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Drew, Patrick J. and L. F. Abbott.Model of song selectivity and sequence
generation in area HVc of the songbird. J Neurophysiol 89: 2697–2706,
2003;; 10.1152/jn.00801.2002. In songbirds, nucleus HVc plays a key
role in the generation of the syllable sequences that make up a song.
Auditory responses of neurons in HVc are selective for single sylla-
bles and for combinations of syllables occurring in temporal se-
quences corresponding to those in the bird’s own song. We present a
model of HVc that produces syllable- and temporal-combination-
selective responses on the basis of input from recorded bird songs
filtered through spectral temporal receptive fields similar to those
measured in field L, a primary auditory area. Normalization of the
field L outputs, similar to that proposed in models of visual process-
ing, plays an important role in the generation of syllable-selective
responses in the model. For temporal-combination-selective re-
sponses, N-methyl-D-aspartate (NMDA) conductances provide a
memory that allows inhibitory neurons to gate responses to a final
syllable in a sequence on the basis of responses to earlier syllables.
When the same network that produces temporal-combination-selec-
tive responses is excited by a nonspecific timing signal, it generates a
similar pattern of output as it does in response to auditory song input.
Thus the same model network can perform both sensory and motor
functions.

I N T R O D U C T I O N

Neural circuits can generate and respond to temporal se-
quences that last much longer than the integration time con-
stants of single neurons. Selectivity for temporal sequences
requires a memory mechanism for storing information over the
duration of a sequence, as well as a mechanism that allows this
stored information to gate responses. Modeling studies of
temporal-sequence selectivity can be used to explore possible
mechanisms by testing their viability and suggesting measur-
able experimental consequences through which they can be
confirmed or invalidated (Buonomano and Karmarkar 2002;
Troyer and Doupe 2000a,b). The selectivity of neurons in the
bird song system, a set of interconnected nuclei devoted to
song learning, production, and recognition, provides an excel-
lent system on which to base such studies (Doupe and Konishi
1991; Doupe and Kuhl 1999; Konishi 1985; Margoliash 1997).
Many neurons in these nuclei respond selectively to complex
temporal auditory sequences within the bird’s own song. Song-
selectivity includes responses to specific individual syllables
within a song (Lewicki 1996; Margoliash 1983; Margoliash
and Fortune 1994) and to combinations of syllables presented

in a specific temporal order (Lewicki 1996; Lewicki and Arthur
1996; Lewicki and Konishi 1995; Margoliash and Fortune
1994). Here, we construct a model of syllable- and temporal-
combination-selective neurons and show that the resulting cir-
cuit can generate as well as respond selectively to specific
temporal sequences.
Song-selective responses, as well as other auditory re-

sponses, occur in many of the nuclei associated with the song
system in birds (Doupe and Kuhl 1999; Konishi 1985; Mar-
goliash 1997). Field L, which receives direct input from the
thalamic auditory nucleus ovoidalis, is roughly the analog in
the bird of mammalian primary auditory cortex. Neurons in
field L have been measured and characterized in terms of
spectral temporal receptive fields (STRFs) (Sen et al. 2001;
Theunissen et al. 2000), which provide a concise way of
simulating their responses. In our model, responses generated
in this way provide the feedforward input to second-stage
neurons that are selective for either syllables within recorded
birdsongs or temporal combinations of these syllables by virtue
of their network interactions. We think of these song-selective
neurons as being located in area HVc (high vocal center), a
region where neural responses are strongly song selective
(Lewicki and Arthur 1996; Margoliash 1983; Margoliash and
Fortune 1994). Thus our model consists of two stages: an input
stage based on frequency, but not song-selective field L re-
sponses, and an output stage generating responses similar to
those of song-selective units in HVc.
Not surprisingly, the situation in songbirds is considerably

more complex. First, although we assume a direct projection
from field L to HVc, field L neurons may project to a neigh-
boring structure, the HVc shelf, rather than directly to HVc
(Fortune and Margoliash 1995; Kelley and Nottebohm 1979;
Margoliash 1997; Vates et al. 1996). Second, HVc receives
input from a number of other areas, including the medial
magnocellular nucleus of the archistriatim (mMAN), the tha-
lamic nucleus uvaeformis (Uva), the nucleus interfacialis (NIf),
and the hyperstriatum ventrale (cHV) (Nottebohm et al. 1982;
Vates et al. 1996, 1997). Song-selective activity in mMAN
appears to follow that in HVc (Vates et al. 1997), and Uva
appears to be associated with motor rather than sensory pro-
cessing of song (Margoliash 1997; Williams and Vicario
1993). However, NIf, in particular, is a potential source of
sensory input to HVc (Coleman and Mooney 2002). Further-
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more, responses in both NIf and cHV can be song-selective, as
are those of some neurons in field L, but to a lesser extent than
those in HVc (Janata and Margoliash 1999; Lewicki and
Arthur 1996; Sen at al. 2001). In light of the complicated
interconnectivity of the song system, our model should be
viewed as a set of general frequency-selective neurons provid-
ing input to neurons that generate song-selective responses
through network interactions. Although we refer to these as
field L and HVc stages, the exact location of the input and
song-selective neurons is somewhat ambiguous. Furthermore,
we are using a two-stage network to approximate a system in
which song-selectivity arises progressively over a number of
different areas.
There are at least two classes of excitatory neurons in HVc

(Dutar and Perkel 1998; Mooney 2000). Neurons that project
to area X (X projecting) are hyperpolarized during song play-
back but fire in response to specific portions of the song.
Neurons that project to the robust nucleus of the archistriatum
(RA projecting) are generally depolarized during song play-
back and also fire at specific points within the song. Our model
applies to the RA-projecting neurons in HVc. HVc is a motor
structure that, in addition to its sensory responses, plays an
important role in song production (Hahnloser et al. 2002;
Margoliash 1997; Vu et al. 1994). The network we construct to
reproduce song-selective sensory responses in HVc can also
generate similar sequences of activity in response to a general
timing signal, which might represent input from Uva. Thus like
HVc, our model can act as both a sensory and a motor network.

M E T H O D S

The model consists of two stages; a field L stage that is modeled
using linear filters and a normalization operation, and an HVc stage
where neurons are modeled as integrate-and-fire units. For the sylla-
ble-selective examples, we used a single integrate-and-fire neuron,
and for temporal-combination selectivity we used a network of inte-
grate-and-fire units. All simulations were implemented using MatLab.

Filtering, normalization, and weights

Recorded songs provided input to the model in the form of a
spectrogram, s(t, f). This was passed through a set of linear filters,
representing the action of neurons early in the auditory pathway. In
these linear filters, an STRF function, Fi(!, f), determines how the
magnitude of the spectrogram at frequency f, a time period ! in the
past, affects the output of unit i. To implement this, STRF outputs,
xi(t), were generated by integrating the product of the song spectro-
gram times the STRF filter, Fi(!, f)

xi!t" "!
0

#

d!!
0

#

dfs!t # !, f "Fi!!, f " (1)

We modeled the STRF filter on the data of Theunissen et al. (2000)
and Sen et al. (2001) as having a Gaussian frequency profile about a
preferred frequency with width fwidth and a time profile described by
a gamma function displaced by a latency !0. Thus the STRF was
modeled as
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where $ & 3/ms, !0 & 0 or 8 ms, fwidth & 100 Hz, fi is the preferred
frequency of the STRF, and [z]% & z for z ' 0 and is zero otherwise.
The values of fi were evenly spaced every 125 Hz between 0 and

8,000 Hz. The STRFs were divided into two banks, one with !0 & 0
ms and one with !0 & 8 ms. This helped in the detection of frequency
sweeps, which are important components of many syllables. Even
with the longer delay, the STRFs carried no information from further
back than 70 ms, which is not long enough to overlap with more than
one syllable. For convenience, we assign the label i that specifies
particular STRFs in order of their preferred frequencies.
To represent the effects of saturation and suppression by surround-

ing units, STRF outputs were normalized by making the transforma-
tion

xi!t"3
xi!t"

% & &¥jxj2!t"
(3)

Note that as xi 3 #, this expression approaches a finite limit, and
that, because of the sum over j, other STRF filters (j ( i) with large
outputs will suppress the response of unit i. Here % & 0.05 is a
parameter that controls where the response begins to saturate (see Fig.
2). The firing rate of field L unit i is taken to be proportional to a
rectified version (to eliminate negative firing rates) of the normalized
output of the corresponding field L filter

ri!t" " ')xi!t"*% (4)

where ' is a constant (see Model neuron for its value).

Model neuron

All neurons in the HVc stage of the model were modeled as leaky
integrate-and-fire units for which the membrane potential V is de-
scribed by the equation

!m
dV
dt

" Vrest # V & gAHP!t"!EAHP # V" & gex!t"!Eex # V" & gin!t"!Ein # V". !5)

The conductances gAHP, gex, and gin are divided by the leak
conductance, making them dimensionless. We set the effective mem-
brane time constant !m & 20 ms for excitatory neurons and !m & 10
ms for inhibitory neurons. The resting potential is Vrest & $70 mV,
and the synaptic reversal potentials are Eex & 0 mV and Ein & $70
mV for excitation and inhibition, respectively. In addition, EAHP &
$70 mV. Action potentials are generated whenever V reaches a
threshold potential of$50 mV, after which the membrane potential is
reset to $70 mV.
For the syllable-selective units shown in Figs. 3 and 4, the excitatory

conductance gex is the sum of a syllable-selective term, gsyllable(t),
(Eq. 6) and a nonselective background input. The inhibitory conduc-
tance gin consists solely of a nonselective background. The back-
ground inputs are generated by Poisson spike trains (representing the
summed input from many afferents) with rates of 1,500 Hz for
excitation and 1,000 Hz for inhibition. Each time a spike arrives, the
corresponding synaptic conductance (gex or gin) is increased by 0.1.
After that, this contribution decays exponentially with a time constant
of 2 ms for excitation and 10 ms for inhibition.
The syllable-selective excitatory conductance, gsyllable, is computed

by summing the firing rates of the N presynaptic field L units multi-
plied by appropriate synaptic weights, wi

gsyllable!t" " ( '
i&1

N

wiri!t" (6)

where '( (results of the model only depend on a multiplicative
combination of these 2 parameters) is between 0.5 and 2, depending
on the syllable. The less variability in the peak frequencies within the
syllable, the smaller ( needed to be. Syllable-selectivity was conferred
by choosing the synaptic weights on the basis of the field L responses
at a particular time tsyllable during the syllable being selected for. As
discussed in the text, weights were chosen to select for local maxima
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in the field L responses at a particular time tsyllable during the syllable
using the following rule: if ri(tsyllable)' ri$1(tsyllable) and ri(tsyllable)'
ri%1(tsyllable)

wi$1 " ri$1!tsyllable", wi " ri!tsyllable", and wi%1 " ri%1!tsyllable" (7)

with the understanding that the STRFs are labeled in order of their
preferred frequencies. Otherwise wi & 0. To provide a uniform scale,
the weights are also normalized

wi3
wi

&¥jwj
2

(8)

Choosing the right time point in the syllable is important for
accurate syllable recognition. Changing tsyllable a few milliseconds
either way can sometimes impair recognition, because the acoustic
characteristics of a syllable can change rapidly.
The after-hyperpolarizing potential (AHP) conductance, which is

included in all the excitatory model neurons, is incremented by 0.8
every time the neuron fires an action potential, has an absolute
maximum of twice the resting membrane conductance, and otherwise
decays exponentially with a time constant of 100 ms. No AHP was
used for Fig. 4, C and D, to eliminate confounding effects of repetitive
stimulation. This did not affect the volume dependence being illus-
trated in the figure. The AHP has little effect on the syllable and
temporal-combination selectivity of the model, but it plays a key role
in the generation of temporal sequences.

Network model

The network model (Fig. 5) used for Figs. 6 and 7, consists of 120
neurons, 30 of each type: A-selective excitatory neurons, which
receive field L input tuned to syllable A; A-selective inhibitory
neurons, which receive tonic excitation and are also driven by the
A-selective excitatory neurons; AB-selective excitatory neurons,
which receive field L input tuned to syllable B; and B-suppressing
inhibitory neurons, which receive tonic excitation, are suppressed by
the A-selective inhibitory neurons and, in turn, suppress the AB-
selective excitatory neurons. All the neurons in the network model
receive the nonselective background excitatory and inhibitory inputs
described above. The A-selective and AB-selective excitatory units
receive syllable-selective excitatory input, as described by Eq. 6. In
place of this syllable-selective input, the A-selective inhibitory neu-
rons receive a constant excitatory conductance of 0.4 during song
playback, and the B-suppressing inhibitory neurons receive a constant
excitatory conductance of 0.5. Neurons in the network model are
coupled to each other through AMPA, GABA, and N-methyl-D-
aspartate (NMDA) synapses. For AMPA and GABA synapses, gex
and gin are incremented by the amounts listed in the table below (for
the different synaptic connections of the model) when a presynaptic
action potential arrives. For recurrent synapses in the network model,
saturation of individual synapses at high-input rates was also imple-
mented to prevent runaway excitation. These conductance changes
then decay exponentially with the same time constants given above, 2
ms for excitation and 10 ms for inhibition.
NMDA conductances were added to gex in the following way

(Wang 1999). When a presynaptic action potential activates an
NMDA synapse in the model, a variable s1 is incremented by 1, s13
s1 % 1. Otherwise, s1 decays exponentially with a time constant of 2
ms. From s1, a second variable s2 is computed from the equation

!2
ds2
dt

" !2s1!1# s2" # s2 (9)

with !2 & 120 ms. This implements both the finite rise and decay
times of the NMDA conductance and the saturation of the conduc-
tance at high input rates. The NMDA contribution to gex is the
appropriate number given in the table below times s2/[1 %

exp($0.062V)/3.57)]. The denominator, with the membrane potential
V taken to be in millivolts, describes the well-known voltage depen-
dence of the NMDA conductance.
The strengths for all the synapses of the network model are shown

in Table 1 (in Table 1, A-selective excitatory neurons are listed as A,
A-selective inhibitory neurons as Ai, AB-selective excitatory neurons
as AB, and B-suppressing inhibitory neurons as Bi). The columns of
Table 1 correspond to the presynaptic neuron and the rows to the
postsynaptic neuron. The numbers below are for the network model
shown in Figs. 6 and 7. There are no autapses. Small changes in these
conductances were required for the network to respond to other
syllable sequences.

To generate the motor pattern in Fig. 7, the A- and AB-selective
neurons are injected simultaneously with excitatory conductances of
approximately 0.55 and 0.8, respectively, for 10-ms pulses separated
by 75–100 ms. The A-selective and B-suppressing inhibitory neurons
receive constant background excitatory conductances of 0.4 and 0.65.
For both sequence recognition and generation, the strengths of the
background conductances did not require precise tuning. A relatively
wide range of parameters produced qualitatively similar results, al-
though, for sequence generation, it helped to keep the background
conductance to the B-suppressing inhibitory neurons high to prevent
the AB-selective neurons from responding to the first timing pulse.
For the ABC-generating network shown in Fig. 7C, two additional
inhibitory populations (analogous to and having the same parameters
as the A-selective inhibitory and B-suppressing inhibitory neurons)
and an ABC-selective population of neurons (analogous to the AB-
selective neurons) were added to the network model. In addition, the
time constant of the AHP was increased to 200 ms for all the excitatory
neurons in the network simulations shown in Fig. 7, B and C.
The network model was robust to approximately 10% variations in

its synaptic conductances. As parameters were varied away from
optimal, the model degraded gracefully without uncontrollable excess
levels of activity. Generally, generation of the correct sequence de-
graded first when parameters were adjusted, followed by the ability of
the network to respond selectively to the sequence. The parameters
controlling syllable recognition could be varied by even larger
amounts, depending on the syllable being detected, before a syllable-
selective neuron stopped responding or responded nonselectively.

R E S U L T S

As mentioned in the introduction, we are interested in mod-
eling two kinds of song-selective responses: syllable selective
and temporal-combination selective. We begin by constructing
syllable-selective units, which form the basis for the temporal-
combination selectivity discussed later. In both cases, the input
to the model consists of spectrograms from recorded songs
(kindly supplied by M. Kao, K. Sen, and A. Doupe). These are
processed through an array of STRFs modeled after those in
field L and then normalized to reproduce saturation and sur-
round-suppression effects within the field L stage of the model.
Syllable- and temporal-combination selectivity arises in the
HVc network of the model through a combination of feedfor-
ward and recurrent circuitry. The field L and HVc stages are
modeled in quite different ways. The field L stage is modeled

TABLE 1.

A AMPA Ai GABA AB AMPA Bi GABA A NMDA AB NMDA

A 0.125 — — — 0.05 —
Ai — — — — 0.175 —
AB — — 0.125 0.15 — 0.05
Bi — 0.065 — — — —
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descriptively as a set of firing rates generated by STRFs with-
out a specific biophysical representation. This is because we
are not exploring in this study how field L responses arise. The
HVc stage, on the other hand, is modeled as a network of
spiking model neurons (integrate-and-fire neurons) receiving
and interacting through realistic synaptic conductances. This
more biophysical representation allows us to explore specific
cellular, synaptic, and circuit mechanisms that can produce
syllable- and temporal-combination selectivity.

Field L stage

The first stage of our model is an array of STRFs based on
the simplest ones found in field L (Sen et al. 2001; Theunissen
et al. 2000). The STRFs act as filters on the spectrograms of
recorded songs, producing an output that provides a measure of
the amplitude of the spectrogram over a particular time and
frequency range. Specifically, the output of a given STRF at a
given time is proportional to the integral of the spectrogram
amplitude times a Gaussian-shaped frequency profile approx-
imately 200 Hz wide that extends backward )70 ms prior to
that time. The center of the Gaussian frequency profile defines
the preferred frequency of the STRF. The preferred frequencies
of different STRFs are evenly spaced every 125 Hz between 0
and 8,000 Hz, giving full overlapping coverage of all frequen-
cies in that range. Each STRF is convolved with the song
spectrogram (Fig. 1A), producing a set of filter outputs (Fig.
1B). The STRF-generated outputs are ordered with respect to
their preferred frequencies in Fig. 1B, which makes the output
resemble an approximate duplicate of the song spectrogram
seen in Fig. 1A.
It is difficult to generate song-specific responses directly

from the outputs of the field L STRFs. This is because loud
syllables generate larger responses than soft syllables, as seen
in Fig. 1B, and these large responses can overwhelm the

selectivity of downstream units for softer syllables. For this
reason, we assume that the field L responses are normalized in
a manner similar to what has been suggested for responses in
areas of the mammalian visual system (Heeger 1992; Simon-
celli and Heeger 1998). The normalization operation repro-
duces saturation effects at high stimulus intensities and also
allows high activity in some field L units to suppress all of
them. Specifically, if we think of the full array of STRF outputs
as being represented by a vector, the normalization procedure
consists of dividing this vector, at each point in time, by a
factor that is a linear function of its length (see METHODS). The
responses from the array of STRFs after normalization are
shown in Fig. 1C. It is clear from this figure that the different
syllables now produce responses of more equivalent magni-
tudes than in Fig. 1B.
The effect of normalization on field L responses is quantified

in Fig. 2. Here the magnitude of the full field L output (the
length of the field L output vector) is plotted as a function of
the magnitude of its input before normalization (the length of
the output vector of the field L filters). The curve in Fig. 2
illustrates the effect of the normalization operation, which
causes the initial linear rise to change to a slower increase for
higher sound intensities. Figure 2 also shows the range over
which typical song syllables drive the field L units and also the
range for inter-syllable periods. The scale of the normalization
effect has been chosen so that responses to syllables are near
the saturation region, whereas responses between syllables are
well below saturation.
In summary, the field L stage of our model consists of an

array of STRFs that act as linear filters on song spectrograms
to produce a set of outputs selective for different preferred
frequencies. At each time, this set of outputs is normalized,
representing saturation and “surround-suppression” effects.
The firing rates that represent the output of the field L stage of
the model are then proportional to half-wave rectified versions
of these normalized STRF outputs.

Syllable selectivity

As mentioned previously, the syllable- and temporal-com-
bination-selective units in our model are integrate-and-fire
neurons driven by the field L outputs. Individual syllable-
selective units receive excitatory synaptic conductances pro-
portional to a weighted sum of the firing rates of the field L
units. Syllable selectivity arises from an appropriate choice of
the weights in this sum, with each weight corresponding to a
unitary synaptic conductance.
We tried a number of schemes for determining the optimal

weights for generating syllable-selective responses. The
scheme that worked best was to set most of the weights to zero
and to reserve the small number of nonzero synaptic weights
for the peak STRF responses. In other words, we use a sparse
representation of the song syllables to drive syllable-selective
neurons, which is somewhat analogous to edge detection in
visual object recognition. Specifically, a time was chosen
within the middle of the syllable to be detected, and peak
frequencies were identified by finding field L units that fired
more rapidly than their neighbors with the next higher or next
lower preferred frequencies. Weights for the three units around
each peak were then set proportional to their firing rates, while
all other weights were set to zero (see METHODS). This proce-

A

B

C

FIG. 1. Steps leading to the output of the field L stage of the model. A–C:
horizontal axis represents time and the color represents the amplitude, with
blue the lowest and red the highest. A: vertical axis is frequency. B and C:
vertical axis is preferred frequency of the corresponding spectral temporal
receptive fields (STRFs). A: song spectrogram. B: outputs of the field L STRF
filters applied to the spectrogram. C: STRF outputs after normalization.
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dure generates weight values that are similar to those obtained
by setting weights proportional to the rectified difference be-
tween the firing rate of the presynaptic field L unit during the
selected syllable and its mean firing rate. With this approach,
weights could be set on the basis of a single example of the
syllable being selected. Even though weights were selected
from a single example, selectivity generalized well across other
instances, such as repetitions of the selected syllable or appear-
ances of the syllable in a different song.

When presented with different recordings of vocalizations,
our syllable-selective neurons fired strongly when syllables
similar to the example syllable were played and weakly or not
at all to other syllables (Fig. 3, A, B, and D). Normalization
within the field L stage of the model plays a critical role in
syllable selectivity. Without normalization, model HVc cells
become selective to syllables primarily on the basis of their
loudness, rather than their spectral characteristics. In the song
appearing in Fig. 3, C and D, loud syllables occur between the
two instances of the syllable marked A. Without field L nor-
malization (Fig. 3C), an HVc unit set to be selective for
syllable A responds more strongly to these loud syllables than
to A, a problem that is significantly ameliorated when normal-
ization is included (Fig. 3D).
The selectivity for a specific syllable was retained in the

presence of noise, although the response decreased in magni-
tude as the level of noise increased (Fig. 4A). In the absence of
field L normalization, the syllable-selective unit lost selectivity
in the presence of noise and began to respond to the noise
rather than to the syllable (Fig. 4B). In general, the selectivity
of the model was robust when noise, either artificial (white
noise) or natural (sounds of other birds) was added to the song,
and when noise was introduced through the background, stim-
ulus-independent synaptic input (see METHODS). For example,
the model retained a reasonable amount of selectivity when we
increased the variance of the synaptic input threefold (data not
shown).
Normalization also allowed syllable-selective responses to

FIG. 2. Effect of normalization. Length of the vector of field L outputs after
normalization (magnitude of normalized field L output) plotted as a function of
its value before normalization (magnitude of STRF filter output). Typical
ranges for syllable stimuli and for intervals between syllables are shown with
shading. Inter-syllable inputs fall on the lower portion of the linear part of the
curve, whereas syllable inputs fall near the saturating region.

FIG. 3. Syllable selectivity. In all panels, the top plot is a song
spectrogram, the middle plot is a sample voltage trace of a syllable-
selective unit, and the bottom trace is a histogram of firing rates
over repeated runs. Selected syllable is denoted by the letter A,
with the larger font indicating the instance of the syllable used to
set the synaptic weights in the model. A: syllable-selective re-
sponse. Weights were set using the 1st occurrence of the syllable,
but this produced a response selective for both instances within the
song. B: another example of selectivity using a different bird’s
song. C: response of the model without field L normalization.
When the output from the field L stage is not normalized, the
syllable-selective neurons respond to the louder syllables, rather
than to the one that its weights are selective for. D: response of the
model to the same song as in C with normalization of field L
outputs. Responses to loud syllables other than A are suppressed.
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persist over a wide range of syllable volumes. In the example
of Fig. 4C, responses of approximately equal magnitude were
retained over a 30-dB range, a feature that was lost when
normalization was removed (Fig. 4D). For Fig. 4D, we ad-
justed the magnitude of the synaptic conductance carrying the
syllable-selective drive from the field L outputs to the model
HVc neuron so that the response at %30 dB without normal-
ization matched that with normalization shown in Fig. 4C. In
this case, no response appeared at any lower levels of song
playback. If this adjustment was not made, the model generated
unrealistically high firing rates at high stimulus volumes when
normalization was removed.
Not all syllables were recognizable by our model. It was

easiest to select for syllables with power tightly concentrated at
one or a few frequencies, such as whistles and harmonic stacks.
Syllables with broadly distributed power generated weaker
responses and more false positive responses to incorrect sylla-
bles. This is at least partially due to our choice of field L
STRFs, because these respond particularly well to harmonic
stacks and pure tones. More complicated STRFs, selective for
specific frequency sweeps or other features, could provide a
better basis set for other types of sounds. Our judgments
concerning the accuracy of the model depend on our subjective
definition of what constitutes a syllable. Usually this was easy
to determine, but in a few noisy cases it was not entirely clear.
Of course, what we define and what the bird perceives as
distinct syllables may not be the same.

Temporal-combination selectivity

The critical feature that must be added to expand and extend
syllable-selectivity to temporal-combination selectivity is a
memory trace of the sequence being selected that can gate the
response. Figure 5 shows a schematic of the network we used
to generate temporal-combination-selective responses. It con-
sists of two subnetworks of excitatory neurons that, by them-
selves, would be selective for two different syllables labeled A
and B. Both of these use the same syllable-selectivity mecha-

FIG. 4. Effects of noise and volume on syllable selectivity. In
all panels, the top plot is a spectrogram of the sound input to the
field L filters, the middle plot is a sample voltage trace of a
syllable-selective unit, and the bottom trace is a histogram of firing
rates over repeated runs. The same syllable is used in each repe-
tition in all panels. In A and B, the dB labels indicate the level of
added noise. In C and D, the dB labels indicate the volume of the
syllable playback. A: selected syllable presented along with white
noise of increasing amplitude. Number of spikes elicited drops as
the amount of background noise increases. B: without normaliza-
tion, the same sequence as in A evokes responses than increase
with noise due to a loss of response selectivity and increasing
response to the noise input. C: selectivity remains relatively con-
stant over a range of syllable volumes, although it is minimal for
the lowest syllable volume shown ($10 dB). D: without normal-
ization, selectively is strongly affected by volume.

FIG. 5. Schematic of the network for temporal-combination selectivity.
Each circle represents a group of neurons (A: A-selective excitatory; AB,
AB-selective excitatory; Ai, A-selective inhibitory; Bi, B-suppressing inhibi-
tory). Synapses denoted by pluses and minuses are excitatory and inhibitory.
The A- and AB-selective excitatory neurons receive A- and B-selective input
from the field L stage. Both sets of inhibitory neurons receive tonic excitation
throughout song playback. The A to Ai synapses have a strong N-methyl-D-
aspartate (NMDA) component.
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nism as the neurons discussed in the previous section but, in
addition, they have excitatory recurrent connections that am-
plify their responses. We term these two groups of excitatory
neurons A-selective and AB-selective, the latter because the
neurons that receive B-selective input from field L end up, in
the full network, selective for the temporal sequence AB.
Similar to the proposal of Lewicki and Konishi (1995),

temporal-combination selectivity arises from the connections
of the A- and AB-selective excitatory neurons to inhibitory
neurons. During song playback, the inhibitory neurons receive
a constant excitatory synaptic input that, by itself, would keep
them active during the song, as is seen experimentally
(Mooney 2000). We imagine this input to be the result of
pooled excitatory drive from neurons responding to different
syllables within the song. In addition to this constant drive, a
subset of inhibitory neurons, which we call A-selective inhib-
itory neurons, receives drive from the A-selective excitatory
neurons, carried by NMDA conductances. This excitatory
drive retains the memory that syllable A has occurred because
of the long time constant (120 ms) of the NMDA conductance.
This is reflected in an increased firing rate of the A-selective
inhibitory neurons that can last up to several hundred millisec-
onds after syllable A is presented (Fig. 6). The duration of this
effect is longer than the decay time constant of the NMDA
conductance because significant excitation remains even if
only a fraction of the NMDA conductance is activated.
The A-selective inhibitory neurons inhibit another set of

inhibitory neurons, called B-suppressing neurons, which in
turn inhibit the AB-selective excitatory neurons. The B-sup-
pressing inhibitory neurons fire persistently at a high enough

rate to suppress the response of the AB-selective neurons,
except when they are shut off by the A-selective inhibitory
neurons for several hundred milliseconds after syllable A oc-
curs. When the persistent inhibition of the B-suppressing neu-
rons is temporarily removed through the action of A-selective
inhibitory neurons, the neurons of the AB-selective network
respond selectively to syllable B. However, this occurs only if
syllable A precedes B, thereby making the neurons AB selec-
tive.
When a song containing the sequence AB is presented, the

A-selective neurons respond to syllable A, and the AB-selec-
tive neurons respond to syllable B (Fig. 6A), but only when it
is presented after A (Fig. 6B). The temporal-combination-
selective neurons are specific for the sequence AB, not for an
arbitrary syllable followed by B (Fig. 6C). Finally, when the
interval between inputs to the A-selective neurons and to the
AB-selective neurons is increased, the average number of
spikes falls off as the response of the B-suppressing interneu-
rons recover from inhibition (Fig. 6D). This time course is
controlled by the time constant and strength of the NMDA
current to the A-selective interneurons, as well as the relative
strength of the tonic background input.
It is possible to chain together circuits like this to achieve

selectivity to longer sequences such as ABC. If the AB-selec-
tive neurons have NMDA-mediated connections to another
inhibitory population of neurons, they can behave in a manner
similar to the A-selective neurons, gating the response to a
subsequent syllable, making a group of ABC-selective neu-
rons. In this way, selectivity for a sequence of arbitrary length
can arise (see Fig. 7C).

FIG. 6. Temporal-combination-selective responses. In A–C, the
top plot is a song spectrogram, and the other plots, from top to
bottom, are the membrane potentials of an A-selective excitatory
neuron, an A-selective inhibitory neuron, an AB-selective excit-
atory neuron, and a B-suppressing inhibitory neuron. A: syllable A
evokes a response in the A-selective excitatory and inhibitory
neurons, inhibiting the B-suppressing inhibitory neuron, which
permits the AB-selective neuron to fire. B: response to the se-
quence AB but not to BA. C: response to the sequence AB but not
to XB, where X is a different syllable than A. D: relative responses
of the AB-selective units for different delays between the 2 sylla-
bles. Temporal-combination responses survive )500-ms separa-
tions. In this example, the conductance generated by field L outputs
in response to recorded songs were replaced by equivalent con-
ductances pulses representing syllables A and B for us to consider
different time delays between these syllables.
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Sequence generation

In addition to exhibiting sensory responses, HVc is a motor
structure participating in song production as a motor pattern
generator (Hahnloser et al. 2002; Margoliash 1997; Vu et al.
1994). The network we have constructed to model temporal-
combination selectivity has a particular sequence of syllables
built into its circuitry, so it seems reasonable that it too might
be capable of generating motor patterns representing the same
sequences that it responds to when working in sensory mode.
To test this idea, we removed the auditory input from the
network model, and replaced the syllable-specific drive to its
A-selective and AB-selective neurons with a generic timing
signal. This timing signal took the form of periodic excitatory
conductance pulses delivered to the A-selective and AB-selec-
tive neurons with approximately the same amplitude as the
syllable-selective conductances they receive when the network
is operating in sensory mode. However, a crucial difference is
that the timing pulses do not distinguish between syllables.
Thus we have replaced syllable-selective drive to these neurons
with a uniform signal the serves only to generate and clock
their responses but not to select between them.
We found that, when driven by such a generic timing signal,

the same network that gives rise to responses selective for a
particular sequence can also generate them. Specifically, we
simultaneously stimulated the A- and AB-selective neurons of
the network with identical excitatory conductance pulses while
the inhibitory neurons received constant input (Fig. 7A). The
model HVc network produced a similar pattern of activity in
response to this generic timing signal as it did for actual
auditory song input. The sequencing of responses, A then B,
arises from the circuitry of the network by the mechanisms
discussed in the previous section. In other words, during the
first pulse, A-selective neurons respond, but the AB-selective
neurons do not fire because they are inhibited by the B-
suppressing interneurons. However, the firing of the B-sup-
pressing neurons is terminated by the activity of the A-selec-
tive inhibitory neurons and, on the second pulse, the AB-
selective neurons fire. The A-selective neurons do not fire in
response to the second timing pulse, although they receive it

with the same strength as the first timing pulse, due to the
presence of an AHP (see METHODS). There is evidence for such
a conductance in RA-projecting neurons from measurements in
slice experiments (Dutar et al. 1998).
When a series of pulses is used, the network generates the

sequence ABABAB. . . The repetition of the sequence occurs
because the time between three timing pulses is sufficient for
the A-selective neurons to recover from the AHP (Fig. 7B).
This motor output is similar to the motif repetition often seen
in zebra finch songs. The motif can be generated at a variety of
rates (*25% faster or slower than what is seen in Fig. 7B) by
increasing or decreasing the repetition rate of the timing pulses.
Sometimes, especially for rapid repetition rates, individual
units may skip a cycle of the motif because then have not
recovered sufficiently from the previous AHP. However, un-
less then entire population synchronizes these skips, some units
will always respond on any given cycle.
The AHP, which suppresses responses for a short period of

time following activation, is critical for preventing repeated
firing of a single unit to every timing pulse. If the motifs being
generated are too long, unwanted repetitions will occur. To see
if somewhat longer motifs could be generated, we constructed
a network with additional units excited and inhibited by input
from a third syllable, C. In other words, populations of C-
selective inhibitory, C-suppressing inhibitory, and ABC-selec-
tive excitatory units were added to the network in the manner
discussed at the end of the previous section (also see METHODS).
In addition, the duration of the AHP conductance was in-
creased to provide longer suppression of repeated responses
(see METHODS). The result was a network that generated the
sequence ABC when stimulated by a nonspecific timing pulse
(Fig. 7C). Although such a three-component motif can be
generated, additional suppression mechanisms would have to
be included to generated longer motifs to avoid unrealistically
long AHP times.

D I S C U S S I O N

The proposed model of syllable selectivity makes several
testable predictions. Because of the syllable-selective weights,

FIG. 7. Network acting as a motor pattern generator. The top traces in A and B are the conductance timing pulses (in units of
the resting membrane conductance) to the A- and AB-selective neurons (pulses to the AB-selective neurons are slightly larger than
to the A-selective neurons). Other traces are the membrane potentials of an A-selective and an AB-selective excitatory neuron. A:
pair of excitatory timing pulses to both sets of neurons generates a response in the A-selective neuron followed by a response in
the AB-selective neuron. Thus the same temporal sequence that evokes temporal-combination-selective responses in the network
is generated by the nonspecific timing pulse input. B: a series of timing pulses to the A- and AB-selective populations results in
the motor sequence ABABA being produced, similar to motif repetitions found in real songs. C: example of an expanded network
(see METHODS) generating a 3-syllable motif (ABC). In this panel, the top plot shows the pulses to the A- (smaller pulses), AB-,
and ABC-selective units (larger pulses), and the other 3 panels show the responses of such units.
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individual tone components of a syllable (e.g., a harmonic from
a stack) should depolarize a syllable-selective neuron when
presented alone, whereas presentation of sound components
not in the syllable should not. The normalization step in the
model causes syllable-selective responses to remain constant
over a range of volumes, something that can be checked
experimentally. The weights in the model are not determined
by any dynamic learning rule, but they could possibly be
generated by the type of winner-take-all rules used in feature-
selecting networks (e.g., Hertz et al. 1991). Although little is
known about the actual synaptic connections involved in the
real circuit, the sparse connectivity used in our model does not
seem unreasonable.
The sparse representation of song syllables we have used

preserves the salient features of a syllable, its auditory “edges,”
but discards the rest of the signal, which is more likely to be
corrupted by background noise and is more variable from
syllable rendition to rendition. The nature of the syllable and
the background noise level affect the optimal sparseness of the
representation. Sparser representations are best for syllables
with power concentrated at a few frequencies or in a noisy
background.
As mentioned previously, the proposed model of temporal-

sequence selectivity is related to a suggestions of Lewicki and
Konishi (1995) that slow inhibitory conductances (elicited by
B input and terminated by A input) could sum with excitatory
input to generate temporal-combination selectivity. Our model
shows that this general mechanism can work using realistic
inputs, conductances, and spiking neurons. Furthermore, it
indicates that such a model can also generate motor sequences
as well as sensory responses.
Temporal-sequence selectivity requires that earlier elements

in a sequence gate the response to later elements. In our model,
the necessary memory is stored in NMDA conductances. Such
a conductance is ideal for this purpose because it activates
quickly, allowing fast responses to subsequent syllables, but
inactivates slowly retaining the memory of the previous sylla-
ble. Metabotropic receptors might be an alternative to NMDA
receptors for this purpose, but they have the disadvantage of
activating slowly.
In a preliminary version of this work, we constructed a

model in which the memory component required for temporal-
selective responses arose from reverberating network activity
(Drew and Abbott 2002). However, recent recordings suggest
that inhibitory neurons play a more prominent role than was
assumed in this earlier model (Mooney 2000 and private com-
munication), so we have not considered this possibility here.
The mechanism of response gating that produced temporal-

combination selectivity in our model was inhibition of the
B-suppressing neurons through prolonged, NMDA-mediated,
excitatory drive to the A-selective inhibitory neurons. The
mechanism proposed by Lewicki and Konishi (1995) had the
prolonged effect of syllable A maintained by slow inhibitory
synapses (such as GABAB conductances) from the A-selective
inhibitory neurons to the B-suppressing neurons. We find this
approach less favorable because of the observation that inhib-
itory neurons in HVc exhibit sustained activity throughout the
song (Mooney 2000). For generic parameter values in this
model, the build up of slow inhibition due to the sustained
activity of inhibitory neurons, as seen in Figs. 6 and 7, shuts
down the B-suppressing responses independent of whether

syllable A occurs, resulting in a loss of temporal-combination
selectivity. This can be avoided by adjusting the strength of the
slow inhibition onto B-suppressing neurons so that only the
A-selective response, and not the sustained level of inhibition,
is sufficient to eliminate B-suppressing activity. However, be-
cause of the required degree of parameter tuning, the resulting
model is less robust than the model we have considered.
Another alternative mechanism is to have NMDA-mediated

connections from the A-selective neurons to the AB-selective
neurons. This can generate the required selectivity if neither
this input nor the B-selective input alone is sufficient to elicit
spiking, but their sum is suprathreshold. We studied such a
mechanism but found that it produced more variable responses
and required more precise parameter tuning than the scheme
involving disinhibition of AB-selective units. Another problem
with the alternative model is that synaptic parameters that
allow the network to detect temporal sequences did not lead to
the generation of a motor pattern in response to a nonspecific
timing input. Instead, the direct excitatory connection from the
A- to AB-selective neurons caused both sets of neurons to fire
nearly simultaneously, rather than in sequence.
The model of temporal-combination-selective units we pre-

sented predicts that the conductance of an AB-selective neuron
should decrease after syllable A is presented due to the removal
of B-suppressing inhibition. Furthermore, the time course for
the ability of syllable A to affect the response to a subsequent
syllable B, as a function of the time interval between these
syllables, should match roughly the decay time of the NMDA
conductance. A few examples of combination-selective (but
not necessarily temporal-combination-selective) neurons
showing modulations of response as the gap between syllables
was changed suggest this as a possibility (Margoliash 1983;
Margoliash and Fortune 1994), but further measurements are
needed to test this prediction fully.
In its sequence-generation mode, the model provides a gen-

eral mechanism for producing structured patterns of activity
from generic timing signals. There is evidence that the tempo-
ral structuring of song, analogous to our timing pulses, comes
from Uva (Vu et al. 1994; Williams and Vicario 1993) or
regions below it. The spacing of the syllables generated by the
model in its motor mode can be controlled by varying the
frequency of the pulses that drive it. In general terms, the
model supports the idea that sensory and motor structures, and
their mechanisms, need not be thought of as separate entities.
In some cases, constructing a network to fill a sensory role may
unavoidably lead to a network that can provide motor function
as well.
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