined geometric analysis of representations in
biological and artificial neural networks.

The intrinsic geometry of representation
Another approach to understanding high-dimensional
neural activity focuses on the observation that the
neural activity lies on lower-dimensional subspaces, i.e.,
neural manifolds (Box 1). For understanding the structure
of these neural manifolds, many recent studies have
employed various dimensionality reduction techniques
to the analysis of neural data. Dimensional reduction
refers to manipulations used to identify the shape,
location, and orientation of neural data within the neural
state space. Widely used linear methods such as prin-

cipal components analysis (PCA) provide a Cartesian
coordinate basis describing subspaces in which the data
lie. It is also useful to determine the geometric prop-
erties that characterize the intrinsic space defined by
Current Opinion in Neurobiology 2021, 70:137–144
the data, which, in general, requires nonlinear dimen-
sionality reduction methods. To be concrete, consider
the responses of a population of neurons to a set of
stimuli described by two variables (disregarding neural
noise for simplicity). We might assume that these data
can be described as a function of these two stimulus
variables. If this is indeed the case, the responses lie on a
two-dimensional surface, but that surface is not neces-

sarily a flat plane. In fact, the surface might be convo-
luted and lie in a considerably higher dimension. PCA
will find this higher dimensional embedding space,
whereas nonlinear methods can find the curved sur-
face itself.

A large number of nonlinear dimensionality reduction
methods are available, including Isomap [40], LLE [41],
tSNE [42], MDS [43], PHATE [44] and UMAP [45].
Although powerful, these nonlinear methods assume
that underlying manifolds are topologically simple and

can fail to capture the neural manifold structure if the
underlying topology is complex. Computational ad-
vances have been made in an effort to understand how
brain regions encode directional or spatial information,
such as the head direction system and the hippocampus.
Chaudhuri et al. [46] utilized a technique known as
Spline Parameterization for Unsupervised Decoding
(SPUD) (Figure 2a) to discover the ring structure un-
derlying the mammalian head direction system. This
technique uses an approach called persistent homology
[47,48], in which persistent features determine the

intrinsic dimension used to discover underlying
nontrivial topological structure in the data.

Meanwhile, recent work in the hippocampus introduced
a topologically motivated method called Manifold
Inference from Neural Dynamics (MIND) [49,50]
(Figure 2b) to characterize neural activity in the CA1
region of the hippocampus during a foraging and sound
manipulation task. In MIND, distances between nearby
states are defined by transition probabilities, which
gives rise to the notion of intrinsic dimensions relevant
for topological maps underlying task implementation.
The geometry of movement and cognition
Dynamic untangling of internally generated activities
The concept of untangling has also been applied to the
neural trajectories recorded from the motor cortex

during movement. In studies of motor regions, we are
interested not only in how body movements are repre-
sented but, importantly, in how they are generated. How
can we determine whether a given region of the brain is
playing a significant role in movement generation as
opposed to merely reflecting the effects of activity
generated elsewhere? In a closed dynamical system, the
rate of change of any dynamic variable is a function of all
the other dynamic variables. Thus, it is impossible for a
single point in the state-space to be associated with two
www.sciencedirect.com
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Figure 2

(a–b) Manifold discovery methods. (a) Spine Parameterization for Unsupervised Decoding (SPUD). (b) Manifold Inference for Neural Dynamics
(MIND) (c–d) Population dynamics as cognition. (c) (Left) Temporal trajectories during macaque cycling task in M1 and (Right) SMA. (d) Dorsomedial
Frontal Cortex (DMFC) response profiles during Bayesian computation. Part (a) adapted from Ref. [46]. Part (b) adapted from Ref. [10]. Part (c) adapted
from Ref. [51]. Part (d) adapted from Ref. [8].
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different rates of change. This is equivalent to the
statement that state-space trajectories in such a system
cannot cross over themselves. A‘tangling index’ has been

introduced to identify cases when the trajectories of
recorded populations of neurons actually or come close
to crossing [9]. By using this measure, it was shown that
tangling is much lower in the primary motor cortex
during a cycling task than in areas such as the primary
sensory cortex or in muscle activities during the same
task. This supports the idea that the motor cortex acts as
a generator, whereas activity in the somatosensory
system and muscles is a response to the motor drive.

Interestingly, a follow-up study of neural activity tra-

jectories during the cycling task in the supplementary
motor area (SMA) provided geometric evidence of the
well-known role of this area in motor sequencing [51].
Activity in the motor cortex repeated across cycles of the
cycling task, but SMA activity followed a helical trajec-
tory, providing s neural representation of the sequence
of cycles made during the task (Figure 2c). A similar
result was obtained in model recurrent neural networks;
www.sciencedirect.com
a helical representation arose when the network was
required to keep track of the number of cycles it had
generated [51]. These examples illustrate the extension

of the use of geometric analyses, which we first
discussed in relation to perception to motor systems.

Population dynamics as cognition
There is a long history of relating dynamic motifs in
recurrent networks to cognitive functions: fixed points
and memory [52,53], line attractors and integration
[54], and limit cycles with various neuronal oscillation
patterns [55]. These ideas have more recently been
extended to a general program linking dynamics to
cognition [56,57].

For example, work in the macaque frontal cortex during

a time reproduction task, which requires subjects to
reproduce the duration of a time interval, demonstrated
that experience warps neural population representations
[8]. This mechanism allows for the incorporation of prior
statistics in the map from sensory representation to
motor output [8]. A geometric analysis of the activity in
Current Opinion in Neurobiology 2021, 70:137–144
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recurrent neural networks trained to perform this task
revealed how curvature supports an underlying Bayesian
computation (Figure 2d).

Conclusion
The neural population geometry approach suggests
many open problems and future opportunities at the
intersection between neuroscience and artificial intel-
ligence. Below we enumerate opportunities and chal-
lenges for future study.

First, the neural population geometry can serve as a
more accurate population-level descriptor compared to
simple task-level probes, as representations with the
same level of task capacity can have different
geometric configurations [12,33]. Notably, dimen-
sionality [58] is an important population-level metric

capturing task information and representational
redundancy. This can be further extended with other
complementary measures necessary for a full under-
standing of computation. For example, invariant object
classification capacity [12,13] is determined not only
by an object manifold’s dimension but also, crucially,
by its radius.

Second, as the list of tasks and brain regions showing
interesting population geometric structure is growing at
a rapid pace [26,59e63], future theoretical de-

velopments may need to address the formal connection
between representational geometric properties and the
encoded task information for a larger array of tasks.

Third, future directions should include uncovering the
relationship between population geometry and specific
biophysical properties of neurons. In the neural ge-
ometry underlying Bayesian computation [8], the cur-
vatures of trajectories are linked to the distributions of
priors encoded by each neuron. In deep networks
performing visual object recognition, a single layer of

homogenous units exhibits a trade-off between various
geometric transformations, while common network
motifs involve beneficial geometrical changes to mul-
tiple geometric properties, suggesting the benefit of
heterogeneity in neural populations [13]. More broadly,
different brain regions relevant for distinct tasks may
implement optimal neural geometry engendered by
specific neuronal constraints. Given the vast hetero-
geneity of cell types, synaptic connectivity patterns,
neuronal activation profiles, and sparsity levels, which
biological properties constrain and shape the critical

task-encoding geometry?

As geometric descriptions are general across task mo-
dalities, brain regions, and characteristic timescales, the
neural population geometry approach may hold a key for
unifying the descriptions of structure and function in
biological and artificial neural networks across brain re-
gions and computational levels.
Current Opinion in Neurobiology 2021, 70:137–144
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