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Concentration-Dependent Regulation of Flow Rate in a Chemical Oscillator 
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A model of the chlorine dioxide-iodide reaction in a single well-stirred flow-through reactor is analyzed. 
The model includes a flow regulation mechanism that allows the concentration of iodide in the system to 
control the flow rate. The control is accomplished through a computer-mediated sigmoidal dependence of 
the dynamic flow rate on the iodide concentration. The dynamical behavior of this system with slow regulation 
is investigated by the numerical continuation technique. Oscillatory behavior is obtained for parameter values 
that produce only steady state behavior in the unregulated system. Chaos and bursting also arise as a result 
of the control mechanism. Responses of the model to changes in input iodide concentration show the ability 
of the system to adjust to new conditions. Two different transient pattems of adjustment are observed depending 
on the direction of the change in iodide input concentration. The control mechanism mimics a similar system 
thought to control activity in biological neurons and may be of practical value. 

Introduction 

The introduction of control mechanisms in the study of 
chemical oscillators has increased the variety of behavior seen 
in these systems. For example, delayed feedback can produce 
major changes in the dynamics of biological'-3 and chemical 
sy~tems.4~~ Delayed feedback can stabilize otherwise unstable 
steady states and unstable periodic solutions. 

The stabilization of an unstable steady state was first 
investigated by A r i s  and Amundson6 and later by others in the 
chemical engineering Laplantel, showed the 
stabilization of an unstable steady state in the bistable arsenous 
acid-iodate reaction. Hjelmfelt and R o d 3  described a feed- 
back technique to stabilize unstable steady states in the chlorite- 
iodide reaction under oscillatory and excitable conditions. To 
control oscillatory behavior of the minimal bromate oscillator, 
delayed feedback regulation of the flow rate was used both in 
a single reactor14 and in two coupled reactors.15J6 Recently, 
several studies have focused on controlling chaotic behavior. 
The unstable periodical orbit contained in a chaotic attractor 
can be stabilized by repeated small  perturbation^^^ or by a 
continuous small amplitude perturbation. l8 Both techniques 
have been used to control chaos in the Belousov-Zhabotinsky 
r e a c t i ~ n . ' ~ - ~ ~  In addition, control can sometimes result in the 
emergence of dynamical behavior that is not present in the 
uncontrolled system. Chevalier et al.,, observed chaotic states 
in the minimal bromate oscillator by introducing a nonlinear 
delayed feedback. Bursting behavior, Le., regular altemating 
periods of quiescence and oscillation, was observed in the 
chlorine dioxide-iodide (CDI) reaction in a single reactor23 and 
in two coupled flow reactors24 in which the flow of a reagent 
into one reactor was controlled according to reagent concentra- 
tion(s) in the other reactor. 

Oscillating chemical reactions can serve as models for more 
complex biochemical and biological systems. A number of 
features of the dynamical behavior observed in neurobiological 
systems have also been found in relatively simple chemical 
systems. Neurons often exhibit oscillatory patterns of electrical 
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activity, including complex bursting behavior. They maintain 
such pattems of activity over extensive time periods despite 
continual protein tumover and changes in extracellular condi- 
tions. Similarly, neurons can adjust their electrical properties 
appropriately during growth and development and can recover 
from damage. The ability of nerve cells to maintain stable 
electrical activity suggests that neurons possess a feedback 
mechanism that controls their intrinsic electrical characteristics. 

recently introduced a model of activity- 
dependent regulation of conductances in neurons. The proposed 
mechanism allows model neurons to self-assemble and adjust 
their conductances to produce extremely stable and robust 
patterns of activity. 

We utilize here a control mechanism similar to that of 
LeMasson et aLZ5 This type of control requires feedback from 
one dynamic variable that is a sensitive indicator of activity to 
another dynamic variable that can change the activity of the 
system. To achieve this situation, we introduce a new dynamical 
variable, the flow rate, into the model of the CDI reaction, and 
we allow it to depend on the iodide concentration. The average 
iodide concentration serves as an indicator of dynamic behavior. 
We analyze the role of the controlling variable and investigate 
the dependence of the dynamics on the target and input 
concentrations of iodide. We also investigate the ability of the 
system to maintain a particular pattern of activity when external 
conditions change. 

LeMasson et 

Model of Dynamical Regulation 

The model of the chlorine dioxide-iodide (CDI) reaction 
proposed by Lengyel et aLZ6 is based on two overall stoichio- 
metric reactions: 

2c10, + 21- - 2c10,- + I, (R1) 

C10,- + 41- + 4H' - C1- + 21, + 2H,O (R2) 

For a continuous stirred tank reactor (CSTR) the system of 
differential equations is 

dX/dt = -R, + ko(Xo - X )  
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dY/dt = -R, - 4R2 + ko(Yo - Y) (1) 

dZ/dt = R, - R, -t ko(Zo - Z) 

where 

R, = k,XY (2) 

R, = k2,ZYH + k,$PY/(u + Y2) 

Here X = [ClOz], Y = [I-], 2 = [C102-], P = [Iz], H = [H+], 
and k0 is the flow rate (the reciprocal of the residence time). 
The rate constants and parameters used in the simulations are 
kl = 6000 M-' s-l, kza = 460 M-2 s-,, k2b = 2.55 x s-l, 
u = 10-14M2, H = 0.01 M, XO = M, and ZO = 0. Iodine 
concentration in the CSTR can be determined from the 
conservation of iodine atoms: 

P = [I*] = ([I-]o - [I-])/2 (3) 

Normally, the flow rate k0 would be a fixed parameter of the 
model. We make it a slowly varying dynamic variable instead. 
We introduce this regulatory mechanism with the intention of 
forcing the system to establish a specific average concentration 
of some species in the reactor. The desired average concentra- 
tion will correspond to a particular pattern of activity; in this 
way, control and maintenance of activity are realized. We 
employ iodide ions as the control species, although other species 
in the CDI system can be chosen as well. Iodide ions have an 
inhibitory effect, which is crucial for oscillatory behavior, and 
their concentration can be measured relatively easily in experi- 
ments. 

The dynamic flow rate can vary between zero and a maximum 
value k,, according to the concentration of iodide in the system. 
The flow rate varies as a function of the concentration of iodide 
according to the equation 

t(dkddt) =flY) - k,, (4) 

whereflu is a sigmoidal function: 

We call IT the target value of iodide in the reactor, and n is a 
parameter that determines the slope of the sigmoidal function. 
The flow rate relaxes to its asymptotic value AT) with a time 
constant t. The right side of eq 4 is positive when Y << IT, and 
so k~ increases and more iodide is delivered into the system. If 
Y >> IT the right side of eq 4 is negative, which results in a 
decrease of the flow rate ko, and the iodide concentration in the 
system also decreases. 

The value of t controls how quickly the flow rate responds 
to changes in the iodide concentration. Relatively small values 
of t result in the rapid establishment of equilibrium, and the 
system is strongly controlled. If t is large, then changes in the 
flow rate are slow and adjustment takes a longer time. The 
latter situation corresponds to most biological systems such as 
neurons.25 We study this domain for the CDI reaction. 

Numerical Methods 
To analyze the system both with and without control, we used 

the CONT numerical bifurcation and continuation package.27 
Periodic solutions were obtained by numerically integrating the 
system of ordinary differential equations (eqs 1-5). The 
integration used a semi-implicit fourth-order Runge-Kutta 

J.  Phys. Chem., Vol. 98, No. 40, 1994 10125 

Figure 1. Bifurcation diagram for the model of the CDI reaction: Hopf 
bifurcation, solid line; saddle-node bifurcation, dotted line. Dashed 
lines connect points with the same steady state concentration (in M) 
of iodide. Oscillations occur inside the Hopf curve, and bistability 
occurs inside the saddle-node curve. 

method with automatic control of the step size. All simulations 
were performed on an IJ3M RISC 6000 powerstation Model 
340. 

Result of Simulations 

Bifurcation Analysis of Control Parameters. The model 
of the CDI reaction in a well-stirred reactor has been analyzed 
p r e v i ~ u s l y , ~ ~ * ~ *  and good agreement with experiment was 
obtained. The reaction in a CSTR exhibits two different steady 
states, one with low [I-] and one with high [I-], oscillatory 
behavior, bistability of the two steady states, coexistence of 
oscillation with a steady state, and excitability and bursting 
behavior when periodically perturbed. This model also agrees 
well with the dynamics of the CDI reaction in two coupled 
CSTRs." The rich dynamical behavior of the uncontrolled 
system suggests the study of the system with control. 

The time-averaged concentrations of Cl02, C102-, and I- 
correlate with the dynamic pattern of behavior of the reaction. 
Figure 1 shows the correlation between the steady state value 
of [I-] and the pattern of dynamic behavior. In the oscillatory 
region the value of [I-] belongs to the unstable steady state 
and is close to the time average value. Simple (single-period) 
oscillations exist inside the Hopf bifurcation lines, along which 
all points are supercritical. The dashed lines connect points 
with the same steady state value of [I-]. In the bistability region 
three steady states, one or two unstable, coexist, and dashed 
lines cross in this region. For k0 between 0.003 and 0.035 s-l 
the oscillatory region corresponds to a steady state concentration 
of [I-] within the range 2 x lo-' to M. If the target 
concentration of iodide IT is within this range, oscillations can 
be stabilized. 

CDI Reaction with Control Mechanism. The continuation 
technique was used to investigate the role of the control 
parameters IT, kmW, t, and n. For large enough t (t 2 lo4 s), 
the flow rate responds slowly to changes in the iodide 
concentration. Although the control mechanism does not 
include an explicit time delay, a relatively long time is required 
to adjust the flow rate if the iodide concentration in the system 
changes suddenly. For low values of t, the adjustment of the 
flow rate is very fast and the dynamics is characterized by stable 



10126 J. Phys. Chem., Vol. 98, No. 40, 1994 Dolnik et al. 

kmax 

kmax 

2,104 

0 
0.01 0.03 0.05 0.07 

kmax 
Figure 2. Dynamical control of the CDI reaction. Two-parameter bifurcation diagrams with Hopf (solid) and saddle-node (dashed) bifurcation 
lines. Oscillations occur inside the Hopf curve, and bistability occurs inside the saddle-node curve. Control parameters are n = 5 ,  t = 10 OOO s, 
target concentration of iodide ions (a) IT = M, (b) IT = 5 x IOws M, (c) IT = 1 x M, (d) IT = 2 x lo-’ M. 

steady states over a wide range of parameters where the 
uncontrolled system shows oscillatory behavior. In this paper 
we are interested in the situation where large values of t allow 
the system to react slowly to concentration changes. We choose 

The control parameter n affects the steepness of the sigmoidal 
function in the region where Y is equal or close to IT. The 
larger the value of n, the steeper the slope of the sigmoidal 
function, and the more strongly the system is forced to find 
dynamics with an iodide concentration closer to the target value. 
As a convenient value, we choose n = 5 .  

The oscillatory region in the two-parameter [I-lo-k~ bifurca- 
tion diagram is enclosed by Hopf and saddle-node bifurcation 
lines for the uncontrolled system (Figure 1). The Hopf and 
saddle-node bifurcation lines have similar shapes in the con- 
trolled system for a target iodide concentration IT = M 
(Figure 2a). However, new Hopf lines appear as the target 
concentration is decreased to 5 x IOv5 M. The Hopf lines do 
not terminate in Bogdanov points, as in the previous case. 
Instead, the Bogdanov points vanish and the Hopf lines enclose 
an additional region of oscillation for high [I70 and high k-. 
The saddle-node bifurcation lines which surround the region 
of bistability disappear when the target concentration IT is below 
4 x low5 M. With further decrease of IT, the distance between 
the Hopf lines (size of the oscillatory region) at first increases 
and then decreases until the Hopf lines vanishs. For k,, > 
0.08 s-l, the Hopf lines are nearly parallel with the x-axis. The 
parameter k,, does not play an important role when it is 
sufficiently high. 

The target value IT is the key parameter that determines what 
kind of dynamic pattern will be established in the controlled 
system. Figure 3 shows two-parameter bifurcation diagrams 
in the [I-]o-log IT plane. When k- is large enough (k,, = 
0.1 s-l, Figure 3a), the Hopf line forms a closed curve in the 
[I-]~-log IT plane. In this case, steady state behavior is the 

t = 104 s. 

only possible solution for any input concentration of iodide for 
high values of the target concentration (IT > 5 x M, Figure 
3a). When the maximum flow rate is decreased (k- = 0.04 
s-l, Figure 3b), oscillations are possible for large IT for lower 
input concentrations [I-lo. The cusps on the Hopf lines indicate 
that for specific constant values of [ I 3  three qualitatively 
different steady states can be obtained for different target values 
IT. For input iodide concentration 4.2 x M < [I70 < 
4.55 x M, a low iodide steady state is established for IT 
< 2 x M, a high iodide state is established for IT > 5 x 
loT5 M, and for IT x 1 x M, a steady state with an 
intermediate concentration of iodide is an asymptotic solution 
(see Figure 3b). Three steady states can also be found for input 
concentrations [I70 % 1.7 x M. When k,, is further 
decreased, the region of bistability is characterized by saddle- 
node bifurcation lines. The bistability region grows with 
decreasing k-. When k,, decreases to a relatively low value, 
the oscillatory region shrinks (Figure 3d) and finally the Hopf 
line disappears. 

The region of oscillation can be accurately determined from 
a one-parameter bifurcation diagram. Figure 4 shows bifurca- 
tion diagrams for two different input iodide concentrations. In 
each case, the Hopf bifurcation points at low IT are subcritical 
and, as a result, the stable steady states and the limit cycle 
oscillations coexist for a wide range of target concentrations 
IT. In this region the system will asymptotically approach either 
steady state or limit cycle oscillations depending on initial 
conditions. On the contrary, the Hopf bifurcation points for 
higher IT are supercritical. Hence, the oscillatory region in the 
two-parameter bifurcation diagram extends far beyond the Hopf 
lines for low values of IT and the borders of the oscillatory region 
coincide with the Hopf lines for high IT. 

Figure 4b shows the appearance of a stable steady state with 
intermediate concentration of iodide and two additional super- 
critical Hopf bifurcation points corresponding to the extrema 
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Figure 3. Dynamical control of the CDI reaction. Two-parameter bifurcation diagrams with Hopf (solid) and saddle-node (dashed) bifurcation 
lines. Oscillations occur inside the Hopf curve, and bistability occurs inside the saddle-node curve. Control parameters are n = 5 ,  z = 10 000 s, 
maximal flow rate (a) k,, = 0.1 s-l, (b) k,, = 0.04 s-l, (c) k,, = 0.01 s-l, (d) k,, = 0.007 s-l .  
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Figure 4. One-parameter bifurcation diagram of the CDI reaction with 
dynamical control: solid lines, stable steady states; dashed lines, 
unstable steady states; fiied circles, branches of stable periodic 
solutions; empty circles, branches of unstable periodic solutions. Control 
parameters are n = 5, t = 10000 s, k,, = 0.05 s-l. Input iodide 
concentration (a) [I70 = 4 x 

of the Hopf lines in the [I-]o-log IT parameter plane for [I-]o 

Chaos and Bursting. The bifurcation analysis indicates that 
all branches corresponding to periodic solutions change their 
stability. However, in some cases at the same time that the 

M, (b) [I-]o = 4.5 x M. 

= 4.5 x 10-4 M. 

periodic solution becomes unstable, the steady state also loses 
stability, so that the only stable solution is more complex 
behavior (see Figure 4). 

Numerical simulations were carried out in the region of stable 
and unstable periodic solutions. Simple (single-period) oscil- 
lations with relatively large amplitudes of X, Y, and Z oscillations 
and small amplitude of ko oscillations were observed in the 
region which corresponds to the stable periodic solutions. 
Figure 5 shows an example of such oscillations. The period of 
the oscillations is much smaller than t, and the iodide 
concentration varies rapidly around the control target concentra- 
tion IT. Because of the high value o f t ,  the change in flow rate 
is moderate in comparison with the concentration changes. Thus, 
the amplitude of the oscillations in the flow rate is small. As 
soon as an unstable periodic branch appears, the single-periodic 
solutions become unstable, and a period-doubling sequence 
occurs, leading to chaos and then ultimately to bursting behavior. 

Figure 6a shows the period-doubling sequence leading to 
chaos in the ko-ZT plane. Figure 6a was obtained from a 
Poincar6 map where the variable ko was evaluated at [I-] = 

M, for decreasing [I-]. The projection of the chaotic 
attractor in the log [I-l-h phase plane is shown in Figure 6b. 
The dashed line in the figure represents the surface where the 
Poincar6 maps were constructed. Thus, deterministic chaos 
emerges as an outcome of the control mechanism. 

The period-doubling sequence appears when the target 
concentration ZT is increased. Chaos is replaced by bursting 
behavior when IT is increased still further. An example of the 
bursting dynamics is shown in Figure 7. Bursting behavior 
exists in a rather wide range of parameter space. The 
unregulated CDI reaction can exhibit bursting when per- 
t ~ r b e d . ~ ~ , ~ ~ , ~ ~  The regulated flow acts in a similar way. When 
the concentration of C102 drops below a critical value, fast 
consumption of the remaining C102 follows. Chlorine dioxide 
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Figure 5. Dynamics of the CDI reaction with control-periodic 
oscillations. [l-]~ = 4 x M, IT = M. Time comes of iodide 
concentration (a) and flow rate k, (b). Other control parameters as in 
Figure 4. 
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F- 6. Dynamics of the CDI reaction with control-perioddoubling 
sequence leading to chaos. [[-IO = 4 x IO-' M. (a) Diagram 
conshucted from Poincare maps, (b) Chaotic amactor for IT = 6.1 x 

is not produced by any chemical reaction and can be restored 
only by inflow of new reagents, which is a relatively slow 
process. Part of the fresh solution of CI@ is immediately 
consumed by reaction R1, and reestablishment of a higher C102 
concentration may take a very long time. Oscillation appears 

M. For other control parameten see Figure 4. 

0.004 0.006 0.008 
ko 

Figure 7. Dynamics of the CDI reaction with contml-bursting 
behavior. [I-]o = 4 x IO-' M IT = 7 x M. Time development 
of iodide concentration (a) and log[I-]-k, phase plane (b). Other 
control parameters as in Figure 4. 

again when the concentration of C102 increases to its maximum 
value. The control mechanism periodically forces the system 
to surpass the critical concentration, and periods of quiescence 
alternate with periods of oscillation. 

We observe two different patterns of bursting behavior: one 
where large-amplitude oscillations alternate with periods of 
quiescence and another with alternation of low- and high- 
amplitude oscillations. The first pattern has previously been 
observed in the perturbed CDI reaction ~ystem.~'. '~ 
Response to Perturbations. One imponant consequence of 

the regulation scheme is the stabilization of dynamical behavior. 
When input concentrations are changed, the flow rate automati- 
cally adjusts and a dynamic pattern similar to the initial one is 
restored. In Figure 8 the arrows represent the moment when 
the input concentration of iodide was changed. Two different 
types of transient behavior were observed depending on how 
the change of the input iodide concentration was made. When 
the input concentration of iodide decreases, the amount of iodide 
in the system also decreases. The regulation process responds 
by increasing the flow rate in order to increase the amount of 
iodide in the system. Depending on how much the input 
concentration is changed, the transient adjustment of the flow 
rate can take a relatively short time or can be fairly long. For 
example. if the decrease in input concentration is less than 2%. 
the adjustment takes less than one-tenth of the value of T (Figure 
8a,b). If the change is more than 50%. however. the adjustment 
is very slow and after the transient time the period is somewhat 
(Figure 8c,d) or substantially (Figure 8e.O different. 

Different transient behavior is observed when the input iodide 
concentration is suddenly increased. Increase of iodide in the 
system supports consumption of chlorine dioxide, and [ClOzl 
drops below the critical value. The response of the regulation 
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Figure 8. Response of the model of the CDI reaction to changes in input iodide concentration. Arrows indicate time when input iodide concentration 
was decreased from [ I 3  = 4 x 
M. Other control parameters as in Figure 4. 

M to (a, b) [I-]o = 3.99 x M, (c, d) [I-lO = 3.5 x M, (e, f) [I-],, = 1.0 x M. IT = 5 x 

mechanism is to decrease the flow rate, but this has only a 
modest effect on the iodide concentration in the system. As a 
result, the flow rate decreases more than is necessary. Only 
after the iodide concentration drops below the target value IT 
and oscillations appear does the flow rate increase and start to 
adjust to the new conditions. These long adjustment times occur 
for relatively small iodide increases. Even for changes less than 
1% it takes a relatively long time for the flow rate to adjust 

(Figure 9a,b). The transient period for an increase is ap- 
proximately equal to t, and this does not change significantly 
with the amplitude of the perturbation. If the increase of input 
iodide concentration is high enough, the regulation mechanism 
is unable to reestablish single-period oscillatory behavior and 
bursting occurs as the recovery regime (Figure 9c,d). At still 
higher values of the input iodide concentration the reaction is 
unable to oscillate and approaches a steady state. 
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Figure 9. Response of the model of the CDI reaction to changes in input iodide concentration. Arrows indicate time when input iodide concentration 
was increased from [I-IO = 4 x M. For other control parameters see Figure 
8. 

M to (a, b) [I70 = 4.01 x M, (c, d) [I-]o = 4.5 x 

Conclusions 

The concentration of iodide in the CDI reaction correlates 
with the dynamical behavior of the system, as shown in Figure 
1. A regulation mechanism that works like a chemostat and 
attempts to establish a specific iodide concentration is respon- 
sible for interesting dynamical behavior. Depending on how 
the target concentration is chosen, steady state or oscillatory 
behavior can be stabilized. Moreover, calculations show that 
a variety of complicated dynamics appear as an outcome of the 
control. Period-doubling sequences leading to chaos are prob- 
ably a generic behavior of oscillatory systems with dynamical 
control, while bursting behavior seems to be a specific feature 
of the CDI reaction. 

The responses to parameter changes obtained here are 
qualitatively similar to those reported for a neuron 
A chemical oscillatory system may serve as a dynamical model 
system for a neuron. To mimic the dynamic regulation in a 
neuronal network, we can continue by studying the dynamic 
control of chemical oscillators both in single reactors and in 
networks of coupled reactor cells. 
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