
Credit Assignment Through
Broadcasting a Global Error Vector

David G. Clark, L.F. Abbott, SueYeon Chung
Center for Theoretical Neuroscience

Columbia University
New York, NY

{david.clark, lfabbott, sueyeon.chung}@columbia.edu

Abstract

Backpropagation (BP) uses detailed, unit-specific feedback to train deep neural
networks (DNNs) with remarkable success. That biological neural circuits appear
to perform credit assignment, but cannot implement BP, implies the existence of
other powerful learning algorithms. Here, we explore the extent to which a globally
broadcast learning signal, coupled with local weight updates, enables training of
DNNs. We present both a learning rule, called global error-vector broadcasting
(GEVB), and a class of DNNs, called vectorized nonnegative networks (VNNs), in
which this learning rule operates. VNNs have vector-valued units and nonnegative
weights past the first layer. The GEVB learning rule generalizes three-factor
Hebbian learning, updating each weight by an amount proportional to the inner
product of the presynaptic activation and a globally broadcast error vector when the
postsynaptic unit is active. We prove that these weight updates are matched in sign
to the gradient, enabling accurate credit assignment. Moreover, at initialization,
these updates are exactly proportional to the gradient in the limit of infinite network
width. GEVB matches the performance of BP in VNNs, and in some cases
outperforms direct feedback alignment (DFA) applied in conventional networks.
Unlike DFA, GEVB successfully trains convolutional layers. Altogether, our
theoretical and empirical results point to a surprisingly powerful role for a global
learning signal in training DNNs.

1 Introduction

Deep neural networks (DNNs) trained using backpropagation (BP) have achieved breakthroughs
on a myriad of tasks [1, 2]. The power of BP lies in its ability to discover intermediate feature
representations by following the gradient of a loss function. In a manner analogous to DNN training,
synapses in multilayered cortical circuits undergo plasticity that modulates neural activity several
synapses downstream to improve performance on behavioral tasks [3, 4]. However, neural circuits
cannot implement BP, implying that evolution has found another algorithm, or collection thereof [5].
This observation has motivated biologically plausible alternatives to BP [6, 7].

Credit assignment algorithms based on broadcasting a global learning signal, such as node perturbation
[8], are attractive due to their biological plausibility, as the global signal could correspond to a
neuromodulator that influences local synaptic plasticity [9, 10]. However, perturbation methods
are of little practical relevance as the variance in their gradient estimates is prohibitively large
[7, 11]. Instead, recent research has focused on methods that compute or estimate the gradient by
transmitting detailed, unit-specific information to hidden layers through top-down feedback. The
foremost example of such a method is BP. BP’s use of the feedforward weights in the feedback
pathway, a property called weight symmetry, is not biologically plausible – this is the weight transport

Preprint. Under review.

ar
X

iv
:2

10
6.

04
08

9v
1

 [
q-

bi
o.

N
C

]
 8

 J
un

 2
02

1

-

input

output

target error
- --

output

target
error

input

backpropagation (BP) feedback alignment (FA) direct feedback
alignment (DFA)

global error-vector
broadcasting (GEVB)A B C D

global
broadcasting

Figure 1: Credit assignment methods. (A) Backpropagation (BP) transmits the error vector backwards
layer-by-layer using the transposes of the feedforward weights. (B) Feedback alignemnt (FA)
transmits the error vector backwards layer-by-layer using fixed, random feedback matrices. (C) Direct
feedback alignment (DFA) delivers the error vector directly to each hidden layer using fixed, random
feedback matrices. (D) Global error-vector broadcasting (GEVB) conveys the full error vector to all
hidden units without unit-specific feedback. Thus, there are no feedback parameters. GEVB operates
in networks in which each hidden unit is vector-valued.

problem [12]. Another method of this class, feedback alignment (FA), operates identically to BP but
uses fixed, random matrices in the feedback pathway, thereby circumventing the weight transport
problem [13]. FA inspired a further method called direct feedback alignment (DFA), which delivers
random projections of the output error vector directly to hidden units [14, 15]. DFA approaches the
performance of BP in certain modern architectures [16], however its performance still lags behind that
of BP in many cases [14, 16–19]. A particularly striking shortcoming of DFA is its inability to train
convolutional layers [16, 19, 20]. To be implemented in neural circuits, both FA and DFA require a
biologically unrealistic “error network” to compute top-down learning signals, though models based
on segregated dendrites aim to lift this requirement [21, 22].

Here, we show that DNNs can be trained to perform on par with BP by broadcasting a single, global
learning signal to all hidden units and applying local, Hebbian-like updates to the weights. Our
proposed learning rule, called global error-vector broadcasting (GEVB), is not perturbation-based,
but instead distributes information about the output error throughout the network. Unlike DFA, which
delivers a unique random projection of the output error vector to each hidden unit, GEVB broadcasts
the same, unprojected error vector to all hidden units. Thus, GEVB involves no unit-specific feedback.
This learning rule operates in a new class of DNNs called vectorized nonnegative networks (VNNs),
which have vector-valued units and nonnegative weights past the first layer. While our use of vector-
valued units is neuroscientifically speculative (see Section 7 for possible neural implementations),
nonnegative weights are motivated by the fact that cortical projection neurons are excitatory [4].
The GEVB learning rule updates each weight by an amount proportional to the inner product of
the presynaptic activation and the global error vector when the postsynaptic unit is active, a form
of three-factor Hebbian learning with a vector-valued global third factor [23, 24]. Our experimental
results show that this form of global error-based learning is surprisingly powerful, performing on par
with BP in VNNs and overcoming DFA’s inability to train convolutional layers.

Our results are organized as follows:

• Section 2 describes credit assignment in conventional DNNs via BP, FA, and DFA. We then
identify an obstacle to performing credit assignment in the absence of weight symmetry,
namely, computing the sign of the gradient.

• Section 3 introduces VNNs and the GEVB learning rule. We prove that GEVB produces
weight updates matched in sign to the gradient under appropriate choice of the VNN
nonlinearity, overcoming the obstacle described in Section 2.

• Section 4 shows that random nonnegative initializations place VNNs in a regime of exact
gradient alignment in the limit of infinite network width.

• Section 5 presents a method for initializing VNNs based on ON/OFF cells that ensures
well-behaved forward propagation.

• Section 6 demonstrates that GEVB’s theoretical guarantees are borne out in practice through
a variety of experiments.

2

2 Credit assignment in conventional networks

Consider a fully connected network of L layers with pre-activations h`i and activations a`i , where
i = 1, . . . , n` and ` = 0, . . . , L. Let w`ij denote the weights, b`i the biases, and φ the pointwise
nonlinearity. The forward dynamics are

h`i =

n`−1∑
j=1

w`ija
`−1
j + b`i , a`i = φ

(
h`i
)
, (1)

with the understanding that φ is the identity function at the output layer L. The network inputs and
outputs are a0i and aLi , respectively. We place a loss L on the output, and define ∂L/∂aLi = ei, where
ei is the output error vector. On a single training example, a negative-gradient weight update can be
written

∆w`ij ∝ −δ`iφ′
(
h`i
)
a`−1j where δ`i =

∂L
∂a`i

=

nL∑
k=1

∂aLk
∂a`i

ek. (2)

BP, FA, and DFA are different methods of computing or approximating δ`i . BP computes δ`i exactly
using the recurrence relation

δ`i =

n`+1∑
k=1

w`+1
ki φ′(h`+1

k)δ`+1
k (3)

with the initial condition δLi = ei (Fig. 1A). FA approximates δ`i by performing a backward pass
identical to Eq. 3, but using fixed, random feedback weights f `ik in place of the transposed feedforward
weights w`ki (Fig. 1B). This backward pass is given by

δ`i =

n`+1∑
k=1

f `+1
ik φ′(h`+1

k)δ`+1
k (4)

with the initial condition δLi = ei. Learning occurs under Eq. 4 due to learning-induced partial
alignment of w`ki with f `ik [13]. Finally, DFA approximates δ`i by setting the derivative ∂aLk /∂a

`
i in

the formula for δ`i in Eq. 2 to a fixed, random matrix d`ik (Fig. 1C). This yields

δ`i =

nL∑
k=1

d`ikek. (5)

In a similar manner to FA, learning occurs in DFA due to induced partial alignment of ∂aLk /∂a
`
i

with d`ik [19, 20]. The learning rule we propose further simplifies Eqns. 3, 4, and 5 by removing
computation of the quantity analogous to δ`i entirely (Section 3.2).

A fundamental obstacle to accurate credit assignment in the absence of weight symmetry is that
the sign of the gradient at each weight depends on detailed information about downstream weights
to which the feedback pathway does not have access, even in the presence of partial alignment of
feedforward and feedback weights. For example, suppose a DNN confidently predicts class c′ instead
of the target class c. Then, the gradient at w`ij depends on δ`i ≈ ∂aLc′/∂a`i − ∂aLc /∂a`i , which can be
positive or negative depending on a difference in the strengths of complex polysynaptic interactions
between unit i in layer ` and units c and c′ in layer L.

Intriguingly, this obstacle dissolves in networks with scalar output, positive weights past the first
layer, and φ′ > 0. In this case, we have δ`i = (∂aL1 /∂a

`
i)e1 with ∂aL1 /∂a

`
i > 0. Thus, as per Eq.

2, the gradient sign at w`ij is equal to the sign of φ′(h`i)a
`−1
j e1. This expression has the form of a

three-factor Hebbian rule. This simplification to credit assignment arising from sign-constrained
weights in scalar-output networks was observed by both Balduzzi et al. [25], who proposed the
Kickback algorithm, and Lechner [18], who used sign-constrained weights in DFA. However, the
restriction to scalar-output (e.g., binary classification) networks is highly limiting. The GEVB learning
rule, described in the next section, generalizes this observation to vector-output (e.g., multi-way
classification) networks.

3

3 Credit assignment in vectorized nonnegative networks

3.1 Vectorized nonnegative networks

Here, we introduce VNNs, the class of DNNs in which our proposed learning rule operates. Given a
task with output dimension K, such as K-way classification, each VNN unit is a vector of dimension
K. With the exception of the first hidden layer, connections obey “vectorized weight sharing” such
that each vector unit computes a weighted linear combination of presynaptic vector units. Our
notational convention is to use Latin letters to index different vector units and Greek letters to index
the components of a single vector unit. Thus, Greek indices always run over 1, . . . ,K. Boldface
variables represent all K components of a vector unit.

For ` = 1 . . . , L, let h`iµ denote the pre-activations and a`iµ the activations. The inputs, a0i , are
not vectorized and hence lack a µ subscript. The vector units in the first hidden layer compute a
representation of the input using the weights w1

iµj . For ` > 1, connections obey vectorized weight
sharing. Thus, these weights lack a µ subscript and are denoted by w`ij . Crucially, these ` > 1 weights
are nonnegative, consistent with excitatory cortical projection neurons. For ` = 1, . . . , L, the biases
are vector-valued and are denoted by b`iµ. Finally, the nonlinearity is denoted by Φ : RK → RK .
Thus, this function maps vectors to vectors, and mixes components in general. The forward dynamics
are

h`iµ =

n0∑
j=1

w1
iµja

0
j + b1iµ ` = 1

n`−1∑
j=1

w`ija
`−1
jµ + b`iµ ` > 1

a`iµ = Φµ
(
h`i
)

(6)

with the understanding that Φ is the identity function at the output layer L. We assume that there is
a single vector output unit aL1µ, denoted by aLµ for brevity, on which we place a loss L. We define
∂L/∂aLµ = eµ, where eµ is the output error vector. We will show that our proposed learning rule
matches the sign of the gradient when the nonlinearity has the form

Φµ(h) = G(h)hµ, (7)

with G(h) ≥ 0 and piecewise constant. While there are many options for this function, we choose

G(h) = Θ (t · h) , (8)

where Θ is the Heaviside step function and t is a gating vector that differs across units. In
the K = 1 case, Φ reduces to the rectified linear unit (ReLU) function if t > 0 since
Φ(h) = Θ(th)h = Θ(h)h = ReLU(h). We sample the gating vectors uniformly over {−1, 1}K .
Note that the function G induces a coupling between different vector components, which would
otherwise be independent.

While we described the inputs as n0 scalar units with all-to-all connections to the first hidden layer, the
inputs can be described equivalently as Kn0 vector units with vectorized weight-shared connections
to the first hidden layer, unifying the ` = 1 and ` > 1 cases of the learning rule (see Appendix B).
We use this convention henceforth.

3.2 Global error-vector broadcasting learning rule

The GEVB learning rule works by globally broadcasting the output error vector eµ to all hidden units:

GEVB: ∆w`ij ∝ −G
(
h`i
)∑

µ

a`−1jµ eµ. (9)

Thus, presynaptic units that are aligned or anti-aligned with the output error vector have their weight
onto the postsynaptic unit decreased or increased, respectively, when the postsynaptic unit is active.
Note that this learning rule has no feedback parameters. The GEVB learning rule can be interpreted
as a three-factor Hebbian rule with a vector-valued global third factor eµ [23, 24]. Our experimental
results in Section 6 show that this extremely simple learning rule is surprisingly powerful.

4

3.3 Global error-vector broadcasting matches the sign of the gradient

We now show that by choosing Φ as in Eq. 7, with G(h) ≥ 0 and piecewise constant, GEVB weight
updates are matched in sign to the gradient. The gradient on a single training example is

∂L
∂w`ij

= G(h`i)
∑
µ,ν

eµ
∂aLµ
∂a`iν

a`−1jν . (10)

The K-by-K Jacobian ∂aLµ/∂a
`
iν in Eq. 10 describes how component ν of vector unit i in layer `

polysynaptically influences component µ of the vector output unit. This Jacobian can be computed
iteratively in a BP-like manner,

∂aLµ
∂a`iν

=

n`+1∑
k=1

w`+1
ki G(h`+1

k)
∂aLµ

∂a`+1
kν

(11)

with the initial condition ∂aLµ/∂a
L
1ν = Iµν , where Iµν is the identity matrix. These recursions ensure

that ∂aLµ/∂a
`
iν is proportional to Iµν for all `. Thus, we write

∂aLµ
∂a`iν

= δ̂`i Iµν where δ̂`i =
∂aLµ
∂a`iµ

. (12)

Substitution of Eq. 12 into Eq. 11 gives

δ̂`i =

n`+1∑
k=1

w`+1
ki G(h`+1

k)δ̂`+1
k (13)

with the initial condition δ̂Li = 1. Altogether, substituting Eq. 12 into Eq. 10, the gradient is

∂L
∂w`ij

= δ̂`iG(h`i)
∑
µ

a`−1jµ eµ, (14)

where δ̂`i is backpropagated according to Eq. 13. The nonnegativity of the ` > 1 weights and of G(h)

ensure that δ̂`i ≥ 0 for all `. Under a mild additional assumption (see Appendix C), we have strict
positivity, δ̂`i > 0. Thus, setting the δ̂`i term in Eq. 14 to a positive constant yields an expression with
the same sign as the gradient. This is precisely the GEVB learning rule of Eq. 9.

Recent theoretical work has shown that gradient sign information is sufficient for attaining or
improving stochastic gradient descent convergence rates in non-convex optimization [26]. A caveat
is that these rates assume that the gradient sign is computed on mini-batches, whereas GEVB
matches the gradient sign on individual examples. In Section 6, we show that training VNNs using
batched GEVB updates yields performance on par with BP. Whether non-batched GEVB updates are
particularly effective by virtue of matching the gradient sign exactly is a question for future study.
Finally, we note that prior studies have demonstrated strong performance of a variant of FA in which
the feedback matrices have the same sign as the feedforward matrices [27–29]. In contrast, GEVB
has no feedback parameters and provides weight updates with the same sign as the gradient.

4 Gradient alignment beyond sign agreement

The GEVB learning rule approximates the gradient by setting δ̂`i in Eq. 14 to a positive constant
for all units i in every layer `. This approximation is accurate if the empirical distribution of δ̂`i in
layer ` is tightly concentrated about a positive value, and poor if this distribution is diffuse. The level
of concentration can be quantified as the relative standard deviation r` = σδ̂`/µδ̂` , where µδ̂` and
σ2
δ̂`

denote the mean and variance of the empirical distribution of δ̂`i in layer `. Since δ̂`i > 0, we

have r` > 0. When r` � 1, this distribution is close to a delta function at a positive value and δ̂`i
is accurately approximated as a positive constant. The relative standard deviation is closely related
to the angle θ` between GEVB weight updates and the gradient according to θ` = tan−1 r` (see
Appendix D for proof). This alignment-angle metric is commonly used to measure the quality of
weight updates for learning [13, 19].

5

Intriguingly, in randomly initialized VNNs, r` scales inversely with n` in sufficiently early layers
so that, in the limit of infinite network width, r`, θ` → 0. Concretely, if the elements of W ` are
sampled i.i.d. from a distribution with mean µw` > 0 and variance σ2

w` , with σw`/µw` smaller than
order

√
n`, r` obeys the recurrence relation

r` =

√
2

n`+1

σw`+1

µw`+1

√
1 + (r`+1)

2 (15)

with the initial condition rL−1 = σwL/µwL (see Appendix E for derivation; layer-L GEVB up-
dates are equal to the gradient by definition). Since σw`/µw` is smaller than order

√
n`, r` scales

inversely with n` after sufficiently many recursions. Our experiments in VNNs used a non-i.i.d.
initialization described in Section 5 whose backward-pass behavior is qualitatively similar to using
i.i.d. weights with σw`/µw` ∼ 1. Our measurements of GEVB alignment angles at initialization
(Section 6; Fig. 2A) were in agreement with Eq. 15. Specifically, in layer L − 1, we observed
θL−1 ∼ 45◦, corresponding to rL−1 ∼ 1; in layers ` < L− 1, we observed small θ`, corresponding
to r` ∼ 1/

√
n`+1.

The limit of infinite network width has been shown to dramatically simplify the dynamics of gradient
descent in DNNs, an idea embodied in the Neural Tangent Kernel (NTK) [30, 31]. Our finding that
credit assignment is simplified in the same limit suggests a potentially fruitful connection between
the NTK regime and biologically plausible DNN training.

5 Initializing nonnegative networks with ON/OFF cells

GEVB can be applied in networks initialized with zero weights, a method sometimes used with FA
and DFA. However, BP is incompatible with zero initialization as the gradient vanishes. To enable
fair comparisons between GEVB and BP, we used the same nonzero initialization for both training
methods. Random nonnegative initializations have the added benefit of placing VNNs in a regime in
which GEVB weight updates are highly gradient-aligned (Section 4). Unfortunately, nonnegative
i.i.d. initializations are unsuitable for initializing DNNs as they tend to produce exploding forward
passes. Specifically, if the weights in layer ` are sampled i.i.d. from a distribution with mean ∼1 and
variance∼1/n`−1, the weight matrix has an outlier eigenvalue of size∼√n`−1, and the projection of
the pre-activations onto this mode grows across layers. Here, we present a nonnegative initialization
for VNNs based on ON/OFF cells that yields well-behaved forward propagation.

First, we group the hidden units into pairs with equal-and-opposite gating vectors t, defining the
structure of ON and OFF cells. We then initialize the weights such that the units in each pair have
equal-and-opposite activations. The subnetwork of ON cells has the same activations as a network of
half the size with i.i.d. mixed-sign weights, and thus the ON/OFF initialization exhibits well-behaved
forward propagation insofar as the underlying mixed-sign initialization does. To initializeW `, we
sample an i.i.d. mixed-sign weight matrix W̃ ` of half the size, then constructW ` according to

W 1 =

(
+W̃ 1

−W̃ 1

)
W ` =

 [
+W̃ `

]+ [
−W̃ `

]+[
−W̃ `

]+ [
+W̃ `

]+
 ` > 1 (16)

where [·]+ denotes positive rectification. These weights are mixed-sign for ` = 1 and nonnegative for
` > 1, consistent with the definition of VNNs. During training, the ON/OFF structure of the weights
degrades, while the ON/OFF structure of the gating vectors is preserved.

The manner in which ON/OFF initialization avoids exploding forward propagation can be understood
as follows. Let (λ,v) denote an eigenvalue/vector pair of W̃ ` and (λ+,v+) such a pair of abs(W̃ `).
Then, (v,−v)/

√
2 and (v+,v+)/

√
2 are eigenvectors of W ` with eigenvalues λ and λ+, respec-

tively. Thus, the spectrum ofW ` is the union of the spectra of W̃ ` and abs(W̃ `), which contains a
large outlier eigenvalue from abs(W̃ `), a nonnegative i.i.d. matrix. However, each pre-activation
vector has the form h` = (h̃`,−h̃`), and the projection of h` onto the eigenvector of the outlier
eigenvalue is zero since (v+,v+) · (h̃,−h̃) = 0.

In BP, the backpropagated signal lacks the ON/OFF structure of the forward-propagated signal
and therefore possesses a component along the eigenvector of the outlier eigenvalue, resulting in

6

Table 1: MNIST test errors (%). Train errors are shown in parentheses if greater than 0.005. Errors
corresponding to GEVB in VNNs are shown in color. For each type of architecture, the smallest
GEVB or DFA test error is bold.

Vectorized networks
Nonnegative Mixed-sign

GEVB BP GEVB BP
Fully connected 1.87 (0.06) 1.93 (0.05) 2.32 (0.33) 1.84 (0.07)
Convolutional 2.33 (1.03) 1.3 (0.19) 1.83 (0.83) 0.8

Locally connected 1.78 1.64 1.84 (0.05) 1.44

Conventional networks
Nonnegative Mixed-sign
DFA BP DFA BP

Fully connected 2.2 (0.3) 1.36 2.09 (0.19) 1.29
Convolutional 1.56 (0.67) 0.71 1.64 (0.42) 0.65

Locally connected 1.98 (0.32) 1.21 1.48 (0.09) 1.07

Table 2: CIFAR-10 test errors (%). Conventions are the same as in Table 1

Vectorized networks
Nonnegative Mixed-sign

GEVB BP GEVB BP
Fully connected 47.62 (1.25) 47.03 (0.72) 48.86 (2.02) 45.98 (0.78)
Convolutional 33.74 (28.83) 30.85 (16.29) 38.43 (20.59) 30.54 (1.71)

Locally connected 41.08 (0.83) 41.01 (0.34) 40.11 (0.83) 38.77 (0.36)

Conventional networks
Nonnegative Mixed-sign

DFA BP DFA BP
Fully connected 48.69 (3.28) 45.42 (0.96) 49.54 (2.88) 45.69 (0.73)
Convolutional 54.18 (48.43) 32.13 (0.23) 44.07 (17.25) 28.8 (0.15)

Locally connected 41.18 (10.62) 35.51 39.41 (2.94) 32.32

a growing backward pass. Our experiments used an optimizer with a normalizing effect (namely,
Adam), preventing large weight updates in early layers when using BP [32]. Importantly, when using
GEVB, well-behaved forward propagation is sufficient for well-behaved weight updates.

6 Experimental results

Here, we show that GEVB performs well in practice. To disentangle the impact on network perfor-
mance of vectorization and nonnegativity, we trained vectorized and conventional networks, with
and without a nonnegativity constraint. Vectorized networks were trained using GEVB and BP, and
conventional networks were trained using DFA and BP (see Appendix I for DFA details). The nonlin-
earity in conventional networks was the scalar case of the VNN nonlinearity with t = ±1. Mixed-sign
networks were initialized using He initialization, and nonnegative networks were initialized using
ON/OFF initialization with an underlying He initialization [33]. In conventional nonnegative net-
works, the DFA feedback matrices were nonnegative [18]. We trained fully connected, convolutional,
and locally connected architectures. Locally connected networks have the same receptive field
structure as convolutional networks, but lack weight sharing [17]. We trained models on MNIST
[34] and CIFAR-10 [35], using wider and deeper networks for CIFAR-10. We used ADAM for a
fixed number of epochs (namely, 190), stopping early at zero training error. For each experiment, we
performed five random initializations. Training lasted ∼10 days using five NVIDIA GTX 1080 Ti
GPUs. See Appendices F, G, and H for additional details.

Our experimental results are summarized in Tables 1 and 2 (see Appendix A for learning curves). We
first examined the impact of vectorization and nonnegativity on model performance by considering
errors under BP training. Across tasks and architectures, imposing vectorization or nonnegativity
typically increased BP test and train errors, and imposing both increased the errors more than
imposing either feature on its own. However, these increases in error were modest. One exception

7

GEVB in VNN

DFA in conventional
nonnegative network

A

B

Figure 2: Gradient alignment angles over the course of training on CIFAR-10. In the legend, layers
progress from early to late from left to right. (A) GEVB in VNNs. (A) DFA in conventional
nonnegative networks. Error bars are standard deviations across five runs. See Appendix A for
corresponding plots for mixed-sign networks and MNIST.

was locally connected networks trained on CIFAR-10, whose test error increased by 8.69% upon
imposition of vectorization and nonnegativity. As the train error increased by only 0.34%, these
features primarily diminished the generalization ability, rather than the capacity, of the model.

Next, we compared GEVB to BP in vectorized networks. In fully and locally connected VNNs,
GEVB achieved test and train errors similar to those of BP (0.14% and 0.59% maximum discrepancies
in test error on MNIST and CIFAR-10, respectively). In convolutional VNNs, we observed a small
performance gap between GEVB and BP (1.33% and 2.89% discrepancies in test error on MNIST
and CIFAR-10, respectively). One possible reason for this gap is that weight sharing in convolutional
networks breaks GEVB’s gradient sign match guarantee. Nevertheless, on CIFAR-10, GEVB in
convolutional VNNs yielded substantially lower test error than all other convolutional experiments
using GEVB or DFA, a feature we examine in detail below. Finally, in vectorized mixed-sign networks,
the performance gap between GEVB and BP was larger than in VNNs across tasks and architectures.
Rather than enjoying guaranteed gradient alignment by virtue of nonnegative-constrained weights,
learning in these networks relied on the tendency of GEVB to generate a bias toward positive weights,
a special case of the feedback alignment effect [13].

As indicated by the bold entries in Tables 1 and 2, GEVB in vectorized networks in some cases
outperformed DFA in conventional networks. In particular, GEVB had lower test error than DFA for
fully connected architectures on MNIST, and for fully connected and convolutional architectures on
CIFAR-10. Moreover, GEVB tended to produce considerably lower train errors than DFA. These
results are particularly impressive in light of the fact that vectorized networks have higher errors than
conventional networks under BP training.

To gain insight into our experimental results, we measured the alignment of both GEVB and DFA
weight updates with the gradient over the course of training [13, 19]. Consistent with the theoretical
result of Section 4, GEVB alignment angles at initialization were around ∼45◦ for layer L− 1, and
small (typically under 20◦) for layers ` < L− 1 (Fig. 2A). Over the course of training, these small
angles increased, plateauing around or below 45◦. By contrast, DFA exhibited alignment angles
∼90◦ at initialization, and these angles dropped over the course of training due to the feedback
alignment effect (Fig. 2B). The plateaued alignment angles for GEVB were typically smaller than
those for DFA. In convolutional networks, the weight updates of DFA failed to align with the gradient
in convolutional layers, consistent with large errors as well as prior studies [16, 19, 20]. By contrast,
GEVB exhibited plateaued alignment angles around 45◦ for convolutional layers.

Finally, we examined the ability of GEVB to train convolutional layers by studying the learned
representations on CIFAR-10 at the output of the convolutional layers. t-SNE embeddings of these
representations before and after training revealed that GEVB, but not DFA, improved the level of class
clustering (Fig. 3A; see Appendix J for t-SNE details) [36]. We quantified this improvement using

8

A B

GEVB in VNN

DFA in conventional
nonnegative network

initialization trained

Nonneg. Mixed Nonneg. Mixed
Vectorized Conventional

Figure 3: Comparison of learned representations at the output of convolutional layers in networks
trained on CIFAR-10. (A) t-SNE embeddings of five image classes before and after training for
GEVB in VNNs (top) and for DFA in conventional nonnegative networks (bottom). (B) Change in
cluster quality due to training for all eight convolutional experiments on CIFAR-10. See main text for
the definition of cluster quality. GEVB in VNNs is shown in color. Error bars are standard deviations
across five runs.

a measure of cluster quality defined as 1− (1
K

∑K
c=1 r

2
c)/r

2, where r2c and r2 denote the average
class-c and average overall squared pairwise distance, respectively, in the t-SNE embedding. For all
experiments, the cluster quality was slightly greater than zero at initialization and typically improved
during training (Fig. 3B). DFA largely failed to improve cluster quality. By contrast, GEVB not only
matched, but surpassed BP’s improvement in cluster quality in vectorized networks.

The observation that GEVB not only trains convolutional layers, but surpasses BP’s improvement in
cluster quality in vectorized networks, suggests that GEVB applies more pressure than BP on early
layers to extract task-relevant features. Understanding how the representations generated by GEVB
differ from those generated by BP is an avenue for future study. Such an understanding could enable
disambiguation of cortical learning algorithms on the basis of neural recordings [37, 38].

7 Discussion

7.1 Biological implementation of vectorization

The GEVB learning rule raises the question of how vector units could be implemented in neural
circuits. Here, we suggest two solutions.

First, each vector unit might correspond to a group of K neurons, where neuron µ in each presynaptic
group projects only to neuron µ in all postsynaptic groups. As per vectorized weight sharing, the K
synapses connecting corresponding neurons in a presynaptic and a postsynaptic group must share
a common weight. This is possible if all K synapses undergo the same plasticity. However, this
plasticity is non-local as the update to each synapse depends on the activity of all K neurons in
the presynaptic group. Instead, each synapse µ could independently undergo plasticity proportional
to −G(h`i)a

`−1
jµ eµ. Then, relaxing each synaptic weight to the average of all K synaptic weights

recovers the GEVB learning rule of Eq. 9. This relaxation to the average might be induced by
injecting correlated noise into the presynaptic neurons during an offline phase.

Second, each vector unit might be single neuron, with vectorization unfolding in time. In each of K
consecutive time bins, a different set of input neurons are active, producing a single component of
the network output. This output and the corresponding component of the target serve as excitatory
and inhibitory inputs to a neuromodulatory system, which broadcasts the resulting component of
the error vector throughout the network. Then, synapses undergo conventional (i.e., non-vectorized)
three-factor Hebbian plasticity, ∆w`ij ∝ −G(h`i)a

`−1
jµ eµ. Integrating these weight updates over all

K time bins performs the sum over µ in Eq. 9, implementing the GEVB learning rule. As biases are
vector-valued, different currents must be injected into each neuron at each time bin. One subtlety is
that each neuron must be active or inactive at all time bins according to the sign of t·h, and computing
this inner product requires the full temporal input, violating causality. A simple workaround is to

9

make t sparse in all but its first component, so that each neuron is gated based on its input during the
first time bin. Alternatively, gating could be performed based on an external signal independent of
the pre-activations [39–42].

7.2 Prior uses of vector units

Other works have used vector units for computational, rather than credit-assignment, purposes. Here,
we describe a few notable examples. First, capsule networks use vector-valued capsules to represent
object parts [43]. Like VNNs, capsule networks use a vector nonlinearity that mixes components.
Each capsule computes a linear combination of presynaptic prediction vectors, implementing vector-
ized weight sharing. The dynamic routing mechanism of capsule networks involves weight updates
proportional to the inner product of the presynaptic prediction vector and the postsynaptic capsule, a
quantity termed the agreement. This quantity resembles the inner product in the GEVB learning rule
of Eq. 9.

Second, vector neuron networks (not to be confused with our proposed architecture, vectorized
nonnegative networks) use three-dimensional vector units to learn functions on three-dimensional
point-cloud input data [44]. These networks use vectorized weight sharing to achieve equivariance to
the rotation group SO(3). The nonlinearity in these networks projects out a component of the input
vector rather than multiplying by a piecewise-constant nonnegative scalar as in Eq. 7.

Third, in gated linear networks, each unit stores a vector of parameters describing a probability
distribution with the same support as the network output [39–41]. This allows each unit to make its
own probabilistic prediction of the target by minimizing a local loss function, increasing biological
plausibility while giving up the ability to learn intermediate features as in BP. Gated linear networks
use a form of vectorized weight sharing so that each unit represents a weighted geometric mixture
of the distributions represented by the units in the previous layer, and in some cases it is natural to
constrain these weights to be nonnegative (e.g., to ensure positive variance parameters) [40]. Each
vector unit in a VNN can be interpreted as performing a weighted geometric mixture of categorical
probability distributions, although each vector unit does not predict the target directly. Rather, the
GEVB learning rule allows each vector unit to point away from the target vector insofar as this
permits the emergence of useful features. Unlike gated linear networks, which learn using a local
error at each unit, VNNs trained using GEVB learn using a global error broadcast to all units.

Finally, in statistical physics, the n-vector model describes vector-valued n-dimensional spins
interacting on a lattice, where the interaction between two spins is given by their inner product
[45]. The generalization of the Ising model to the n-vector model is analogous to our generalization
of DNNs to VNNs.

7.3 Scaling to high-dimensional outputs

Using a large output dimension K in VNNs is cumbersome as the computational complexity of
the forward pass scales in K. One solution is to use target vectors of size K ∼ logC for C-way
classification with K-bit binary, rather than one-hot, encodings of the target class index. This is
especially appropriate if the binary encoding is congruent with hierarchical structure in the data. For
example, such structure is present in ImageNet [46]. If vectorization unfolds in time, it is natural to
produce more coarse-grained classifications of the input first.

7.4 Future directions

We focused on MNIST and CIFAR-10, however more challenging tasks are likely to elicit greater
performance discrepancies between GEVB and other biologically plausible learning algorithms [17].
Given GEVB’s gradient sign match property and ability to train convolutional layers, GEVB is poised
to scale to more complex architectures and tasks. Additionally, GEVB in some cases outperforms
DFA, which enables successful training of several modern architectures [19].

The GEVB learning rule is designed to be aligned with the gradient, but gradient-based learning
may not be optimal in scenarios such as few-shot or continual learning. Thus, while our work,
and the work of others, suggests that cortical circuits could plausibly use gradient-based learning,
whether they should remains unclear. Future work should consider learning algorithms that are both
biologically plausible and overcome shortcomings of BP in these scenarios [47–49].

10

Acknowledgements

We thank Jack Lindsey for constructive comments on this manuscript. We thank Greg Wayne, Jesse
Livezey, and members of the Abbott lab for helpful suggestions and discussion.

References
[1] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533–536, 1986.

[2] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[3] Blake A Richards, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal Bogacz,
Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de Berker, Surya Ganguli, et al.
A deep learning framework for neuroscience. Nature neuroscience, 22(11):1761–1770, 2019.

[4] Eric R Kandel, James H Schwartz, Thomas M Jessell, Steven Siegelbaum, A James Hudspeth,
and Sarah Mack. Principles of neural science, volume 4. McGraw-hill New York, 2000.

[5] Francis Crick. The recent excitement about neural networks. Nature, 337(6203):129–132, 1989.

[6] James CR Whittington and Rafal Bogacz. Theories of error back-propagation in the brain.
Trends in cognitive sciences, 23(3):235–250, 2019.

[7] Timothy P Lillicrap, Adam Santoro, Luke Marris, Colin J Akerman, and Geoffrey Hinton.
Backpropagation and the brain. Nature Reviews Neuroscience, 21(6):335–346, 2020.

[8] Peter Latham. Node perturbation in vanilla deep networks, Feb 2019. URL http://www.
gatsby.ucl.ac.uk/~pel/tn/notes/node_perturbation.pdf.

[9] Pietro Mazzoni, Richard A Andersen, and Michael I Jordan. A more biologically plausible
learning rule for neural networks. Proceedings of the National Academy of Sciences, 88(10):
4433–4437, 1991.

[10] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

[11] Justin Werfel, Xiaohui Xie, and H Sebastian Seung. Learning curves for stochastic gradient
descent in linear feedforward networks. Neural computation, 17(12):2699–2718, 2005.

[12] Stephen Grossberg. Competitive learning: From interactive activation to adaptive resonance.
Cognitive science, 11(1):23–63, 1987.

[13] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random synap-
tic feedback weights support error backpropagation for deep learning. Nature communications,
7(1):1–10, 2016.

[14] Arild Nø kland. Direct feedback alignment provides learning in deep neural networks. In
Advances in Neural Information Processing Systems, volume 29, 2016.

[15] Arash Samadi, Timothy P Lillicrap, and Douglas B Tweed. Deep learning with dynamic spiking
neurons and fixed feedback weights. Neural computation, 29(3):578–602, 2017.

[16] Julien Launay, Iacopo Poli, François Boniface, and Florent Krzakala. Direct feedback alignment
scales to modern deep learning tasks and architectures. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[17] Sergey Bartunov, Adam Santoro, Blake Richards, Luke Marris, Geoffrey E Hinton, and Timothy
Lillicrap. Assessing the scalability of biologically-motivated deep learning algorithms and
architectures. In Advances in Neural Information Processing Systems, volume 31, 2018.

[18] Mathias Lechner. Learning representations for binary-classification without backpropagation.
In International Conference on Learning Representations, 2019.

11

http://www.gatsby.ucl.ac.uk/~pel/tn/notes/node_perturbation.pdf
http://www.gatsby.ucl.ac.uk/~pel/tn/notes/node_perturbation.pdf

[19] Julien Launay, Iacopo Poli, and Florent Krzakala. Principled training of neural networks with
direct feedback alignment. arXiv preprint arXiv:1906.04554, 2019.

[20] Maria Refinetti, Stéphane d’Ascoli, Ruben Ohana, and Sebastian Goldt. The dynamics of
learning with feedback alignment. arXiv preprint arXiv:2011.12428, 2020.

[21] Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with
segregated dendrites. ELife, 6:e22901, 2017.

[22] Blake A Richards and Timothy P Lillicrap. Dendritic solutions to the credit assignment problem.
Current opinion in neurobiology, 54:28–36, 2019.

[23] Nicolas Frémaux and Wulfram Gerstner. Neuromodulated spike-timing-dependent plasticity,
and theory of three-factor learning rules. Frontiers in neural circuits, 9:85, 2016.

[24] Łukasz Kuśmierz, Takuya Isomura, and Taro Toyoizumi. Learning with three factors: modulat-
ing hebbian plasticity with errors. Current opinion in neurobiology, 46:170–177, 2017.

[25] David Balduzzi, Hastagiri Vanchinathan, and Joachim Buhmann. Kickback cuts backprop’s
red-tape: Biologically plausible credit assignment in neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 29, 2015.

[26] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International Conference on
Machine Learning, pages 560–569. PMLR, 2018.

[27] Qianli Liao, Joel Leibo, and Tomaso Poggio. How important is weight symmetry in back-
propagation? In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30,
2016.

[28] Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-plausible learning
algorithms can scale to large datasets. In International Conference on Learning Representations,
2018.

[29] Theodore H Moskovitz, Ashok Litwin-Kumar, and LF Abbott. Feedback alignment in deep
convolutional networks. arXiv preprint arXiv:1812.06488, 2018.

[30] Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Advances in Neural Information Processing Systems,
volume 31, 2018.

[31] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha
Sohl-Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear
models under gradient descent. Journal of Statistical Mechanics: Theory and Experiment, 2020
(12), dec 2020.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[34] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[35] A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Tronto, 2009.

[36] David M Chan, Roshan Rao, Forrest Huang, and John F Canny. t-sne-cuda: Gpu-accelerated
t-sne and its applications to modern data. In 2018 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), pages 330–338. IEEE, 2018.

12

[37] Yinan Cao, Christopher Summerfield, and Andrew Saxe. Characterizing emergent representa-
tions in a space of candidate learning rules for deep networks. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[38] Aran Nayebi, Sanjana Srivastava, Surya Ganguli, and Daniel L Yamins. Identifying learning
rules from neural network observables. In Advances in Neural Information Processing Systems,
volume 33, 2020.

[39] Joel Veness, Tor Lattimore, David Budden, Avishkar Bhoopchand, Christopher Mattern, Ag-
nieszka Grabska-Barwinska, Eren Sezener, Jianan Wang, Peter Toth, Simon Schmitt, et al.
Gated linear networks. arXiv preprint arXiv:1910.01526, 2019.

[40] David Budden, Adam Marblestone, Eren Sezener, Tor Lattimore, Gregory Wayne, and Joel
Veness. Gaussian gated linear networks. In Advances in Neural Information Processing Systems,
volume 33, 2020.

[41] Eren Sezener, Agnieszka Grabska-Barwinska, Dimitar Kostadinov, Maxime Beau, Sanjukta
Krishnagopal, David Budden, Marcus Hutter, Joel Veness, Matthew Botvinick, Claudia Clopath,
et al. A rapid and efficient learning rule for biological neural circuits. bioRxiv, 2021.

[42] Chandrashekar Lakshminarayanan and Amit Vikram Singh. Neural path features and neural path
kernel : Understanding the role of gates in deep learning. In Advances in Neural Information
Processing Systems, volume 33, 2020.

[43] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In
Advances in Neural Information Processing Systems, volume 30, 2017.

[44] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas
Guibas. Vector neurons: A general framework for so (3)-equivariant networks. arXiv preprint
arXiv:2104.12229, 2021.

[45] H Eugene Stanley. Dependence of critical properties on dimensionality of spins. Physical
Review Letters, 20(12):589, 1968.

[46] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis DeCoste, Wei Di,
and Yizhou Yu. Hd-cnn: hierarchical deep convolutional neural networks for large scale visual
recognition. In Proceedings of the IEEE international conference on computer vision, pages
2740–2748, 2015.

[47] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, An-
drei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis
Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, 2017.

[48] Keren Gu, Sam Greydanus, Luke Metz, Niru Maheswaranathan, and Jascha Sohl-Dickstein.
Meta-learning biologically plausible semi-supervised update rules. bioRxiv, 2019.

[49] Jack Lindsey and Ashok Litwin-Kumar. Learning to learn with feedback and local plasticity. In
Advances in Neural Information Processing Systems, volume 33, 2020.

13

Appendix for: Credit Assignment Through
Broadcasting a Global Error Vector

A Supplementary figures

0 25 50 75 100 125 150 175
0

1

2

3

4

5

6

er
ro

r (
%

)

FC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

1

2

3

4

5

6

er
ro

r (
%

)

Conv (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

1

2

3

4

5

6

er
ro

r (
%

)

LC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
epochs

0

1

2

3

4

5

6

er
ro

r (
%

)

FC (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0

1

2

3

4

5

6

er
ro

r (
%

)

Conv (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0

1

2

3

4

5

6

er
ro

r (
%

)

LC (conventional)
DFA+ BP+ DFA BP

Figure 4: MNIST learning curves. Nonnegative-constrained networks have a “+” in the name of the
learning rule. Thus, “GEVB+” corresponds to GEVB in VNNs. Solid line: test error. Dashed line:
train error. Truncated curves reflect early stopping due to zero train error. Error bars are standard
deviations across five runs.

0 25 50 75 100 125 150 175
0

10
20
30
40
50
60
70
80

er
ro

r (
%

)

FC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

10
20
30
40
50
60
70
80

er
ro

r (
%

)

Conv (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
0

10
20
30
40
50
60
70
80

er
ro

r (
%

)

LC (vectorized)
GEVB+ BP+ GEVB BP

0 25 50 75 100 125 150 175
epochs

0
10
20
30
40
50
60
70
80

er
ro

r (
%

)

FC (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0
10
20
30
40
50
60
70
80

er
ro

r (
%

)

Conv (conventional)
DFA+ BP+ DFA BP

0 25 50 75 100 125 150 175
epochs

0
10
20
30
40
50
60
70
80

er
ro

r (
%

)

LC (conventional)
DFA+ BP+ DFA BP

Figure 5: CIFAR-10 learning curves. Conventions are the same as in Fig. 4

14

CIFAR-10

MNIST

GEVB in vectorized
mixed-sign network

DFA in conventional
mixed-sign network

A

B

GEVB in VNN

DFA in conventional
nonnegative network

GEVB in vectorized
mixed-sign network

DFA in conventional
mixed-sign network

Figure 6: Alignment angles. (A) Mixed-sign networks trained on CIFAR-10. (B) Nonnegative and
mixed-sign networks trained on MNIST. Truncated curves reflect early stopping due to zero train
error. Conventions are the same as in Fig. 2 of the main text.

15

B Formulation of VNNs using vector input units

We can describe the input layer in a VNN as containing vector units, with vectorized weight-
shared connections to the first hidden layer. In particular, given n0 scalar input components a0i
(i = 0, . . . , n0− 1), we can construct Kn0 vector input units a0iµ (i = 0, . . . ,Kn0− 1) according to

a0iµ = δµνa
0
j , j = i mod n0, ν =

⌊
i

n0

⌋
(17)

where δµν is the Kronecker delta and b·c is the floor function (note that indices must start at zero for
this formula to apply). This construction mimics the effect of having n0 scalar inputs with all-to-all
connectivity with components of the vector units in the first hidden layer.

C Assumption in GEVB sign match proof

Section 3.3 of the main text proves nonnegativity of δ̂`i . We require one assumption, stated here,
to prove strict positivity of δ̂`i . Let a path refer to an inclusive sequence of units connecting two
units in different layers of a VNN. Let the value of a path be the product of the weights along the
path. We call a path active if all units along the path are in the active regimes of their nonlinearities.
We borrow this terminology from [42]. To guarantee strict positivity of δ̂`i , we assume that, for all
training examples, each hidden unit has at least one active path with nonzero value connecting it to
the output unit.

When training VNNs, this assumption is violated for units in the last hidden layer that have zero
weight onto the output unit, in which case the GEVB weight update is nonzero while the gradient is
zero. This is insignificant in practice as the sign of the GEVB weight update is what the sign of the
gradient would be if the weight were positive.

D Gradient alignment angle and relative standard deviation

Throughout this work, when computing the angular alignment of GEVB or DFA weight updates with
the gradient, we do not include the derivative-of-nonlinearity term. Equivalently, these alignment
angles are computed with the assumption that all postsynaptic units are in the active regimes of
their nonlinearities. This method follows the recommendations of Launay et al. [19] for measuring
alignment angles in DFA. For a GEVB weight update, the alignment angle is given by

cos θ` =
δ̂` · 1
‖δ̂`‖‖1‖

, (18)

where δ̂` = {δ̂`i}
n`
i=1 comes from the gradient and the constant vector 1 comes from the GEVB

weight update, which sets δ̂`i = 1. We define the empirical mean, variance, and relative standard
deviation of the distribution of δ̂`i in layer ` as

µδ̂` =
1

n`

n∑̀
i=1

δ̂`i , σ2
δ̂`

=
1

n`

n∑̀
i=1

(
δ̂`i − µδ̂`

)2
, r` =

σδ̂`

µδ̂`
. (19)

We have δ̂` · 1 = n`µδ̂` , ‖1‖ =
√
n`, and

‖δ̂`‖ =

√√√√ n∑̀
i=1

(
δ̂`i

)2
=

√
n`

(
σ2
δ̂`

+ µ2
δ̂`

)
. (20)

Thus, Eq. 18 becomes

cos θ` =
1√

1 + (r`)
2
. (21)

Solving for r`, we obtain (
r`
)2

=
1− cos2 θ`

cos2 θ`
=

sin2 θ`

cos2 θ`
= tan2 θ`. (22)

For r` > 0, we therefore have the simple relation tan θ` = r`.

16

E Concentration of relative standard deviation in wide networks

Here we prove the recurrence relation of Eq. 15 in the main text. Given the empirical mean and
variance of the of the distribution of δ̂`+1

i in layer ` + 1, we will compute the expectations of the
empirical mean and variance of the distribution of δ`i in layer ` with respect to the randomness of the
weightsW `+1 and the gating variables G`+1

i = G(h`+1
i). We assume that the layer-(`+ 1) weights

are sampled i.i.d. from a distribution with mean µw`+1 > 0 and variance σ2
w`+1 . We assume that the

gating variables G`+1
i are zero or one with equal probability.

Using Eq. 13 of the main text, the expected empirical mean is

E
[
µδ̂`
]

= E
[
δ̂`i

]
=
n`+1

2
µw`+1µδ̂`+1 . (23)

Meanwhile, the expected empirical variance can be written

E
[
σ2
δ̂`

]
= E

δ̂`i − 1

n`

∑
j

δ̂`j

2
 =

(
1− 1

n`

)(
E

[(
δ̂`i

)2]
− E
i6=j

[
δ̂`i δ̂

`
j

])
. (24)

Toward evaluating E
[
σ2
δ̂`i

]
, we use Eq. 13 to compute

E

[(
δ̂`i

)2]
=

1

4
µ2
w`+1

∑
j 6=k

δ̂`+1
j δ̂`+1

k +
n`+1

2

(
µ2
w`+1 + σ2

w`+1

) (
µ2
δ̂`+1 + σ2

δ̂`+1

)
(25)

and
E
i 6=j

[
δ̂`i δ̂

`
j

]
=

1

4
µ2
w`+1

∑
j 6=k

δ̂`+1
j δ̂`+1

k +
n`+1

2
µ2
w`+1

(
µ2
δ̂`+1 + σ2

δ̂`+1

)
. (26)

Substitution of Eqns. 25 and 26 into Eq. 24 yields

E
[
σ2
δ̂`

]
=

(
1− 1

n`

)
n`+1

2
σ2
w`+1

(
µ2
δ̂`+1 + σ2

δ̂`+1

)
≈ n`+1

2
σ2
w`+1

(
µ2
δ̂`+1 + σ2

δ̂`+1

)
.

(27)

Altogether, we have √
E
[
σ2
δ̂`

]
E
[
µδ̂`
] =

√
2

n`+1

σw`+1

µw`+1

√
1 + (r`+1)

2
. (28)

We obtain the recurrence relation in Eq. 15 by approximating the empirical quantity r` as the ratio of
expectations on the LHS of Eq. 28. This approximation is valid when the relative standard deviation
of the weight distribution σw`+1/µw`+1 is smaller than order

√
n`+1, in which case the variance of

µδ̂` is small compared to its expectation.

F Architectures

Architectural details for MNIST and CIFAR-10 models are shown in Tables 3 and 4, respectively. We
used the same architectures for vectorized and conventional networks. Note, however, that vectorized
networks have a factor of K more weight parameters in the first layer due to the lack of vectorized
weight sharing in this layer. In convolutional networks, we used the same gating vector t for all units
in the same channel.

G Global error-vector broadcasting in convolutional networks

Convolutional networks use shared weights. When we apply GEVB in convolutional networks, we
update each weight by the sum of all GEVB updates involving that weight. An equivalent description
is the following. In a conventional convolutional network, weight updates are obtained by performing
a convolution of the presynaptic activations with the postsynaptic backpropagated signal. When
using GEVB, we replace the presynaptic signal with the inner product of the presynaptic vector
activations and the output error vector; and the postsynaptic signal with the binary activation mask of
the postsynaptic units.

17

Table 3: MNIST architectures. FC: fully connected layer. Conv: convolutional layer. LC: lo-
cally connected layer. For fully connected layers, layer_size is shown. For convolutional and
locally connected layers, (num_channels, kernel_size, stride, padding) are shown. The same
architectures are used for conventional and vectorized networks.

Fully connected
FC1 1024
FC2 512

Convolutional
Conv1 64, 3× 3, 1, 1

AvgPool 2× 2
Conv2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Locally connected
LC1 32, 3× 3, 1, 1

AvgPool 2× 2
LC2 32, 3× 3, 1, 1

AvgPool 2× 2
FC1 1024

Table 4: CIFAR-10 architectures. Conventions are the same as in Table 3.

Fully connected
FC1 1024
FC2 512
FC3 512

Convolutional
Conv1 128, 5× 5, 1, 2

AvgPool 2× 2
Conv2 64, 5× 5, 1, 2

AvgPool 2× 2
Conv3 64, 2× 2, 2, 0
FC1 1024

Locally connected
LC1 64, 5× 5, 1, 2

AvgPool 2× 2
LC2 32, 5× 5, 1, 2

AvgPool 2× 2
LC3 32, 2× 2, 2, 0
FC1 512

H Training

Models were trained on an in-house GPU cluster. Running all 48 experiments in Tables 1 and 2 of the
main text took ∼10 days using a single GPU, and we ran all experiments five times in parallel using
five GPUs. We used the Adam optimizer with hyperparameters β1 = 0.9, β2 = 0.999, and ε = 10−8

[32]. We used a constant learning rate of α = 3× 10−4. Models were trained for 190 epochs or until
the train error was zero at a checkpoint. Checkpoints were performed every 10 epochs. We used a
mini-batch size of 128 for both datasets. We used the usual train/test splits for these datasets (60,000
and 50,000 training examples for MNIST and CIFAR-10, respectively; 10,000 test examples for
each). In nonnegative networks, negative weights were set to zero following each update for layers
` > 1.

I Direct feedback alignment

We used a PyTorch implementation of DFA from Launay et al. [16], modifying the code in the
“TinyDFA” directory of their codebase.1 To perform DFA in a multilayered network, this code
samples one large random matrix, then uses submatrices of this matrix for the feedback to each
layer. For mixed-sign networks, we sampled this matrix i.i.d. uniform over [−1, 1]. For nonnegative
networks, we sampled this matrix i.i.d. uniform over [0, 1], similar to Lechner [18].

J t-SNE

Before applying t-SNE, we projected the convolutional representations down to 600 dimensions using
PCA. As the vectorized representations were higher dimensional than the conventional representations
by a factor of K = 10, this projection put the dimensionalities on the same scale. We used a fast
GPU implementation of t-SNE from Chan et al. [36]. We used the same hyperparameters as Launay
et al. [16], namely, perplexity = 20, learning_rate = 100, and n_iter = 5, 000.

1https://github.com/lightonai/dfa-scales-to-modern-deep-learning

18

https://github.com/lightonai/dfa-scales-to-modern-deep-learning

	1 Introduction
	2 Credit assignment in conventional networks
	3 Credit assignment in vectorized nonnegative networks
	3.1 Vectorized nonnegative networks
	3.2 Global error-vector broadcasting learning rule
	3.3 Global error-vector broadcasting matches the sign of the gradient

	4 Gradient alignment beyond sign agreement
	5 Initializing nonnegative networks with ON/OFF cells
	6 Experimental results
	7 Discussion
	7.1 Biological implementation of vectorization
	7.2 Prior uses of vector units
	7.3 Scaling to high-dimensional outputs
	7.4 Future directions

	A Supplementary figures
	B Formulation of VNNs using vector input units
	C Assumption in GEVB sign match proof
	D Gradient alignment angle and relative standard deviation
	E Concentration of relative standard deviation in wide networks
	F Architectures
	G Global error-vector broadcasting in convolutional networks
	H Training
	I Direct feedback alignment
	J t-SNE

