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Abstract

Some neurons in the nucleus HVc of the songbird respond vigorously to sequences of syllables
as they appear in the bird’s own song (such as AB), but they respond weakly or not at all
when the same syllables are played individually (A or B) or in a di2erent order (BA). We
have constructed a network model that replicates this temporal sequence selectivity. The model
is based on recurrently connected networks that produce strong resonant responses when the
pattern of excitation evoked by a stimulus matches the pattern of excitation generated internally
within the network. In the model, syllable B does not generate such a resonant response by itself.
However, if syllable A is presented to the network followed by syllable B, the activity generated
by A modi7es the e2ective connectivity of the network making it resonantly responsive to B.
This produces a highly selective response to the sequence of syllables AB, but not to any other
combination. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Many neurons in the nucleus HVc of certain songbirds are well tuned to speci7c
syllables of the bird’s own song [3,4], and of these, some are responsive only to
speci7c temporal combinations of syllables [4,2]. These are the so-called temporal
combination selective neurons, which only respond to a syllable combination such
as AB, but not to BA, AA, or BB. This selectivity requires the integration of in-
formation over time periods of up to several hundred milliseconds [4,2]. Neurons in
7eld L, which provides the primary input, both directly and indirectly, to HVc, do
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Fig. 1. (A) Network model of temporal combination selective neurons in the HVc of the songbird. Numbers
indicate how many excitatory and inhibitory neurons are in each subpopulation. (B) A typical STRF used to
generate input to the network. The dark area shows the frequency and time range over to which the STRF
is sensitive.

not display marked temporal combination selectivity [2], and their spectral temporal
receptive 7elds (STRFs) indicated that they do not integrate over periods as long as
those needed to produce temporal sequence selectivity [6,5]. This suggests that much
of the temporal combination selectivity arises within HVc.

2. The network model

Any model of temporally selective neuronal responses, such as selectivity for the
combination AB, requires two basic features: a mechanism to retain a memory of
stimulus A, at least until the onset of B; and a way of allowing this memory trace of
A to a2ect the response the B evokes. In our model, recurrent excitation plays a key
role in both of these mechanisms. Networks of neurons with a high degree of recurrent
excitation have two features that are well suited for these tasks. First, they can generate
“reverberatory” activity that can sustain itself for a period that signi7cantly outlasts the
stimulus. These reverberations endow the network with a form of short-term memory
and provide the memory trace in our model. Second, recurrent networks can amplify
responses to stimuli, but only if they are con7gured appropriately. In our model, the
presence of stimulus A enhances the response to stimulus B by con7guring a recurrent
network selective for B in such a way that its response is highly ampli7ed.
The network model we discuss is constructed from integrate-and-7re neurons receiv-

ing synaptic input modeled as a combination of AMPA, NMDA, and GABA conduc-
tances (see [7]). Following the general ideas outlined in the previous paragraph, the
network consists of three subpopulations of interconnected spiking neurons, A selective,
AB selective, and “detuning” (see Fig. 1A). These are characterized by their responses
to two temporally adjacent syllables (A and B) taken from real zebra 7nch songs. The
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Fig. 2. Model layout: birdsong is transformed into 7ring rates by receptive 7elds. After normalization and
thresholding, the rates are converted into spikes that are fed into the recurrent network.

A-selective population, composed of both excitatory and inhibitory neurons, is driven
by inputs that are themselves selective for A through a mechanism explained later in
this section. Selectivity is further ampli7ed by strong recurrent connections between
the excitatory A-selective neurons, which have the additional e2ect of extending the
activity in response to syllable A so that it outlasts the duration of that syllable.
The AB selective subpopulation receives input that is selective for syllable B and,

like the A-selective network, it has strong recurrent excitation. When appropriately
con7gured, the AB selective subnetwork “resonates” when B is presented, strongly
amplifying its B-selective input. However, this ampli7cation only occurs in the pres-
ence of the sustained activity of the A-selective network evoked by syllable A. In
the absence of this activity, a set of detuning neurons spoils the connectivity of the
AB-selective network preventing it from amplifying syllable B. The detuning subpop-
ulation, composed of both excitatory and inhibitory neurons, receives B-selective input
as well as excitatory input from the AB-selective neurons. The detuning neurons both
excite and inhibit members of the AB-selective subpopulation. These interactions serve
to disrupt the resonant response of the AB selective group to stimulus B by silencing
some cells and stimulating others, perturbing the precise tunings that is required for
selective ampli7cation of the B signal. If 7ring of the detuning cells is not suppressed,
the ampli7cation of the B input in the AB subnetwork is drastically reduced. The ac-
tivity pattern generated in the network by the presentation of A tunes the network by
silencing the detuning cells, allowing a strong resonant response to B. If B is presented
alone or prior to A, so that the network has not been pretuned by A, the response to
B is signi7cantly weaker than if A had preceded B. In this way, temporal combination
selectivity is generated.
It only remains to explain how A- and B-selective inputs to the networks of the

model are generated. Our model takes real digitized bird songs and syllables, and
using realistic STRFs (Fig. 1B), generates a time-varying output similar to what might
be produced within 7eld L. This output is then fed into a “syllable detector” that
generates spikes when the chosen syllable is detected (see Fig 2). These spikes provide
the syllable-selective input to the network of spiking neurons shown in Fig. 1.
The STRFs we use are based on those obtained experimentally from 7eld L [6].

These receptive 7elds do not integrate information any further back than 50 ms, so
they do not span enough time to be able to individually detect a sequence of syllables.
A sample STRF is shown in Fig. 1B. An entire bank of such 7lters was used, with
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STRFs given by
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where � = 3=s; fwidth = 225 Hz; fi is the frequency where the STRF labeled by i is
centered, and f and t are frequency and time, respectively. The entire bank consists
of 37 7lters with di2erent fi evenly spaced between 600 and 7000 Hz.
The spectral temporal receptive 7elds are convolved with a spectrogram of syllable

sequences or entire songs taken from zebra 7nch recordings supplied by K. Sen and
A.J. Doupe. The resulting output from the entire bank of 7lters then forms a vector of
7ring rates. This is fed into a syllable detector that performs two operations. First, it
normalizes the 7ring rate vector at each point in time to allow amplitude-independent
syllable identi7cation. This is similar to models of contrast normalization in primary
visual cortex [1]. Second, a weighted sum of all the 7lter outputs is computed and
thresholded. The weights are set equal to the normalized output of the 7lter bank
during the syllable we wish to recognize. Above the threshold, which is set by hand,
spikes are generated using a Poisson process. The spikes then act as input to the
recurrent network.

3. Results

We presented the network with two sequential syllables from a zebra 7nch song.
One syllable is designated A, the second, B. The syllables were presented in normal
and reversed order. The results are shown in Fig. 3. The top panels in this 7gure show
the syllables A and B presented in the order AB (left) and BA (right). The panels
second from the top show the response of a typical A-selective neuron. Note that its
activity outlasts the presentation of syllable A providing a memory trace. This is due
to the recurrent coupling among the A-selective neurons. The third panels from the top
in Fig. 3 show a typical AB selective neuron and indicate its strong preference for B
only if preceded by A (left plot), but not the reverse (right plot). If B is played before
A or in isolation, the detuning cells are excited, as indicated by the bottom panel on
the right of Fig. 3. When A is played before B, the detuning neurons are inhibited
enough (bottom panel at the left of Fig. 3) so they cannot disrupt the resonate response
of the AB selective neurons, allowing strong ampli7cation of the B syllable.
There is a gradation of temporal combination selectivity present in the AB selec-

tive neurons, as the perturbation a2ects individual neurons slightly di2erently. Some
(approximately a quarter) only 7re when a speci7c temporal combination is presented
(similar to the AB-selective neuron shown in Fig. 3), while approximately another quar-
ter are almost completely insensitive to the context in which their prefered syllable is
presented. In between there is a graded continuum of responses.

4. Discussion

Our model makes use of the fact that complex sounds can be discriminated using the
output of simple spectral temporal receptive 7elds if these are appropriately normalized



P.J. Drew, L.F. Abbott / Neurocomputing 44–46 (2002) 789–794 793

Fig. 3. Sample neural activity from neurons in each of the subpopulations in response to in order (left) and
out of order (right) syllable presentations.

and thresholded. The normalization of the output is critical for this recognition; oth-
erwise any type of loud sound could cause a false positive syllable detection. The
relative intensities at the various frequencies are more important for discrimination
than the absolute amplitudes.
In our model of temporal combination selectivity, prior input alters the e2ective con-

nectivity of the network, enabling it to respond to later input patterns more strongly
than if they were not preceded by the gating stimulus. This leads to several predictions.
First, the network activity induced by the presentation of a single syllable should outlast
the duration of the syllable. The duration of this persistance should be of the same
order as the largest silent interval that can separate two syllables but still excite
the temporal combination selective cells for the sequence. Another prediction of our
model is that there will be neurons that respond to B presented in isolation, but not B
preceded by A. These cells will be inhibited when A is presented. Though no such
cells have been found, this is most likely a consequence of the experimental
paradigm. Using the bird’s own song as a probe, which is the typical stimulus used
when looking for auditory cells in HVc, should tend to inhibit detuning cells,
making them obscure. An optimal stimulus to 7nd such cells would be to play the
bird’s own song with syllables in reverse order. Cells that are excited by this
stimulus, but that are also surpressed by the bird’s own song, could be the detuning
cells of our model.
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