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Many biological systems exhibit complex temporal behavior that
cannot be adequately characterized by a single time constant. This
dynamics, observed from single channels up to the level of human
psychophysics, is often better described by power-law rather than
exponential dependences on time. We develop and study the proper-
ties of neural models with scale-invariant, power-law adaptation and
contrast them with the more commonly studied exponential case.
Responses of an adapting firing-rate model to constant, pulsed, and
oscillating inputs in both the power-law and exponential cases are
considered. We construct a spiking model with power-law adaptation
based on a nested cascade of processes and show that it can be
“programmed” to produce a wide range of time delays. Finally, within
a network model, we use power-law adaptation to reproduce long-
term features of the tilt aftereffect.

INTRODUCTION

Activity-dependent plasticity and adaptation affect the char-
acteristics of synapses and neurons over time scales ranging
from milliseconds to minutes, or even longer, through a wide
variety of mechanisms. Nevertheless in most studies, synaptic
plasticity and neuronal response adaptation are analyzed and
modeled using one or at most a few exponential processes,
each characterized by a single time constant (see, however,
Gilboa et al. 2005). It is typically impractical to model in detail
the full range of processes and time constants suggested by
experiment. A more reasonable alternative is to use power-law
rather than exponential functions to describe the relevant dy-
namics. Power laws often provide an excellent and compact
approximation in cases where multiple exponential processes
are at play (Anderson 2001), and they have been used success-
fully to describe adaptation in neural systems (Thorson and
Biderman-Thorson 1974). Most importantly, power-law de-
scriptions allow the implications of the enormous range in time
scales characteristic of plasticity and adaptation to be evalu-
ated.

Power-law or multi- rather than single-exponential depen-
dences on time are observed in biological systems ranging
from single channels up to the level of human psychophysics.
Power-law or multi-time-scale dynamics is found at the level
of single-ion channels in studies of inactivation (Liebovitch et
al. 1987; Millhauser et al. 1988; Toib et al. 1998), at the
synaptic level in studies of short-term synaptic plasticity
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(Zucker and Regehr 2002), at the neuronal level in adaptation
to various stimuli (Fairhall et al. 2001a,b; La Camera et al.
2004; Schwindt et al. 1989, 1992; Spain et al. 1991a,b; Xu et
al. 1996), at the level of circuits in retinal sensitivity to contrast
(Baccus and Meister 2002) and in auditory processing (Nelkin
et al. 2003; Ulanovsky et al. 2003, 2004), and in the spectrum
of local field potentials in visual cortex of both behaving and
quiescent monkeys (Leopold et al. 2003). Xu, Payne, and
Nelson (1996) found that adaptation in the firing rate of
electroreceptors in electric fish was well fit by an inverse
logarithmic function or by a power law. Response properties of
the large-field motion-selective H1 neurons of flies display
power-law dynamics (Fairhall et al. 2001a,b) and, similarly,
the phase response properties of neurons in the vestibular
system have been shown to correspond to fractional-order
power-law behavior (Anastasio 1994; Oldham and Spanier
1974; Schneider and Anderson 1976; Si et al. 1997).

At the behavioral level, responses in many different cogni-
tive tasks, from time estimation to drawing a line of a particular
length, show power-law correlations (Gilden 2001; Gilden et
al. 1995). In visual psychophysics, adaptation to contrast dis-
plays power-law dynamics (Magnussen and Greenlee 1985;
Rose and Lowe 1982) as does the tilt aftereffect (Greenlee and
Magnussen 1987). Memories are forgotten as a power law of
time (Wixted and Ebbesen 1997), and synaptic plasticity with
multiple timescales is more resistant to degradation by back-
ground activity than conventional single-time-scale plasticity
(Fusi et al. 2005).

It is important to appreciate that we are not attempting to
distinguish between power-law dynamics, when adaptation is
described precisely by a power-law dependence on time, and
multi-time-scale dynamics, when it is described by a sum of a
large number of exponential processes with a range of time
constants. Making such a distinction is purely academic be-
cause no experiment done over a finite time period can make it
for us. Instead, we wish to develop models that describe either
perfect power-law behavior or approximate power-law behav-
ior arise from many underlying exponential processes, explore
the resulting properties and contrast them with those found in
simpler single-exponential models.

RESULTS

We begin our analysis of power-law dynamics by consider-
ing a general model of adaptation, which allows us to compare
three forms: perfect, exponential, and power law. We study the
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neural responses to constant, pulsed, and sinusoidal stimuli in
the presence of these three forms of adaptation and compare
them to results from fish electrosensory (Xu et al. 1996) and fly
visual (Fairhall et al. 2001a,b) neurons. We also construct a
model based on an integrate-and-fire neuron with an afterhy-
perpolarization current generated by a cascade process as a
more practical and biophysically plausible instantiation of
power-law adaptation. Finally, these models are used to pro-
duce programmable time delays and, in a network context, to
account for data on the onset and recover of the visual tilt
aftereffect (Greenlee and Magnussen 1987).

Different forms of adaptation

Generically, models of adaptation consist of an element that
integrates the response of a system and feeds back the inte-
grated signal to suppress that response (Fig. 1). We consider a
simple case where the response r(f) is linearly related to the
stimulus s(f), and the output of the suppressing integrator /(f)
has a subtractive effect on the response, so that r(¢) = s(f) —
I(r). Because firing rates cannot be negative, the right side of
this equation should really be rectified, but we do not consider
any cases where negative rates arise even without rectification.
Within this general framework, different types of adaptation
are characterized by different forms of integration.

The most obvious operation for the adaptation integrator
is an ordinary mathematical integration of the response

1 t
I(t) = ﬁ.f dt'r(t")
0

assuming that the response starts at time 0 (which we do
throughout). This form of integration produces what is knows
as perfect adaptation (Yi et al., 2000), which is equivalent to
generating the response by high-pass filtering the stimulus. The
parameter 7,, which has the units of time, acts as the filter time
constant. In perfect adaptation, the effects of a response are
never ‘“forgotten,” they last forever, and the response to a
constant stimulus invariably goes to zero. For these reasons,
the model is not standard in neuroscience, and we will not
consider it extensively, but it is nonetheless useful to introduce
for comparison purposes.

Most models of neuronal adaptation use a leaky integrator with
a finite lifetime in which

stimulus response
——

S(t)

Integrator

FIG. 1. A general model of adaptation. The stimulus s(f) generates a
response r(?) that feeds back into an integrator I(r). The integrator suppresses
the response, so that r(f) = s(f) — I(¢). Different forms of adaptation corre-
spond to different types of integrators.

] 1
I(t) = TJ dt'r(t") exp((t' — 1)/7.)
0

This corresponds to the suppressive effect of the response
being accumulated with exponential forgetting characterized
by a time constant 7,,. Perfect adaptation is the 7., — o limit
of this exponential form of adaptation.

We propose that data on neuronal adaptation suggests a form
of power-law integration intermediate between perfect and
exponential, in which

I(t)=aJ’dt’r(,t)
, [t + B

Here « is a dimensionless constant and (3 is a parameter with
units of time. In this case, the suppressive effects of the
response are accumulated with power-law, rather than expo-
nential, forgetting. The much longer “tail” on the power-law
function compared with the exponential produces a longer
memory for past responses, although not the complete memory
of perfect adaptation. In addition, the fact that the parameter «,
which controls the magnitude of the adaptation, is dimension-
less in this case (whereas the analogous factor 1/7, for the other
forms has the dimensions of a frequency) gives this form of
adaptation the interesting feature of scale-invariance.

To compare and contrast these three forms of adaptation, we
consider cases in which s(7) is constant for all positive times,
consists of a square pulse, or varies sinusoidally.

Response to constant stimulus

As mentioned in the preceding text, responses to constant
stimuli inevitably go to zero over time with perfect adaptation.
With exponential adaptation, activation of a stimulus that then
remains constant produces a transient response that decays
exponentially to a nonzero, steady-state value of 7,5 /(7, + T.,)
with time constant 7. = 7,7, /(T, + 7). The blue lines in
Fig. 2A show this transient/sustained response when 7, = 200
ms and 7., = 1 s, plotted over three different time scales.

Like perfect adaptation, the scale-invariant form of power-
law adaptation does not allow the response to a constant
stimulus to remain nonzero indefinitely. Although there is
forgetting, it is weak enough to make the adaptation integral
grow without bound if the response is held constant. However,
this divergence is only logarithmic, so the approach to zero
response is extremely slow. As a result, over any particular
time period this form of adaptation can look qualitatively
similar to exponential adaptation. For example, the red (power-
law adaptation with « and B8 = 50 ms) and blue (exponential)
curves in Fig. 2A, top, appear to show the same general trends.
The difference between these two forms of adaptation only
becomes apparent when the effect is plotted over different time
intervals, as in Fig. 2A, bottom two panels. In exponential
adaptation, the transition between the initial transient and the
later sustained responses occurs over a fixed time interval and
thus appears sharper when plotted on a 10-fold expanded time
scale. On the other hand, the red curves depicting the response
with power-law adaptation have a similar shape in all three
panels of Fig. 2A, particularly in the bottom two. This is an
example of the scale-invariant property of power-law adapta-
tion.
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The scale invariance of the power-law adaptation seen in
Fig. 2A challenges some of the basic assumptions commonly
made about adaptation. Figure 2A, fop, alone (red curve) would
suggest that we are seeing a transient response lasting ~100
ms, followed by a roughly constant sustained plateau. From the
middle panel alone, we might conclude that the transient
response lasts for ~1 s before the constant plateau sets in. The
bottom panel alone would indicate that we were looking at a
10-s transient followed by a sustained response. None of these
views is correct. In fact, power-law adaptation challenges the
standard language used to describe adaptation phenomena
because it has no well-defined transient and sustained com-
ponents. Instead, if a conventional split into transient and
sustained components is forced on the data, the nature of the
division will depend on the duration of the experiment.
Similarly, the value of any time constant extracted to de-
scribe the adaptation will depend on the duration of the
experiment being fit.

Responses arising from exponential and power-law adapta-
tion are compared with each other and with a data fit to
responses of electrosensory neurons in the electric fish (Xu et
al. 1996) over a logarithmic time axis in Fig. 2B. Xu, Payne,
and Nelson (1996) fit their data on adaptation using the
equation r(f) = A/[1 + Bln(#)], where ¢ is in units of seconds,
A is a constant ~100 Hz, and B is between 0.1 and 0.2 (in
reality, these authors describe a change in firing rate not the
absolute firing rate, but, for simplicity, we ignore background
firing). In Fig. 2B, we show the example with B = 0.17 shown
in Fig. 4 of their paper, on which our Fig. 2 is based (in our
plot, A = 0.3 because we have normalized the firing rate to an
initial value of 1). Obviously, the exponential (blue) curve
cannot fit these data with the parameters used for Fig. 2, and it
cannot fit it for another set of parameters either. The exponen-
tial curve simply has the wrong shape.

The model of power-law adaptation we are studying matches
the data fit for times ranging from 20 ms to 100 s after stimulus
onset (red curve in Fig. 2B). In this particular case, the
power-law model underestimates the amount of adaptation
below ~20 ms. Note that we are comparing our model to a fit
of the data in Xu, Payne, and Nelson (1996), which they report

to be excellent, not to the data itself (we refer the reader to the
original paper for a description of the data). The values of the
parameter B used to fit these data ranged between 0.1 and 0.2
for different neurons. The power-law model matches well
when B < 0.15, which occurs in ~50% of cases studied by Xu,
Payne, and Nelson (1996). For larger B values, as in Fig. 2B,
there is an underestimation of adaptation at short times, sug-
gesting that an additional, short-lasting exponential form of
adaptation may also contribute in these cases. In the following,
we are interested in exploring consequences of the longer-
lasting effects of adaptation, and for this purpose, we consider
the power-law model an adequate fit, even if it sometimes
underestimates short-term effects as in Fig. 2B. The power-law
form of adaptation we are using is similar to the logarithmic
form chosen by Xu, Payne, and Nelson (1996) because, over
most of the time range, the firing rate changes quite slowly. In
this case, the integral of the power-law adaptation kernel times
the firing rate is logarithmic to a good approximation.

Response to pulsed stimulus

We now consider a pulsed stimulus so that we can study
recovery from adaptation. To illustrate recovery, we plot the
value of the adaptation integral I(¢) rather than the response
itself because the response simply goes to zero when the
stimulus pulse terminates. Figure 3A compares onset and
recovery dynamics for exponential (blue curve) and power-law
(red curve) forms of adaptation using the same parameters as in
Fig. 2. As before, the two forms look qualitatively similar if
they are examined over a single time range, as in Fig. 3A, top.
However, a comparison of the two panels in Fig. 34, which
shows the effects of square-wave stimulus pulses lasting for 5
(top) and 50 s (bottom), illustrates another aspect of the
scale-invariance of power-law adaptation. Whereas the expo-
nential adaptation integral recovers back to zero over a fixed
time period of order . irrespective of the duration of the
stimulus pulse, the rate of recovery for the power-law model is
proportional to the duration of the pulse. This can be seen
because the red curves indicating recovery after the 5-s pulse
(top) and after the 50 s pulse (bottom) look almost identical
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although they are plotted on time axes that differ by a factor of
10 (the same factor by which the pulse durations differ).
Recovery time that varies with stimulus duration time is a
defining feature of power-law adaptation (Fairhall et al.
2001a,b; Toib et al. 1998).

Response to oscillating stimulus

To further characterize power-law adaptation and to contrast
it with exponential adaptation, we consider a sinusoidally
varying stimulus

s(t) = sy + s, cos (2mft)

for different frequencies f, where s, and s, are constants (we
take s, > s, to avoid negative responses). The response, in this
case, can be characterized by an amplitude and phase. Before
proceeding, however, we must face a complication associated
with the power-law model of adaptation we are considering.

As mentioned in the preceding text, the adaptation integral
in the power-law case diverges if the response remains constant
over time. This divergence implies that the response to any
stimulus with a nonzero time average will eventually go to zero.
Although this approach is slow enough not to interfere with
intuitive notions of response amplitude and phase, it does imply
that they are not well defined mathematically. To avoid this
problem, we introduce a finite cutoff into the adaptation integral,
replacing it with the integral

r
r(t'
(1) = a J dr’ %
max(0,:—T) r—t B

The lower integration limit, whichis O if t— 7T =0and ¢t - T
otherwise, starts at the time of stimulus onset, and it never
extends back in time more than an interval T into the past. We
use 7 = 1,000 s. This imposes the reasonable biophysical
constraint that the memory of past activity retained by the
adaptation integral is finite. With this constraint imposed, the
amplitude and phase are well defined, and we can proceed with
the analysis.

The amplitude and phase are defined by writing the response
to the sinusoidal stimulus as r(f) = r, + r, cos 2w ft + 6). The
amplitude plotted in Fig. 3B is the ratio r,/s, and the phase is
0 (although we plot it in degrees rather than radians).

Both exponential (blue and green curves) and power-law
(red curve) forms of adaptation show partial high-pass filtering
properties in Fig. 3B, top. However, the phase advances they
produce (Fig. 3B, bottom) are quite different. Exponential
adaptation with a short time constants (7, = 200 ms and 7,
50 ms, blue curve) produces a phase shift that is sensitive to
frequency and that vanishes in both the high- and low-fre-
quency limits. When the time constants governing the expo-
nential adaptation are much larger (7, = 60 s and 7., = 15s,
green curve), the phase shift curve moves to the left so that
even the lowest frequency shown in Fig. 3B is associated with
a nonzero phase advance. However, the phase shift falls rapidly
to zero as the frequency is increased in this case. The phase
shift in the exponential case always has a peak, and both the
location of the peak and its width scale in the same way. Thus
on the logarithmic plot of Fig. 3B, the phase shift curve shifts
but does not broaden when 7, is varied, and it is not possible
to maintain a roughly constant phase shift around the peak over
a wide range of frequencies.

The phase shift for power-law adaptation (red curve) shares
with the slow exponential, the property of having a nonzero
phase shift at low frequencies, but the phase shift falls off
much more slowly as the frequency is increased. For the lowest
range of frequencies in Fig. 3B, the phase shift produced by
power-law adaptation is relatively constant. Such behavior has
been seen experimentally (Fairhall et al. 2001b), and it has
some interesting consequences.

Frequency-independent phase shifts are the basis of the
Hilbert transform that is widely used for signal, in particular
auditory, processing (Hartman 1996). Frequency-independent
phase shifts are also found in motor systems, allowing swim-
ming motions, for example, to be made at different speeds
(Cohen et al. 1992). Power-law adaptation may provide a
solution to the long-standing puzzle of how to introduce
constant phase rather than constant duration, lags and advances
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into motor pattern-generating networks (Abbott et al. 1991).
The phase shifts shown in Fig. 3B are fairly small, but larger
shifts can be obtained simply by increasing the parameter «
(the value of « used in Fig. 3B was chosen to match previous
figures).

Spiking model with power-law adaptation

The model analyzed in the previous section is general but
fairly idealized. We now show how power-law adaptation can
be implemented within a standard spiking neuron model. For
this purpose, we consider an integrate-and-fire model neuron
that fires an action potential whenever its membrane potential
reaches a threshold of —50 mV, after which it is reset to —70
mV. Below threshold, the membrane potential satisfies

dv

Tmi:V,esi_V_I"!‘S
de

with V., = —70 mV and 7, = 10 ms. The current denoted by
s represents the stimulus as in the preceding text. The current
denoted by I, which plays the same role as the adaptation
integral, is an afterhyperpolarization current that could be the
result of calcium-activated potassium channels for example.

In a standard model of exponential adaptation, / might jump
up by a certain amount following each action potential and
decay exponentially between action potentials. To implement
power-law adaptation, we retain the jump after an action
potential, but we change the recovery dynamics between action
potentials. The most direct way to do this is to express the
adaptation current at time ¢ following a sequence of n action
potentials occurring at times ¢, t,, . . ., f, as

: 1
1) = VZz—wB
The similarity to the adaptation integral in the previous section
should be apparent, with the parameter +y setting the level of
adaptation just as a did before. This formulation does indeed
reproduce the results shown in Figs. 2 and 3 within a spiking
model, but it is fairly cumbersome to implement. For this
reason, and to make contact with underlying mechanisms, we
present an alternative formulation.

An inverse time dependence, as needed for the power-law
adaptation integral, can always be approximated by a series of
exponentials. However, there is a more efficient way of using
a number of exponential processes to approximate power-law
adaptation (Aurell et al. 1996; Hausdorff and Peng 1996; Peng
et al. 1993). Rather than simply adding together a number of
noninteracting exponential processes to reproduce the power-
law forgetting in power-law adaptation, we link these process
to each other. This allows us to accurately approximated the
power-law with fewer elements and computations. Consider N
processes, described by dynamic variables z; obeying t(dz/
dy =z; + gy fori=1,2, .., N, withzy,;, =0and 7, =
7,87 for some value of & > 1. This corresponds to a cascade
of processes in which the equilibrium point of process i is
determined by process i + 1. Immediately after each action
potential, we impose jumps z; — z; + y8'" on all N variables,
where the parameter y controls the degree of adaptation. This
corresponds to adding an impulse (delta function) term to the
equations for the z; with a strength proportional to ;. If we set
the adaptation current / = z; in this scheme, we accurately

reproduce power-law adaptation with B = (N — 1)1,/ In (75/7))
over times ranging from 7, up to approximately 7,/(6 — 1).

Figure 4 shows a comparison of the general model (red
curve) and data fit (open circles) seen in Fig. 2 with the results
of the integrate-and-fire model (green dots) described in the
preceding text with an adaptation current controlled by N =
495 cascade processes with 7, = 1 ms, 7495 = 1,000 s, and y =
1.25 mV. The firing rate for the integrate-and-fire model
responding to a constant input current is plotted at the time of
a spike and is one over the time since the previous spike. There
is some difference between the firing rate of the general model
and that of the integrate-and-fire model for the initial spikes,
probably due to the ambiguity of this definition of firing rate,
but over the range from 20 ms to 100 s seen in Fig. 4, the match
is excellent.

Programmable time delays

A good example of the utility of scale-invariant adaptation is
provided by considering a neuron that acts as a programmable
timer. If a neuron with a power-law adaptation a rate r for a
time 7, the adaptation integral at subsequent times is given by

r
1(r) = arJ dr -
0

where the approximate equality + => B and ¢ >> T. Imagine
that we have a neuron that fires at a rate r(f) = s, — I(t)
whenever the adaptation current is less than some threshold
value s,. If we activate such a neuron at a high enough rate r
for a sufficiently long time 7 to make / > s, it will resume
firing at a time given by I(f) = s, or, from the preceding
equation, ¢ = arT/s,. If o is of order 1 and s, is fairly small,
this can easily exceed 100 times the duration of the period over
which the adaptation was established. This allows a neuron
with a scale-invariant adaptation current to act as a rapidly
programmable timer.

Figure 5A shows an illustration of the integrate-and-fire
model with cascade-driven adaptation current described in the
previous section acting in this manner. In all three cases, a
constant current just above threshold keeps that neuron firing at
a low rate initially. Then at time r = 20 s, current pulses lasting
for T = 1 s were used to drive the neuron at various rates. This
resulted in pauses in the firing of various durations that depend

t+B )Nar'T

t

751
= power-law

® |&F cascade

O data fit

0.01 0.1 1 10 100
time (s)

FIG. 4. Comparison of the firing rates of the general model (red curve) and
the data fit (open black circles) of Fig. 2 with an integrate-and-fire model
(green dots) with an adaptation current generated by a cascade of exponential
processes.
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linearly on the amplitude of the current pulse
Fig. 5B).

A neuronal timer that uses scale-invariant adaptation is well
buffered against error over its entire range, in sharp contrast to
a timer that uses exponential adaptation (see following text).
Noting that the quantity 7 is the number of action potentials,
N, fired during the timer-setting period, we can write the
duration of the timed delay as t = aN/s,. Suppose that there is
an error AN in the number of action potentials used to set the
delay or there is an error As, in the value of the threshold for
firing. A first-order Taylor expansion shows that in these cases,
the resulting error Az in the duration of the delay interval is
given by A#/t = AN/N or At/t = Asy/s,. In other words, the size
of the error is proportional to the size of the time interval with
the constant of proportionality given by the fractional error in
the number of spikes or threshold. Thus a 10% error in either
the setting or the thresholding conditions produces a 10% error
in the delay duration over the entire range of timed delays. This
can be seen for the spiking-model timer shown in Fig. 5A and
in the red points in Fig. 5B. To make this figure, we introduced
noise into the spiking model by putting in Gaussian white noise
with a SD of 2 mV. Each trial started with a 200-ms current
pulse of varying intensity, after which the current was turned
down to provide a 20.4-mV depolarization, enough to cause
spiking. The delay between the end of the pulse and the first
spike was recorded for 250 trials at each current pulse inten-
sity. The mean and variance of the delay to the first spike are
plotted in Fig. 5, B and C. As expected, the size of the variance
for the power-law case (red points) grows with the size of the
delay interval or, more importantly, shrinks as the decay
interval gets smaller.

A timer based on exponential adaptation can only work over
a range that is more restricted than with power-law adaptation.
To avoid saturation of the adaptation in the exponential case,
the forgetting time must much larger than the setting interval,

(red points,

7., >>> T. If this holds, the adaptation current after the setting
pulse is given by

" T
I(r) = Mex <CXP(T/TEX) — l) exp(—1/1,) = r exp(—1t/7.)
SoT, SoT,

Ta 0Ta

and the duration of the subsequent delay is ¢t = 7., In(r7/
SoT,) = Tey In (N/syT,). This allows for delay intervals from
zero up to a few times 7. If 7., is too small (1 s), as for the
green points in Fig. 5B, the delay intervals saturate as a
function of the amplitude of the current injected during the
setting interval. This problem appears to be resolved if, as for
the blue points in Fig. 5B, 7. is taken to be large (3 s).
However, the errors caused by deviations in the number of
setting spikes or the threshold in this case are far more severe
than in the power-law case. The same analysis applied in
the previous paragraph gives, in this case, A#/7,, = AN/N or
At/ = Asy/s, This means that the error is always some fraction
(say, 10%) of the time constant 7,, even for short delays. This
makes short intervals inaccurate and restricts the exponential
scheme to a small range of time intervals quite close to 7.,. The
constant-sized errors made in the exponential case can be seen
in the blue and green points in Fig. 5C. Note that, for 7., = 15,
saturation prevents long delays, and for 7., = 3 s, the errors get
large for short time intervals. Either way, the range is much
more restricted than for power-law adaptation.

Power-law adaptation in a network and the tilt aftereffect

As an example of using power-law adaptation in a network
model to reproduce a known sensory phenomenon, we con-
sider the tilt aftereffect. After prolonged adaptation to an
oriented visual stimulus, human subjects perceive oriented test
stimuli as been rotated away from the angle of the adapting
stimulus. This is the tilt aftereffect. The long-term time course
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for the onset and recovery from the tilt effect is logarithmic
(Greenlee and Magnussen 1987).

To consider the tilt aftereffect, we incorporated power-law
adaptation into a standard network model of orientation tuning
in visual cortex (Ben-Yishai et al. 1995) (see METHODS). The
input to this model is characterized by an angle that corre-
sponds to the orientation of a bar or grating image. The
“perceived” orientation corresponding to this input is extracted
from the network activity by a population vector technique (see
METHODS). Initially, the input orientation angle and the decoded
population angle are equal, reflecting accurate representation
of the oriented stimulus. Prolonged exposure to a particular
input angle, however, adapts neurons with strong responses to
that angle, which distorts the population response to other input
orientations and produces a tilt aftereffect. The magnitude and
sign of the tilt aftereffect produced in this way depend on a
number of factors (Dragoi et al. 2000; Jin et al. 2005; Kohn and
Movshon 2004; Muller et al. 1999; Teich and Qian 2003). For
the parameters we use, we find a tilt aftereffect of the correct
sign, although the magnitude is larger than what is observed
psychophysically. The point of our model is to examine the
dynamics of onset and recovery not to accurate reproduce all
aspects of the tilt illusion.

The tilt aftereffect in the network model is show in Fig. 6.
The adapting stimulus and the test stimulus for this figures had
orientations 12° apart. The aftereffect being plotted is the
difference between the test stimulus and the decoded popula-
tion activity (METHODS), with the convention that positive an-
gles correspond to perceiving the test orientation rotated away
from the adapting angle. The tilt aftereffect in the model
depends on the duration of both the adaptation and the recov-
ery. In Fig. 6, the decoding error is plotted as a function of time
spent adapting (leff), measured with a 500-ms gap between
adapting and test stimuli, or the time spent recovering from
15 s of adaptation (right). In contrast to a network of expo-
nentially adapting neurons, which shows saturation and recov-
ered after a few time constants, the power-law adapting net-
work shows that the onset and offset of the error show a
logarithmic, nonsaturating, dependence as is seen in the psy-
chophysical data (Greenlee and Magnussen 1987).

Rather than arising from neuronal adaptation, the tilt after-
effect in this network model could arise from synaptic depres-
sion or both could contribute. We have tested the same network
model with power-law synaptic depression (which is a divisive
rather than subtractive effect) and obtained similar results to

15 Y 15 °
3 ®
Q10 10 ®
°
= °
s ® 5 L
bt )
10" 100 10’ 10? 10" 10° 10’ 10?

adaptation time (s) recovery time (s)

FIG. 6. Strength of the tilt aftereffect as a function of adaptation and
recovery time. Left: magnitude of the tilt aftereffect in a network model as a
function of the presentation time of the adapting stimulus. Right: recovery from
adaptation after a 15-s presentation of the adapting stimulus, measured after
recovery periods of different length (horizontal axis). Both cases show a
logarithmic dependence on time, matching psychophysical studies (Greenlee
and Magnussen 1987).

the adaptation model. We chose to show the case of neuronal
adaptation because there is evidence of power-law adaptation
of this type in a primary sensory cortical area, although
auditory rather than visual (Ulanovsky et al. 2004).

DISCUSSION

We have considered adaptation with different forms of
stimulus history dependence, focusing in particular on the
power-law case. In perfect adaptation, the entire response
history is retained forever by the adaptation mechanisms. With
exponential adaptation, activity more than a few time constants
back is effectively forgotten, and only the relatively recent past
contributes. Power-law adaptation is an intermediate case with
past activity discounted but not forgotten. Power-law adapta-
tion is a temporal “generalist” in that it can act over a range of
time scales. This is advantageous for an organism that has to
deal with natural stimuli that vary on multiple time scales.

Power-law dynamics can arise in a number of ways (Henry
and Wearne 2000). The fact that we can mimic power-law
adaptation, at least over a finite time interval, using a sum or
cascade of exponential functions means that it could arise
simply from a large number of processes exhibiting ordinary
exponential dynamics but with a wide range of time constants.
Indeed, where the biophysics of neuronal firing rate adaptation
has been studied in detail, multiple contributing processes have
been found (Schwindt et al., 1989, 1992; Spain et al. 1991ab).
Multiple processes often contribute to biological systems
where, at first sight, one would appear to suffice. We suggest
that this multiplicity may arise from the need for power-law
dynamics.

Natural stimuli vary over an extremely wide range of time
scales, and it is difficult to predict what stimulus durations will
be encountered in any given situation. Having a fixed recovery
time, as in exponential adaptation, seems a poor way to deal
with such variety. Instead, it makes sense to let the temporal
statistics of the stimuli being encountered set the dynamics of
the adaptation being used to process them. Power-law adapta-
tion allows such flexibility to arise automatically from basic
properties of the adaptation process.

MODELS

The adapting models used are included in the text. Here we
describe the network model used for Fig. 6. The firing rates of
individual neurons in the network are given by the equation

dri(t) B
@ r(n) + [A(0].

T,

where r(f) is the firing rate of a neuron with unadapted
orientation preference for angle 6,, the brackets denote rectifi-
cation, and 7, = 5 ms. The current for neuron i, A7), is given
by
1 N
Al = C[l — &+ 8 cos (6 — empm)] +5 >y cos (6 — )r(0) — 1(1)
=1
where 6, is the input angle corresponding to the stimulus
orientation, C = 50 Hz is proportional to the stimulus contrast,
e = 0.5 is the tuning specificity of the feed-forward input, the

recurrent strength J, was set to 2.0, and /,(¢) is the adaptation
current. The adaptation current for a given neuron is described
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by a convolution of a power-law kernel with its prior activity
level

)
1) = afu i

with « = 5 Hz and B = 2.7 ms.
The output of the network was decoded used a vector sum
decoding method

N
E r; sin (2776;)

i=1

6., = arctan

0)
pop N

E r; cos (276,)

i=1

In simulations, the population orientation angle 6, was av-
eraged over a 50-ms test stimulus.
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