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one example of how the work of Hahn et al.4 
could stimulate pertinent follow-up work to 
test the influence of MEC Down-state skip-
ping on other cortical areas and eventually 
reveal its broader function. Further work 
could also investigate whether reactivation 
patterns are different during neocortical Up 
and Down states to test whether the possible 
binding of spatial and nonspatial information 
occurs in the hippocampus or only in higher 
cortical areas.
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synchronized Up-and-Down states3,8,9. The 
findings of Hahn et al.4 therefore suggest that 
both neocortex and MEC can act as rhythm 
generator circuits for cortical slow oscillations. 
The mechanism underlying the synchroniza-
tion of cortical slow oscillations has been an 
important question in the field of network 
physiology3,10. One idea is that transitions 
between Up and Down states propagate as 
traveling waves across partially coupled oscil-
lators. However, the work by Hahn et al.4 
argues against this scenario, as it suggests that 
the MEC generator can gain independence 
from the neocortical generators by skipping 
Down states. It is also possible that other corti-
cal generators may show similar decoupling, 
thereby making the temporal dynamics of slow 
oscillations more complex.

Whether the decoupling effect of the MEC 
on cortical slow oscillations is restricted to the 
hippocampus or occurs elsewhere remains 
unknown. Such MEC-related decoupling 
may also extend to other cortical structures, 
such as the postrhinal cortex. But what is the 
functional role of such a release? And how 
can a hippocampal dialog during neocortical 
Down states be beneficial? Many MEC neu-
rons exhibit firing patterns that are spatially 
tuned to the location of the animal in its envi-
ronment, whereas most neurons in the LEC 
display a weak spatial selectivity that indicates 
the possible influence of nonspatial sensory 
inputs11–13. Because of this, it has been sug-
gested that MEC-postrhinal-retrosplenial 
cortices may represent a spatial information 
stream, whereas the LEC-perirhinal-anterior 

cingulate cortices may represent a nonspatial 
information pathway14,15. Thus, during active 
waking behavior, CA1 hippocampal neurons 
may encode a combination of spatial and non-
spatial information through the integration of 
MEC and LEC inputs, respectively. However, 
during off-line periods, at times when memory 
traces are thought to be consolidated, the tem-
poral dynamics between the LEC Up-Down 
states and the MEC persistent Up states might 
differentially channel the reactivation of spa-
tial and nonspatial memory traces. 

Hippocampal sharp wave ripple (150–250 Hz)  
events have been implicated in the reactiva-
tion of waking firing patterns and memory 
consolidation5. In light of the study from 
Hahn et al.4, hippocampal sharp wave ripple 
events during neocortical Down states might 
favor the reactivation of spatial information, 
whereas those in the Up states might act to 
bind space and events. This would provide 
a mechanism that emphasizes spatial infor-
mation at times when the hippocampus is 
decoupled from the neocortex and allows 
the selective communication of cortical areas 
involved in the spatial information stream. 
Such regions could include the postrhinal 
and the retrosplenial cortices, if these regions 
prove similarly capable of decoupling from 
neocortical Down states via MEC-moderated 
influence. In contrast, sharp wave ripple 
events that occur during neocortical Up states 
could enable the integrated binding of spatial 
and nonspatial information by simultaneously 
recruiting not only the spatial stream but also 
the nonspatial stream. This hypothesis is but 
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Two layers of neural variability
Mark M Churchland & L F Abbott

Variability in neuronal firing rates and spike timing can be modeled as doubly stochastic. A study now suggests that 
these phenomena could arise from a network built of deterministic neurons with balanced excitation and inhibition.

Neural circuits represent and process infor-
mation through the temporal and spatial pat-
terns of their spikes. However, these patterns 
of spikes are surprisingly variable, even across 
trials in which an animal is experiencing 
identical stimuli or performing a nominally 
identical action. A common practice is to treat 
such variability as arising from the stochastic 
(Poisson) generation of spikes on the basis 
of a firing rate. There is debate regarding the 
degree to which deviations from stochastic 
spiking (for example, synchrony and spike-
timing effects) encode additional information 
beyond the rate. Putting that debate aside, it is 
widely agreed that the rate carries a good deal 

of information and that much of the recorded 
spiking variability is effectively noise. Many 
of our most successful models and hypotheses 
are couched entirely in terms of firing rates. 
Notably, such models often allow firing rates 
themselves to be variable across trials (for 
example, this might be necessary to explain 
behavioral variability). Thus, the observed 
data is often modeled as ‘doubly stochastic’1: 
a variable firing rate gives rise to variable  
spiking2 (Fig. 1). Although such models pro-
vide good descriptions of the data, they seem 
to be at variance with the known biophysics 
of neurons. Nowhere inside a neuron is there 
a biophysical quantity that corresponds to a  

The principal mode of neural communication 
is the action potential: a stereotyped spike in 
voltage across the membrane of a neuron. 
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firing rate nor is there a random spike generator 
that might turn that rate into variable spikes. 
In this issue, Litwin-Kumar and Doiron3 take 
a step toward resolving this apparent paradox 
by presenting a deterministic network model 
in which spiking activity appears as if it were  
doubly stochastic.

Litwin-Kumar and Doiron3 show that a 
simulated network of spiking neurons can 
exhibit, as an emergent network property, 
both spontaneous firing rate fluctuations and 
spontaneous spiking variability. The simu-
lated neurons are deterministic in that they 
do not employ a random spike generator nor 
are they directly endowed with an underly-
ing firing rate. However, when placed in the 
proposed network architecture, these simple 
neurons act somewhat like real neurons and 
exhibit highly variable spiking at a rate that 
fluctuates over time. Consistent with experi-
mental observations, spiking variability is ‘pri-
vate’: one spike from one neuron implies little 
regarding whether another neuron will spike 
at the same instant4. In contrast, spontaneous 
firing-rate fluctuations are ‘shared’: groups of 
neurons collectively exhibit periods of high-
frequency firing.

There is no true randomness in the net-
work. The model is actually ‘doubly chaotic’ 
rather than doubly stochastic. But because 
chaotic dynamics are in practice unpredict-
able, they appear to be stochastic. The doubly 
chaotic character of the model is its novel fea-
ture. Prior network models constructed at the 
level of firing rates (without any spiking) have  
been shown to produce chaotic firing-rate 

fluctuations5. Similarly, simulated networks of 
spiking neurons have been shown to exhibit 
chaotic spiking dynamics4,6–9. The key advance 
in the network constructed by Litwin-Kumar 
and Doiron3 is that it generates chaotic spiking  
along with irregular changes in firing rate.  
To do so, their network employs the principle 
of balanced excitation and inhibition.

Chaotic firing-rate and chaotic spiking 
network models typically rely on a balance 
of strong excitation and strong inhibition to 
generate highly variable activity. In a number 
of prior spiking networks4,6–9, each neuron 
is bombarded by large amounts of excitation 
and inhibition that mostly cancel each other 
out, leaving behind fluctuations that occasion-
ally and irregularly drive the neuron across 
the threshold for spiking10. Although spik-
ing is deterministically chaotic, it appears to 
be roughly Poisson. A recent examination of 
synaptic strength argues that cortical networks 
are likely in a balanced regime11. The model of 
Litwin-Kumar and Doiron3 starts with a bal-
anced network of randomly connected spik-
ing neurons and adds clustered connections 
to induce firing-rate fluctuations. Strong clus-
tering is a brute-force way of causing a group 
of simulated spiking neurons to act like a fir-
ing rate unit (the average spiking of the whole 
cluster simply becomes the rate). The surpris-
ing feature of the Litwin-Kumar and Doiron3 
network is that firing-rate fluctuations emerge 
even with only modest clustering—when ~3% 
of the connections in an initially random net-
work are rearranged. Although this is a small 
change from randomness at the level of the 

network, from the point of view of a given 
cluster, this modification is sufficient to pro-
duce a fairly large effect; the total strength of 
within-cluster excitation increases almost five-
fold. This allows the neurons in each cluster to 
act synergistically, almost as if they formed one 
large ‘rate unit’. Fluctuations in firing rate occur 
because the clusters are in competition: each 
cluster excites itself and inhibits the others. 
When a given cluster becomes active, it tends 
to stay active and to suppress the others. The 
active cluster therefore has an elevated over-
all firing rate. A little later, a different cluster 
may win the competition and become the most 
active. This competition produces extended 
fluctuations in firing rate. These rate fluctua-
tions coexist with chaotic spiking that appears 
to be roughly Poisson. Indeed, variability in 
spiking drives the firing-rate transitions.

This network also reproduces a robust fea-
ture of the physiological data: the onset of a 
stimulus reduces firing-rate fluctuations while 
having little or no effect on spiking variabil-
ity2. Previous simulations have addressed the 
possible sources of this effect2,12,13, but Litwin-
Kumar and Doiron3 are the first to show that it 
exists in a deterministic network that internally 
generates both firing-rate and spiking vari-
ability. The reduction in firing-rate variability 
can be easily understood. If the stimulus drives 
clusters differentially, it resolves the competi-
tion among them, suppressing firing-rate vari-
ability and leaving only spiking variability.

The network developed by Litwin-Kumar 
and Doiron3 elegantly illustrates how a single 
deterministic model can appear to be doubly 
stochastic, producing both firing-rate fluc-
tuations and spiking variability. In doing so, 
it provides a solid conceptual framework that 
clarifies what we mean by terms such as firing-
rate variability, spiking noise and underlying 
firing rate. That the network achieves its prop-
erties with only a modest deviation from ran-
dom connectivity has important implications. 
For example, whether two neurons are con-
nected says little about whether they share the 
same firing rate. Still, it should be stressed that 
the particular deviation from random connec-
tivity (clustering) used in this study produces 
a very limited form of firing-rate dynamics: a 
competing set of attractor states that generate 
essentially two levels of firing, high and low. 
Those dynamics are not intended to compute 
anything or to perform any particular task; 
they are simply intended to emulate basic fea-
tures of real data.

This class of model provides a potential 
explanation for features of neural data that 
we often take for granted and provides a 
theoretical justification for many standard 
analyses. For example, the single most  

Figure 1  Schematic showing a typical presentation of extracellularly recorded data. (a) A recording 
electrode detects the occurrence of individual spikes from a neuron. (b) Spike times are plotted as a 
raster, with one tick per spike. The same neuron may be recorded for multiple repeats (trials) of the same 
stimulus, with each response plotted in one row. In this illustration, five trials are shown. Spiking appears 
to be stochastic, as each trial involves a different pattern of spikes. (c) Spikes are often said to occur with 
a frequency determined by an underlying firing rate (blue trace). If so, the firing rate can be estimated 
by filtering the data and averaging across trials. However, it is typically further assumed that the 
underlying firing rate may itself be variable across trials (orange traces). Thus, many models assume that 
the recorded data are doubly stochastic, with variable rates giving rise to variable spiking. A commonly 
observed effect is that the onset of a stimulus reduces firing-rate variability, but not spiking variability.
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common analysis in systems neuroscience 
is to estimate the firing rate of a neuron by 
averaging the response across many stimu-
lus repetitions. This analysis is appropriate 
if the underlying network supports both a 
time-evolving rate (which is effectively signal 
and is recovered by averaging) and spiking 
variability (which is effectively noise and 
is suppressed by averaging). Furthermore, 
experimentalists often attempt to segregate 
response variability into firing-rate variability 
and spiking noise1,2. It is generally assumed 
that the former can influence behavior14 or 
perception15, whereas the latter effectively 
acts as measurement noise. These are indeed 
fair assumptions for a network of the class 
simulated by Litwin-Kumar and Doiron3. 
Firing-rate fluctuations are shared among 
neurons (and can affect behavior), whereas 
spiking variability is local in time and mostly 
uncorrelated between neurons4 (and would 
have difficulty affecting behavior).

A number of outstanding questions remain. 
Can the proposed class of spiking network 
instantiate the full range of dynamics that can be 
built from rate-based units, including dynamics  
that involve a continuous evolution of the 
rate (for example, integrators, limit cycles and  
chaotic attractors)? If so, should our models and 
hypotheses dispense with the nuisance of spik-
ing variability and simulate dynamics directly at 
the level of rates? Or might structured details of 
spiking influence the evolution of the network 
at the level of rates, as has often been suggested? 
Such questions underscore that our field is not 
yet completely certain which aspects of a spike 
train are signal and which are noise. Still, we 
seem to have come to a fairly solid understand-
ing that not every spike is sacred and that the 
dynamics of many networks are best described 
at the abstract level of rates.
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Cdk5 keeps memory on Trk
The structural and functional plasticity of synaptic connections is thought to 
contribute to the formation of new memories in the brain. There are a number 
of molecules that participate in the establishment of synaptic plasticity and 
in memory formation, including brain-derived neurotrophic factor (BDNF). 
Its receptor, TrkB, is a receptor tyrosine kinase that can, when activated, 
trigger autophosphorylation of its tyrosine residues. However, several other 
kinases can also phosphorylate this receptor on serine residues, and whether 
these forms of phosphorylation are actually critical for synaptic plasticity 
and memory remains an open question. On page 1506 of this issue, Lai and 
colleagues provide some important answers to this question by looking spe-
cifically at the role of the proline-directed serine and threonine kinase Cdk5 
in the activation of TrkB and the subsequent effects on synaptic plasticity 
and memory.

The authors previously found that Cdk5 can phosphorylate TrkB on 
serine 478 to promote dendritic growth. To further determine the molecular 
mechanisms acting downstream of this signaling branch of the TrkB 
receptor and uncover the physiological relevance of S478 phosphorylation 
by Cdk5, Lai and colleagues generated a knock-in mouse in which TrkB 
was swapped with a phosphorylation-deficient S478A mutant TrkB recep-
tor. They found that TrkB phosphorylated on its serine 478 colocalizes with 
PSD-95 in dendritic spines in hippocampal neurons in cultures (see image) 
and that this phosphorylation is crucial for BDNF-induced spine morphogenesis and glutamate-induced spine growth. Furthermore, S478 
phosphorylation promoted the interaction of TrkB with the Rac-GEF TIAM1 and the activation of the Rac-PAK pathway, thereby linking 
phosphoS478-dependent signaling to the machinery that modulates actin dynamics and mediates spine remodeling. Crucially, S478 phos-
phorylation impaired CA3-CA1 long-term potentiation in hippocampal slices and S478A mutant mice exhibited severe deficits in spatial 
memory and novel object recognition tasks. However, their ability to learn contextual fear was intact.

The study by Lai and colleagues provides some new insights into to how Cdk5 and BDNF contribute to synaptic plasticity, learning and 
memory, and presents compelling evidence of the importance of serine phosphorylation of a receptor tyrosine kinase in this process.

Sebastien Thuault
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