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Activity-dependent modification of synaptic strengths due to
spike-timing-dependent plasticity (STDP) is sensitive to correla-
tions between pre- and postsynaptic firing over timescales of tens
of milliseconds. Temporal associations typically encountered in
behavioral tasks involve times on the order of seconds. To relate
the learning of such temporal associations to STDP, we must
account for this large discrepancy in timescales. We show that the
gap between synaptic and behavioral timescales can be bridged if
the stimuli being associated generate sustained responses that
vary appropriately in time. Synapses between neurons that fire
this way can be modified by STDP in a manner that depends on the
temporal ordering of events separated by several seconds even
though the underlying plasticity has a much smaller temporal
window.

computational model ! conditioning ! learning

L inking behavior to underlying physiological mechanisms is
one of the central goals of neuroscience, but a major imped-

iment is the large difference between behavioral and physiolog-
ical timescales. A good example of this discrepancy is provided
by an experiment with Drosophila in which Tanimoto et al. (1)
found that an odor becomes an aversive stimulus if it is followed
by a shock during training but becomes attractive if it is
presented after the shock. This finding is tantalizingly reminis-
cent of spike-timing-dependent plasticity (STDP; reviewed in
ref. 2) in which a synapse is strengthened if presynaptic spikes are
paired with subsequent postsynaptic spikes but weakened if the
order is reversed. Indeed, the plot of learning index versus time
interval between odor and shock in Tanimoto et al. (ref. 1;
reproduced in Fig. 1B) has a shape and form similar to curves
showing the amount of STDP as a function of the time interval
between paired pre- and postsynaptic spikes (Fig. 1 A). The
problem is that the timescale is vastly different, seconds in the
case of the behavioral experiment and milliseconds in the case
of STDP. As in many similar cases, to account for the behavioral
data on the basis of synaptic physiology, we must find a mech-
anism to span this large gap in timescales. We propose that
responses to stimuli that are sustained, but slowly decay, could
provide such a bridging mechanism.

The ability of animals to detect temporal correlations and use
them to make predictions is a basic result of classical condition.
More recent experiments have found neural correlates of pre-
diction. Dopaminergic neurons initially respond to rewards such
as food or juice, but over repeated pairings, they lose these direct
reward responses and instead begin responding to stimuli that
predict reward or even to stimuli that predict stimuli that predict
reward (3). In the hippocampus, the receptive fields of place cells
shift and expand after repeated traversals of a path, making them
respond to positions that precede their initial place field during
the run (4, 5) and leading to a predictive map of space (6). To
connect such predictive activity to synaptic plasticity, we con-
sider the fate of a single neuron within the complex circuitry
involved in actual conditioning behavior. The key issue is
whether a form of synaptic plasticity that depends on spike

timing at the millisecond timescale can induce modifications in
the response of this model neuron that depend on temporal
sequences occurring over vastly longer timescales.

It is well known that correlations between pre- and postsyn-
aptic firing can lead to synaptic potentiation or depression
through spike-timing-dependent forms of long-term synaptic
plasticity (6–11). Our purpose is to explore whether this mech-
anism and the firing patterns it requires are a plausible way of
bridging the gap in time scales between synaptic plasticity and
behavior.

Results
The amount of synaptic potentiation or depression due to STDP is
typically measured by pairing a number of pre- and postsynaptic
action potentials with a specified time interval between them (2,
12–17). This procedure results in an STDP ‘‘window function’’ such
as that shown in Fig. 1A, which indicates the amount of synaptic
modification caused by pairing pre- and postsynaptic spikes as a
function of the time interval between them. If firing rates are low
enough so that only a single spike pair typically appears within the
STDP window at any given time, the effects of individual spike pairs
appear to sum fairly linearly, although this breaks down at higher
firing rates (15, 16). Within this linear regime, the total impact of
a sequence of spike pairings can be computed by calculating the
integral of the STDP window function multiplied by the cross-
correlation function of the pre- and postsynaptic spike trains (6–11).
This calculation is equivalent to determining the total amount of
synaptic modification over a trial by multiplying the amount of
synaptic change in Fig. 1A for a particular interspike interval by the
probability of a pre-"postsynaptic spike pair occurring with that
interval, and then integrating it over all possible intervals. Exper-
imental work supports the validity of this method for calculating
the total amount of potentiation or depression produced by STDP
(14, 17).

For STDP to produce net potentiation over time, pre- and
postsynaptic spike sequences must be correlated in such a way
that it is more likely for a pre-then-post temporal ordering to
occur than a post-then-pre sequence. Such correlations require
an appropriate relationship between time-dependent pre- and
postsynaptic firing rates. An obvious requirement, shared by any
Hebbian mechanism of plasticity, is that pre- and postsynaptic
firing must overlap in time, at least to within the interval covered
by the STDP window function. When two stimuli are separated
by seconds, as is the case between the conditioned stimulus (CS)
and the unconditioned stimulus (US) in the classical condition-
ing paradigm, we consider that this is not an easy requirement
to satisfy. Our approach to this problem is to assume that both
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the US and CS generate persistent responses that decay over
time but nevertheless outlast these stimuli long enough to span
the interval between them. Modeling the mechanism that sus-
tains these responses and makes them decay slowly is beyond the
scope of our work, but we discuss possible mechanisms in
Discussion.

We begin our analysis by looking at cross-correlations between
spike sequences generated by neurons excited by stimuli that
then exhibit sustained but slowly decaying activity. Fig. 2 Inset
shows the pattern of pre- and postsynaptic firing we consider. We

assume that the postsynaptic neuron and the presynaptic affer-
ents are driven by separate stimuli. The stimulus that excites the
presynaptic afferents corresponds to the CS in a classical con-
ditioning paradigm, whereas the stimulus that excites the
postsynaptic neuron is the US. Both stimuli drive their targets to
fire at a constant rate of 45 Hz for 1 s. The interval between the
US and the CS is defined as T, so that the CS precedes the US
if T ! 0 and follows it if T " 0. After stimulation, we assume that
the firing rates are sustained but decay slowly back to zero with
an exponential time constant of 2 s (Fig. 2 Inset).

Fig. 2 shows cross-correlations between pre- and postsynaptic
spike trains with rates as shown in Fig. 2 Inset that decay
exponentially after a sustained plateau, with the decay constants
for the pre- and postsynaptic firing rates given by !pre and !post.
Slowly decaying firing rates create asymmetries in these cross-
correlations over the time range relevant for STDP, even when
the stimuli that excite the neurons are separated by many
seconds. Furthermore, the ordering of the initiation of firing is
preserved in the ordering of spikes, as revealed by the different
slopes in Fig. 2. When presynaptic firing is initiated before
postsynaptic firing (T ! 0), presynaptic spikes tend to lead
postsynaptic spikes more often than the other way around, even
on a millisecond timescale (Fig. 2 Left). The situation is reversed
if postsynaptic firing is initiated before presynaptic activity (T "
0; Fig. 2 Right). This effect is due to the slow decay of the firing
rate, not simply to the order of firing. Because the correlations
in Fig. 2 are normalized and the firing rate decays are exponen-
tial, the same plots apply independent of the magnitude of T, but
the normalization factor is proportional to exp(#!T!"!pre) when
T ! 0 and exp(#T"!post) when T " 0. Thus, the effect gets very
small if T is large relative to !pre and !post. In general, these
asymmetries are small, as in Fig. 2, but they are sufficient to
evoke significant levels of synaptic plasticity.

To examine the effect of these cross-correlations on STDP, we
drove a single integrate-and-fire model postsynaptic neuron with
1,000 presynaptic afferents. The excitatory synapses were subject
to STDP given by the window function in Fig. 1 A. Presynaptic
afferents fired in response to stimulus 1 as in Fig. 2 Inset (i.e., for
1 s at 45 Hz followed by an exponential decay to zero with a time
constant !pre $ 2 s). In this case, the US and the firing rate decay
following it were represented by a current injected into the
postsynaptic neuron that was constant for 1 s, producing firing
at 45 Hz, and then decayed exponentially to zero with a time
constant !post $ 2 s. This current thus contains contributions
arising directly from the US and from whatever mechanism
sustains the response.

For Fig. 3, we activated the CS 5 s before the US (as in the Fig.
2 Inset). Fig. 3A shows the situation at the beginning of our
simulations. All synapses began at zero strength (histogram in
Fig. 3A Right), so the postsynaptic neuron only responded to the
US (membrane potential trace in Fig. 3A Left). However, after
20 trials, the synapses were potentiated by STDP due to the
asymmetry in pre–post spike correlations shown in Fig. 2. As
seen in Fig. 3B, the broadened distribution of synaptic strengths
leads to a depolarization of the postsynaptic potential in re-
sponse to the CS acting through the strengthened synapses. After
40 trials (Fig. 3C), enough synapses have been strengthened to
generate robust responses to both stimuli. Due to its response to
the CS, the postsynaptic neuron has ‘‘learned’’ the association
between the two stimuli.

Fig. 4 shows the effect of interstimulus timing and ordering on the
association learning. When the interstimulus interval is shortened
to 4 s, an even stronger response to the CS is generated after 40 trials
(Fig. 4A). When the interstimulus interval is lengthened to 6 s, there
is insufficient potentiation after 40 trials to drive spikes, although
the postsynaptic neuron is depolarized by the CS (Fig. 4B). Finally,
if the order of the stimuli is reversed, so that the US drives the
postsynaptic neuron before the CS excites its afferents, no strength-

Fig. 1. STDP and conditioned responses. (A) The fractional strengthening or
weakening of a synapse per spike pair as a function of the time difference
between the pre- and postsynaptic action potentials, also known as the STDP
window function. (B) The learning index, which indicates a fly’s attraction to
or avoidance of an odor that previously had been paired with a shock as a
function of the time interval between the presentation of the odor and the
shock during training. [Adapted with permission from ref. 1 (Copyright 2004,
Macmillan Publishers, Ltd.).] (C) The amount of synaptic modification as a
function of the interstimulus interval produced by each single trial, from the
analytic formula given in the text. Parameter values are A% $ A# $ 0.5%, !% $
!# $ 20 ms, Rpre $ Rpost $ 50 Hz, !pre $ 30 s, and !post $ 80 s.
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ening of the synapses occurs, and no postsynaptic response to the
CS is generated (Fig. 4C). The reverse ordering produces weaken-
ing rather than strengthening of the synapses, but this is not evident
in this simulation because the synapses started out at zero strength
and could not be weakened.

The sustained but slowly decaying component of the firing
of the postsynaptic neuron is not important for the effects
shown in Figs. 3 and 4. Virtually identical effects can be
produced by having the postsynaptic neuron fire only for the

1-s interval while the US is being presented. We include the
postsynaptic firing decay, however, because it plays an impor-
tant role in accounting for the results of Fig. 1B, as discussed
below (see Fig. 1C). The period of constant firing we have
assumed is not necessary, but increases the asymmetry in the
cross-correlation and consequently increases the amount of
synaptic change per trial. Finally, we have assumed that the
effects of separate spike pairs due to STDP sum linearly.
Nonlinear effects have been observed when both pre- and

Fig. 2. Cross-correlations resulting from decaying firing patterns. Inset shows the firing rates of two neurons (one presynaptic and one postsynaptic), and the
two panels indicate the resulting cross-correlations, normalized to the value for synchronous spikes. (Left) When the decay of the firing of the presynaptic neuron
coincides with the activation of the postsynaptic neuron, the pre–post cross-correlation shows more pre-before-post than post-before-pre spike ordering. (Right)
When the decay of the firing of the postsynaptic neuron coincides with the activation of the presynaptic neuron, the pre–post cross-correlation shows
post-before-pre more than pre-before-post spike ordering.

Fig. 3. Development of a conditioned response. A CS drives the afferents to a postsynaptic neuron at 45 Hz from time 1s to 2s, followed by an exponential decay
of afferent rates with a decay time constant of 2 s. The postsynaptic neuron is driven by a US, represented by a constant current from time 6–7 s that drives it
at 45 Hz, followed by a 2-s time-constant exponential decay of the current to zero. (Left) Shows the membrane potential of the postsynaptic neuron. For clarity,
the dots over the action potentials indicate every 11th action potential. (Right) Shows distributions of the strengths of the 1,000 excitatory synaptic conductances
between the afferents and the postsynaptic neuron relative to their maximal allowed value. (A) At the beginning of the simulation, all synapses are set to zero
strength, and the postsynaptic neuron responds only to the US. (B) After 20 trials, some of the synapses have strengthened causing the postsynaptic neuron to
depolarize in response to the CS. (C) After 40 trials, the synapses have grown strong enough to make the postsynaptic neuron fire in response to both stimuli.
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postsynaptic neurons fire simultaneously "40 Hz (15, 16),
which does not happen in our examples. Although it is not clear
how to describe the nonlinear summation, we have tried to
model it with saturating long-term potentiation (LTP) (16),
and the effects shown in Figs. 3 and 4 were still found. In
addition, we can reproduce these results with significantly
lower rates as well. We can also introduce jitter into the postsynaptic
response and preserve the effects. The essential correlations can
even be induced in a Poisson model, as in Fig. 2.

To further clarify the phenomenon being studied, we computed
the amount of synaptic modification analytically as a function of the
interstimulus interval T, the pre- and postsynaptic firing rate decay
constants, !pre and !post, and the parameters of the STDP window
function (Fig. 1A). Details of this calculation are presented in
Methods. To make these calculations tractable, we assume that the
synaptic strengths are not close to their lower or upper limits, and
we do not include the effects of the afferents on postsynaptic firing.
Under these assumptions, when the stimulus driving the presynaptic
neuron (the CS) precedes that driving the postsynaptic neuron (the
US) (T ! 0), synapses strengthen by an amount:

&A% " A#'RpreRpost!%!## !post

!pre " !post
$ exp##

!T !
!pre

$ . [1]

When the stimulus to the postsynaptic neuron (the US) is
activated before that to the presynaptic neuron (the CS) (T " 0),
synapses weaken by an amount:

#&A% " A#'RpreRpost!%!## !pre

!pre " !post
$ exp##

T
!post

$ . [2]

These equations indicate that the effect of stimulus pairing with
a time interval T falls off exponentially as !T! increases. This

dependence is similar to the falloff of STDP as the interspike
interval increases, as seen in Fig. 1 A. There is a critical differ-
ence, however. Whereas the falloff of STDP is governed by
the millisecond-scale time constants !% and !#, the falloff of the
effect of the two stimuli on synaptic efficacy is governed by
the much larger time constants !pre and !post that govern the
slowly decaying responses of the pre- and postsynaptic neurons.
The time constant in the exponential factor that determines how
these changes vary with the interstimulus interval is, in fact, the
firing decay time constant of the neuron that fired first (!pre if
T ! 0 and !post if T " 0). The factor in front of the exponential
terms indicates that, in agreement with the experiment (Fig. 1B),
an effect with a slower decay has a smaller magnitude. Matching
the results of Fig. 1B requires considerably slower firing rate
decays than those considered in Figs. 3 and 4, but with appro-
priate parameter choices, the amount of synaptic modification
predicted by the above equations, plotted as a function of T (Fig.
1C), matches the data from Tanimoto et al. (1) quite well
(Fig. 1B).

Discussion
In our model, asymmetric cross-correlations allow a fast corre-
lation-based mechanism of synaptic plasticity to react to asso-
ciations that involve timescales relevant to behavior. In the case
we considered, sustained activity that decays away slowly allows
associations to be made between events across timescales that
are far greater than the width of the STDP window. In our
simulations, we do not explicitly model the mechanism for
sustaining activity or for making it decay. Reverberations in a
network with high gain could generate such a pattern of activity
if slightly detuned from the conditions required to sustain
constant firing (18, 19). Slow cellular or synaptic mechanisms

Fig. 4. Effect of timing and order on the conditioned response. The format and procedures are identical to those in Fig. 3 except for the timing and ordering
between the CS and the US. All results are after 40 trials. (A) When the CS precedes the US by 4 s (rather than 5 s as in Fig. 3), synaptic strengths are stronger,
and the postsynaptic neuron responds more strongly to the CS than in Fig. 3. (B) When the CS precedes the US by 6 s, the postsynaptic neuron is depolarized but
fails to fire in response to the CS after 40 trials. Synaptic strengths are weaker than in Fig. 3 and A. (C) When the US precedes the CS by 5 s, no synaptic strengthening
occurs.
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could also contribute (20–22). Persistent activity lasting several
seconds or more in response to a transient input has been
observed in single neurons (23), in slice culture (24), in the locust
antennal lobe (25), and in the prefrontal cortex of monkeys (26).
Thus, it is not unlikely that an odor or shock will generate a
long-lasting response.

There are a number of other ways to produce the asymmetric
cross-correlations needed in the model. Up and down states (27,
28) might generate asymmetries if they occurred in an appro-
priate temporal sequence. More complicated cellular or network
mechanisms that, for example, change the latency or order of
spikes could generate correlations that favor potentiation or
depression depending on the history of stimulation. Network
mechanisms could also cause changes in the spontaneous back-
ground activity, altering correlations, as a form of off-line
learning (29). Whatever the source, long time correlations that
could support the type of learning we have presented have been
observed in spike trains (30, 31), spike counts (32), and local field
potentials (33) from many different areas.

Our model requires a relative fine balance between LTP and
long-term depression (LTD) for the synaptic weights to respond
to the asymmetric rather than the symmetric component of the
unsubtracted cross-correlation. We found that reliable forma-
tion of temporally sensitive associative plasticity in the example
of Fig. 3 requires the ratio of the area under the LTD part of the
STDP window to the area under the LTP part (A#!#"A%!%) to
be between 1.00 and 1.01. Such tuning is a universal feature in
such cases when a small asymmetry (the asymmetry of the
cross-correlation function) must be detected on top of a larger
background. If tight control is not maintained on the balance
between synaptic potentiation and depression due to STDP,
uncorrelated background firing will have a dominate effect, and
synapses will be pushed to the upper or lower limits of strength
independent of the temporal correlations of the pre- and
postsynaptic inputs. Mechanisms for dynamically regulating this
balance might control it automatically without requiring fine
tuning of parameters (34).

The model we studied requires tens of trials for the association
to be made, but this number can be decreased simply by
increasing the amplitude of the STDP. We have used a form of
STDP in which hard boundaries are imposed at the limits of the
range of allowed synaptic conductances, but other models with
soft bounds have been proposed and studied (35–38). The upper
boundary played no role in our simulations because it was never
reached, but the lower boundary is needed to prevent synaptic
conductances from becoming negative. It is not essential that this
boundary is hard, but it is critical that the pre–postsynaptic
correlations, not the boundary constraints, are the dominant
factor in determining the fate of the synapses through STDP.

We considered only one synaptic relay, but the same mecha-
nism active during the presentation of reliably repeated se-
quences of events to more complicated networks should lead to
the formations of synfire chains (39, 40). The position of a
neuron in such a chain will then correspond to the position of the
event in the driving sequence. In this case, the mechanism that
we propose would link the timescale of behavioral events to the
much faster neuronal firing sequences of the synfire chain,
resulting in a temporally compressed representation (41–43).

Methods
Correlations. The correlation shown in Fig. 2 is:

C&t' # %
#(

(

dt)rpost& t)'rpre& t) " t' . [3]

Simulations. The model we use for all of the simulations is similar
to that described in ref. 10. The postsynaptic neuron shown in

Figs. 3 and 4 is described by an integrate-and-fire model with
membrane potential V and driving current I satisfying:

!m
dV
dt # V rest $ V " gex& t'&Eex $ V' " I , [4]

with !m $ 20 ms, Vrest $ #60 mV, and Eex$ 0 mV. The synaptic
conductance gex is the total conductance arising from 1,000
excitatory synapses, measured in units of the leakage conduc-
tance of the neuron. When a presynaptic spike arrives at synapse
a, where a $ 1, 2, . . . , 1,000, and gex(t) 3 gex(t) % g!a, where g!a
is the peak synaptic conductance of synapse a and falls in the
range between zero and g!max. In addition, gex decays exponen-
tially to zero according to:

!ex
dgex

dt # #gex , [5]

with !ex $ 5 ms.
During the simulations for Figs. 3 and 4 (with obvious

modifications), the postsynaptic neuron was driven by a current:

I &t' # 0 for t % T " 1 s
I& t' # 15 mV for T " 1 s % t % T " 2 s
I& t' # &15 mV' for t & T " 2 s

!exp&#& t $ T $ 2 s'"!pre'

[6]

(a factor of the membrane resistance has been absorbed into the
definition of I, which is why these results are given in millivolts).
Presynaptic spikes were generated by Poisson processes acting
independently at each of the 1,000 synapses at a rate given by:

r&t' # 0 for t % 1 s
r& t' # 45 Hz for 1 s % t % 2 s
r& t' # &45 Hz'exp&#& t $ 2 s'"!post' for t & 2 s

[7]

with !pre $ !post $ 2 s. In all cases, identical trials, described as
above, were repeated in blocks lasting 10 s each.

STDP is modeled as ref. 10 by introducing the functions M(t)
and Pa(t) for a $ 1, 2, . . . , N satisfying:

!#

dM
dt # #M and !%

dPa

dt # #Pa, [8]

with !% $ !# $ 20 ms. M(t) is decremented by an amount A#

every time the postsynaptic neuron fires an action potential, and
Pa(t) is incremented by an amount, A%, every time synapse a
receives an action potential. As shown in Fig. 1 A, we took A% $
A# $ 0.005. In addition, when synapse a receives a presynaptic
action potential at time t, its maximal conductance parameter is
updated by g!a 3 g!a % M(t)g!max. If this change makes g!a ! 0, g!a
is set to zero. If the postsynaptic neuron fires an action potential
at time t, g!a is incremented by g!a3 g!a % Pa(t)g!max. If this change
would make g!a " g!max, g!a would be set to g!max, but this situation
never actually happens in our simulations.

Analytic Calculation. For pre- and postsynaptic firing rates rpre(t)
and rpost(t), the amount of LTP over one trial is given by:

LTP # A%%
#(

(

dtpost rpost& tpost'

!%
#(

tpost

dtpre rpre & tpre'exp&#(tpost $ tpre)"!%). [9]
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Similarly, the amount of LTD is:

LTD # A#%
#(

(

dtpost rpost& tpost'

!%
tpost

(

dtpre rpre& tpre'exp&#(tpre $ tpost'"!#).

[10]

The total change is the difference between these two terms.
We take the presynaptic rate, rpre, to be exponentially decaying

with time constant !pre from an initial value Rpre and zero for t !
0. We take the postsynaptic rate to be zero for t ! T and, for t '
T, rpost(t) $ Rpost exp(#(t # T)"!post). The analytic result
reported in the text comes from integrating the equations for
LTP and LTD given above with these rates. To simplify the
resulting equations, we have taken the area under the STDP
curve to be zero (A#!# $ A%!%), and we have removed terms
that are negligibly small when, as is the case here, !pre, !post, and
!T! are all much larger than !% and !#. The condition A#!# $

A%!% is not required for the results we report; the requirement
is actually !%!#(A% % A#) " !pre(A#!# # A%!%), which requires
A#!# # A%!% to be small but not necessarily zero.

A useful form of the above results (8, 9, 11) can be obtained
if the pre- and postsynaptic firing rates vary slowly on the scale
of !% and !#. Then, by Taylor expanding rpre and rpost, we find that
the total plasticity * $ LTP # LTD is given by:

* # &A%!% $ A!#'%
#(

(

dtrpost& t'rpre& t'

$ &A%!%
2 " A#!#

2 ' %
#(

(

dtrpost& t'r)pre& t' , [11]

where r)pre is the time derivative of rpre.

We thank S. Fusi and S. Nelson for valuable discussions and J. Lisman
for encouragement. This research was supported by National Institutes
of Health (NIH) Grant MH58754, the Swartz Foundation, and an NIH
Director’s Pioneer Award, part of the NIH Roadmap for Medical
Research, through Grant 5-DP1-OD114-02.

1. Tanimoto, H., Heisenberg, M. & Gerber, B. (2004) Nature 430, 983.
2. Bi, G. Q. & Rubin J. (2005) Trends Neurosci. 28, 222–228.
3. Schultz, W. & Dickinson, A. (2000) Annu. Rev. Neurosci. 23, 473–500.
4. Mehta, M. R., Barnes, C. L. & McNaughton B. L. (1997) Proc. Natl. Acad. Sci.

USA 94, 8918–8921.
5. Mehta, M. R., Quirk, M. C. & Wilson M. (2000) Neuron 25, 707–715.
6. Blum, K. I. & Abbott, L. F. (1996) Neural Comput. 8, 85–93.
7. Abbott, L. F & Blum K. I. (1996) Cereb. Cortex 6, 406–416.
8. Kempter, R, Gerstner, W. & van Hemmen, J. L. (1999) Phys. Rev. E Stat. Phys.

Plasmas Fluids Relat. Interdiscip. Top. 59, 4498–4514.
9. Roberts, P. (1999) J. Comput. Neurosci. 7, 235–246.

10. Song, S., Miller, K. M. & Abbott, L. F. (2000) Nat. Neurosci. 3, 919–926.
11. Xie, X. H. & Seung, H. S. (2000) Adv. Neural Inf. Process. Sys. 12, 199–205.
12. Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. (1997) Science 275,

213–215.
13. Bi, G. Q. & Poo, M. M. (1998) J. Neurosci. 18, 10464–10472.
14. Feldman, D. E. (2000) Neuron 27, 45–56.
15. Sjostrom, P. J., Turrigiano, G. & Nelson, S. B. (2001) Neuron 32, 1149–1164.
16. Froemke, R. C. & Dan, Y. (2002) Nature 416, 433–438.
17. Celikel, T., Szoztak, V. & Feldman, D. E. (2004) Nat. Neurosci. 7, 534–541.
18. Seung, H. S. (1996) Proc. Natl. Acad. Sci. USA 93, 13339–13344.
19. Wang, X. J. (2001) Trends Neurosci. 24, 455–463.
20. Thorson, J. & Biederman-Thorson, M. (1974) Science 183, 161–172.
21. Schwindt, P. C., Spain, W. J. & Crill, W. E. (1992) J. Neurophysiol. 67, 216–226.
22. Zucker, R. S. & Regehr, W. G. (2002) Annu. Rev. Physiol. 64, 355–405.
23. Egorov, A. V., Hamam, B. N., Fransen, E., Hasselmo, M. E. & Alonso, A. A.

(2002) Nature 420, 133–134.
24. Lau, P. M. & Bi, G. Q. (2005) Proc. Natl. Acad. Sci. USA 102, 10333–10338.
25. Mazor, O. & Laurent, G. (2005) Neuron 48, 661–673.

26. Funahashi, S., Bruce, C. J. & Goldman-Rakic, P. S. (1989) J. Neurophys. 61,
331–349.

27. Galan, R. F., Weidert, M., Menzel, R., Herz, A. V. & Galizia, C. G. (2006)
Neural Comput. 18, 10–25.

28. Wilson, C. J. & Kawaguchi, Y. (1996) J. Neurosci. 16, 2397–2410.
29. Anderson, J., Lampl, I., Reichova, I., Carandini, M. & Ferster, D. (2000) Nat.

Neurosci. 3, 617–621.
30. Lowen, S., Ozaki, T., Kaplan, E., Saleh, B. E. & Teich, M. C. (2001) Methods

24, 377–394.
31. Lowen, S. & Teich, M. (1996) J. Acoust. Soc. Am. 99, 3585–3591.
32. Bair, W., Zohary, E. & Newsome, W. T. (2001) J. Neurosci. 21, 1676–1697.
33. Leopold, D., Murayama, Y. & Logothetis, N. K. (2003) Cereb. Cortex 13,

422–433.
34. Kepecs, A., van Rossum, M. C., Song, S. & Tegner, J. (2002) Biol. Cybern. 87,

446–458.
35. van Rossum, M. C., Bi, G. Q. & Turrigiano, G. G. (2000) J. Neurosci. 20,

8812–8821.
36. Rubin, J. E. (2001) Network 12, 131–140.
37. Rubin, J., Lee, D. D. & Sompolinksy, H. (2001) Phys. Rev. Lett. 86, 4958–4961.
38. Gutig, R., Aharonov, R., Rotter, S. & Sompolinsky, H. (2003) J. Neurosci. 23,

3697–3714.
39. Buonomano, D. V. (2003) Proc. Natl. Acad. Sci. USA 100, 4897–4902.
40. Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D. & Yuste,

R. (2004) Science 304, 559–564.
41. Buzsaki, G. (1989) Neuroscience 31, 551–570.
42. Wilson, M. A. & McNaughton, B. L. (1994) Science 265, 676–679.
43. Nadasdy, Z., Hirase, H., Czurko, A., Csicsvari, J. & Buzsaki, G. (1999)

J. Neurosci. 19, 9497–9507.

Drew and Abbott PNAS ! June 6, 2006 ! vol. 103 ! no. 23 ! 8881

N
EU

RO
SC

IE
N

CE


