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SUMMARY
The convergence of internal path integration and external sensory landmarks generates a cognitive spatial
map in the hippocampus. We studied how localized odor cues are recognized as landmarks by recording
the activity of neurons in CA1 during a virtual navigation task. We found that odor cues enriched place cell
representations, dramatically improving navigation. Presentation of the same odor at different locations
generated distinct place cell representations. An odor cue at a proximal location enhanced the local place
cell density and also led to the formation of place cells beyond the cue. This resulted in the recognition of
a second, more distal odor cue as a distinct landmark, suggesting an iterative mechanism for extending
spatial representations into unknown territory. Our results establish that odors can serve as landmarks, moti-
vating a model in which path integration and odor landmarks interact sequentially and iteratively to generate
cognitive spatial maps over long distances.
INTRODUCTION

Path integration is a navigational strategy that allows animals to

form an internal estimate of position relative to external land-

marks (Etienne and Jeffery, 2004; Etienne et al., 1998; Etienne

et al., 2004; Kim and Dickinson, 2017; Mittelstaedt and Mittel-

staedt, 1980; 2001; M€uller and Wehner, 1988). Path integration

relies on idiothetic (self-motion) signals derived from vestibular,

proprioceptive, visual flow, and motor sources, that provide

imperfect estimates of movement. Accumulated errors in the

internal estimate of position must be corrected by external land-

marks (Etienne et al., 2004; Hardcastle et al., 2015). The conver-

gence of path integration and external landmarks expands the

range over which animals can accurately navigate.

The recognition of a landmark poses an interesting conceptual

problem. The sensory features of a landmark have no inherent

spatial meaning and are only valuable if they are recognized as

fixed in space (Jeffery, 1998; Savelli and Knierim, 2019), and

this determination may require path integration (Bourboulou

et al., 2019; Campbell et al., 2018; Chen et al., 2013; Fattahi

et al., 2018; Jayakumar et al., 2019; M€uller and Wehner, 2010;

Ravassard et al., 2013). A further problem of disambiguation

emerges if the same sensory features are encountered at

different locations (Draht et al., 2017; Grieves et al., 2016; Zhao
4036 Neuron 109, 4036–4049, December 15, 2021 ª 2021 Elsevier In
et al., 2020). The convergence of path integration and sensory

features creates a cognitive spatial map that can impose unique

spatial meanings on these features to create landmarks.

Odors are a primary source of sensory information and may

serve as navigational landmarks if fixed in space (Aboitiz and

Montiel, 2015; Baker et al., 2018; Hamburger and Knauff,

2019; Jacobs, 2012; Jacobs et al., 2015; Koutsoklenis and Papa-

dopoulos, 2011; Marin et al., 2021; Nosal et al., 2016; Porter

et al., 2007; Raithel and Gottfried, 2021; Steck et al., 2009; Wu

et al., 2020). The hippocampus receives olfactory information

from the lateral entorhinal cortex (LEC) (Leitner et al., 2016; Li

et al., 2017; Woods et al., 2020). The LEC receives direct input

from the olfactory bulb and piriform cortex, two structures that

encode odor identity (Diodato et al., 2016; Sosulski et al.,

2011; Stettler and Axel, 2009). The influence of odors on hippo-

campal activity has been observed in both spatial and nonspatial

contexts (Aikath et al., 2014; Anderson and Jeffery, 2003; Igara-

shi et al., 2014; Li et al., 2017; MacDonald et al., 2013; Muzzio

et al., 2009; Radvansky and Dombeck, 2018; Radvansky et al.,

2021; Taxidis et al., 2020; Young et al., 1997). Grid (Hafting

et al., 2005), head direction (Sargolini et al., 2006), and speed

cells (Kropff et al., 2015) in the medial entorhinal cortex (MEC)

are driven by internal path integration signals and provide infor-

mation to the hippocampus about location and self-motion. In
c.
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the dark, these internal path integration signals, in combination

with olfactory and/or tactile cues, are able to support stable

spatial representations in the hippocampus (Kulvicius et al.,

2008; Quirk et al., 1990; Save et al., 1998; Save et al., 2000;

Zhang and Manahan-Vaughan, 2015; Zhang et al., 2014). Thus,

the hippocampus is a potential site of convergence for internal

path integration and external sensory landmarks.

We have examined the activity of hippocampal neurons in mice

performing a navigation behavior that relies solely on path integra-

tion and sparse olfactory sensory cues. The results of these ex-

periments demonstrate the convergence of path integration and

landmarks in the formation of a cognitive spatialmap in the hippo-

campus. These observations led to the formulation of a theoretical

model to describe how path integration and olfactory landmarks

interact in an iterative process to form a cognitive spatial map.

RESULTS

Accurate navigation behavior in the presence of
olfactory landmarks
We designed a series of experiments that required mice to navi-

gate in the dark toward a virtual goal location on the basis of path

integration in combination with olfactory landmarks. Initially,

mice were trained to traverse a distance of 4 m on a featureless

spherical treadmill, while head-fixed, in total darkness to reach

an unmarked goal location where they received a water reward

(Figures 1A and S1A). The ball had a single rotational axis,

rendering the task equivalent to navigation on a linear track.

Initially, this task required mice to estimate their own location

and that of the goal using only path integration based on internal

idiothetic signals. In the absence of odors, behavioral perfor-

mance plateaued after 1–2 weeks (n = 5 mice). Mice initiated

licking and decreased their running speed after traveling only

�2 m along the 4-m track (Figures 1B, 1C, 1D, S1B, and S1C).

Thus, in this paradigm, path integration alonemay not permit ac-

curate measurement of distances greater than �2 m.

We then introduced two brief pulses of the same odor delivered

when the mice reached locations at 1 m and 3 m (Figure 1E).

Photoionization detector (PID) measurements revealed only

�1%differences in the time-varying odor concentrations resulting

from the 1-m and 3-m pulses (Figure 1F). Trials using one of two

neutral odor cues, limonene or pinene, were randomly interleaved.

This task required themice todetermine their location solely on the

basis of path integration and odor cues, allowing us to study the

convergence of idiothetic self-motion and external olfactory infor-

mation in the generation of cognitive spatial maps. After four days

of training with odor cues, all mice suppressed licking and main-

tained high running speeds for �3.5 m of travel, commencing

licking and rapidly slowing their running speed �0.5 m from the

reward location (Figures 1C, 1D, 1G, S1B, S1C, SID, and S1E).

This suggests that the mice recognized the odors as spatial land-

marks and used these landmarks to improve navigation.

Olfactory landmarks enhance place cell representations
in CA1
We used a miniature microscope (Ghosh et al., 2011; Ziv et al.,

2013) (nVista 2.0, Inscopix) and the genetically encoded fluores-

cent Ca2+ indicator GCamp6f to image the somatic Ca2+ activity
of �3,000 CA1 pyramidal neurons per session, pooled across

mice. We identified individual neurons and their Ca2+ traces

from the fluorescence videos and registered their activity to the

trajectories of themice on the virtual track. Neural and behavioral

data were averaged in 100-mm bins for analysis. Neurons with

consistent position-selective activity were classified as place

cells (STAR Methods).

After 1–2 weeks of training without odor cues, 5.8% of the

imaged neurons were classified as place cells (169 of 2893 neu-

rons; Figures 2A–2C, S1G–S1I, and S2; Table S1A). The spatial

density of place cells wasmaximal at the starting location and de-

cayed rapidlywith distance (length constant ± bootstrapped stan-

dard error: 0.97 ± 0.20 m; Figure 2D). Place field reliability

decreased with distance from the start location, and place field

jitter and width increased as the mice traversed the track (Figures

2E, S1H, and S1I). At the population level, the across-trial stability

of the vector of population activity decreased with distance

(0.44 ± 0.02 versus 0.23 ± 0.01; Figure 2F). These results show

that, in this paradigm, path integration alone cannot support reli-

able place cell activity beyond �2 m. The sparse and unreliable

neural representation of space beyond �2 m is consistent with

the behavioral observation that the mice began to lick at �2 m,

perhaps reflecting error accumulation in path integration.

We next examined whether spatially localized odor cues

enhance place cell representations. After mice performed the

task with odor cues at 1 m and 3 m for 4 days, the percentage of

place cells increased from 5.8% to 35% (979 of 2,778 neurons,

union of limonene and pinene place cells; Figures 2G–2I, S1F,

S1G, S1J, and S2; Table S1). The density of place cells showed

an overall increase over the length of the track but was most pro-

nounced slightly beyond 1m and 3m, the locations of odor expo-

sure (Figure 2D). Importantly, different sets of place cells were

active at 1 m and 3 m, despite exposure to the same odor at

both locations. We also observe a relatively small population of

neurons that respond at both sites of odor presentation (Figure 2J;

2.4%, 68 of 2,778 neurons) which were excluded from place cell

analysis. The presence of three spaced peaks (at the start and

two odor locations) allowed the place cell density to remain high

along theentire trackdespite thedecaybetweenpeaks.Placefield

reliability increased followingodor trainingwhereasplacefield jitter

tended to decrease (Figures 2E and S1H). At the population level,

the across-trial stability of the vector of population activity

increased following odor training (0.36 ± 0.01 versus 0.61 ± 0.01;

Figure2F). Theelevatedplacecell density and increase in reliability

was consistent with the animals’ ability to suppress licking and

retain running speed up to the reward sitewhenodor cues are pre-

sent. The peak in place cells at the 3-m odor cue and elevated

place cell density all the way up to the reward location are consis-

tent with the use of a cognitive spatial map to support navigation.

Analysis of place cell activity on individual trials revealed a sig-

nificant correlation between the number of place cells active at

the 1-m and 3-m odor landmarks (Figures 2K and S1M)). This

suggests that during spatial navigation, the density of place cells

at a proximal landmark influences the density of place cells at a

more distal location.

Upon decoding of position from CA1 population activity, we

observe that mice largely adjusted their distance estimates

and licking behavior in response to trial-by-trial velocity
Neuron 109, 4036–4049, December 15, 2021 4037
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Figure 1. Accurate navigation behavior in the presence of olfactory landmarks

(A) Schematic of virtual track during training with no odor landmarks. During pre-training, the mice learned to run down a 4-m virtual linear track to receive a water

reward. The number of pre-training sessions varied between 4 and 11 across mice. Behavioral data were recorded during the final 2 days of pre-training (days�2

and �1) in all mice. All data from n = 5 mice

(B) Single-trial behavioral data on day 0 (no odor cues) for an individual mouse (m1). Left, single-trial lick rate. Right, single-trial speed.

(C) Trial-average lick rate. Black, day 0, no odor cues. Blue, day 4, limonene trials. Red, day 4, pinene trials. Error bars: mean ± standard error across mice.

(D) Trial-average speed. Black, day 0, no odor cues. Blue, day 4, limonene trials. Red, day 4, pinene trials. Error bars: mean ± standard error across mice.

(E) Schematic of virtual track during training with odor landmarks.

(F) Plots of odor concentrations delivered in time by custom olfactometer. 1 s odor pulses were delivered with the minimum delay (1 s) between offset of 1st cue

and onset of 2nd cue that was possible whenmice ran at the fastest recorded speed (�100cm/s). Shaded yellow areas indicate times at which odor valve is open.

Top, 10% Limonene, blue traces. Bottom, 10% Pinene, red traces.

(G) Single-trial behavioral data on day 4 in the presence of odor landmarks for an individual mouse (m1). Left, single-trial lick rate. Right, single-trial speed.
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deviations (Figures S3B–S3G; STAR Methods), showing a link

between neural activity in CA1 and navigational behavior. Impor-

tantly, this shows that the animals perform the task using path

integration to recognize the odor cues as spatial landmarks

rather than employing estimates of elapsed time. Taken

together, these results demonstrate that odor cues can serve

as landmarks that couple with path integration to generate
4038 Neuron 109, 4036–4049, December 15, 2021
robust spatially dependent neural activity that supports accurate

navigational behavior.

Olfactory landmarks induce place cell remapping and
generate distinct cognitive spatial maps
We examined whether different odors elicit different spatial

maps by interleaving limonene and pinene trials. The two odors
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generated different place cell representations, demonstrating

remapping (Figure 3A). Beyond the first odor cue (1 m), only

11% of place cells (78 of 708 place cells) served as place cells

at the same location in both limonene and pinene trials. In

accord with these findings, the correlation between the trial-

average vectors of population activity dropped from �80%

for the same odor to�15% for different odors following the first

odor cue and remained small beyond 1 m (Figure 3B). The re-

mapping between limonene and pinene trials was observed

as early as the first day of training in the presence of odor

cues (Figure 3C). These data indicate that different odors at

the same location in identical tasks generate distinct cognitive

spatial maps.

The gradual and sequential emergence of place cell
maps and improvement in navigation behavior
We further analyzed the interaction of path integration and odor

cues by examining the emergence of place cells during training

and the associated improvement in navigational behavior. On

the first day of training in the presence of odor cues, mice initi-

ated licking and decreased their running speed at �2 m while

briefly suppressing licking and increasing their running speed

at the onset of the 3-m odor cue (Figures 4A and 4B). Over the

three days of training, we observed a gradual reduction in licking

and increase in running speed at locations that preceded the 3-m

odor cue (Figures 4A and 4B). By the fourth day of training, mice

avoided licking andmaintained a high running speed up to the 3-

m odor cue followed by a rapid increase in licking and decrease

in speed after the odor cue and�0.5 m from the reward location

(Figures 4A and 4B). We quantified the anticipatory licking

behavior by calculating a lick ratio, defined as the average lick
Figure 2. Olfactory landmarks enhance place cell representations in C

(A) Single-trial activity of two example neurons on day 0 (no odor cues) from mo

(B) Trial-average activity of place cells across all mice, sorted by place field cent

(C) Cross-validation of place field ordering. Place cells were sorted by place field c

activity. day 0, no odor cues.

(D) Spatial density of place cells (number of place cells with centers in each spatia

Black line, exponential fit to the mouse-average density over 0.2–4 m. Red dots

densities were averaged for each mouse). Red line, piecewise exponential fit to th

standard error across mice.

(E) Place field reliability over distance. Place cells were pooled acrossmice (and ac

(shared limonene and pinene place cells were treated as two distinct place cells

mean ± SEMBefore and after odor training, place field reliability decreasedwith di

m place cells versus n = 23 2–4-m place cells; day 4 p = 1.93 10�7, n = 748 0.1–2-

training, place field reliability increased (two-sided Wilcoxon rank-sum test, p = 3

(F) Before and after odor training, the correlation between the trial-average vector

distance (two-sided Wilcoxon rank-sum test, day 0 p = 1.4 3 10�12, n = 95 correl

7.9 3 10�16, n = 190 correlation values for 0.1–2 m versus n = 200 correlation

correlations increased (two-sidedWilcoxon rank-sum test, p = 6.13 10�36, n = 19

bars: mean ± standard error across mice (and across trial types for day 4). *p < 0

(G) Single-trial activity of two neurons on day 4 from mouse m1. Left, limonene t

(H) Trial-average activity of place cells across all mice, sorted by place field cent

place cell activities were averaged over trials of the appropriate type; shared limo

(I) Cross-validation of place field ordering. Top, day 4, limonene trials. Bottom, day

odd-trial-average activity. Right, even-trial-average activity.

(J) Trial-average activity of neurons that meet place field criteria at both sites of od

day 4, combined limonene and pinene trials.

(K) Correlation between fluctuations in the numbers of active places cells at the

pooled across all trials for all mice (P values obtained via two-sided t test, P valu

*p < 0.05, **p < 10�2, ***p < 10�3
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rate within 0.3 m of reward divided by the average lick rate

over the final 3 m of the virtual track (Methods). The lick ratio,

averaged across mice, increased with each day of odor training

following day 1 andwe observed an increase in the lick ratio from

2.74 ± 0.18 to 7.14 ± 0.20 following all four days of odor training

(Figures 4D and S3A). These observations suggest that the mice

employ path integration to optimize their navigational behavior.

The evolution of the place cell representation mirrored the

gradual improvement in navigational behavior. On the first day

of training in the presence of odor cues, the spatial density of

place cells increased locally at the 1-m odor cue, but not at the

3-m cue (Figures 4C, 4E, and S4A). Over subsequent days of

training, the number and density of place cells progressively

increased (Figures 4F, 4G, S4B, and S4C). Correspondingly,

the error in the decoded estimate of position decreased more

than 2-fold (0.46 m on day 1 to 0.22 m on day 4; Figure 4H;

STAR Methods). Importantly, the emergence of a peak in the

density of place cells at 1 m was accompanied by an increase

in the density of place cells between 1 m and 3 m. Over the

course of several days, as more place cells tiled the region be-

tween 1m and 3m, an additional peak in place cell density arose

at 3 m. The emergence of peaks in place cell density at 1 m and

3 m was therefore gradual and sequential.

These results suggest an iterative process for spatial map

extension in which increasingly distal sensory cues are recog-

nized as landmarks. First, the odor cue nearest the start is recog-

nized as a landmark, resulting in a local peak in place cell density.

This leads to a gradual increase in place cell density beyond the

first cue, allowing the mice to recognize a second odor cue as a

distinct landmark. This, in turn, leads to an increase in place cell

density beyond the second cue. This iterative process could be a
A1
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1-m and 3-m odor cues. We plot the correlations in these z-scored quantities

e = 7.9219e–13).



A

B C

Figure 3. Olfactory landmarks induce place

cell remapping and generate distinct cognitive

spatial maps

(A) Remapping of the place cell representation on

day 4. Top, trial-average activity of limonene place

cells sorted by centers on limonene trials. Left, ac-

tivity on limonene trials. Right, activity on pinene tri-

als. Bottom, trial-average activity of pinene place

cells sorted by centers on pinene trials. Left, activity

on pinene trials. Right, activity on limonene trials.

(B) Red, correlation between trial-average vectors of

population activity for even and odd trials of the same

type on day 4 (same as in Figure 1F; STAR Methods).

Blue, correlation between trial-average vectors of

population activity for trials of different types on day 4

(STARMethods). The different-odor population vector

correlations were substantially reduced compared to

the same-odor correlations beyond the 1-m odor cue

(two-sided Wilcoxon rank sum test, p = 3.6 3 10�83,

n = 280 correlation values for each group). Error bars:

mean ± standard error across mice.

(C) Population-level remapping. Same as (B), but for

the first three days of odor training (days 1–3) rather

than day 4. Top, day 1. Middle, day 2. Bottom, day 3.

The different-odor population vector correlations were

significantly smaller than the same-odor correlations

beyond the 1-m odor cue for days 1–3 (two-sided

Wilcoxon rank sum test, day 1 p = 1.2 3 10�65, day

2 p = 1.3 3 10�70, day 3 p = 9.9 3 10�75, n = 280

correlation values for each group).
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basic mechanism for extending cognitive spatial maps into un-

known territory.

Population-level activity and state-space trajectories in
CA1 reflect the gradual evolution of a cognitive
spatial map
The gradual and sequential process by which the 1-m and 3-m

odor cues were recognized as distinct landmarks was also re-
Neuro
flected in the population-level activity in

CA1. First, we analyzed population-level

activity to study the gradual disambigua-

tion of identical odor cues as distinct

spatial landmarks. We computed the cor-

relation between the trial-average vectors

of population activity in 100-mm bins at lo-

cations x and x + 2 m (0.1 m % x % 2 m).

Note that x = 1 m yields the correlation be-

tween the population vectors at the loca-

tions of the first and second odor cues.

On the first day of training in the presence

of odors, we observed a peak in popula-

tion vector correlation immediately beyond

x = 1 m, implying that the population vec-

tor at the second odor cue realigned to

its state at the first odor cue (Figure 5A).

Over the course of odor training, the corre-

lation following x = 1 m was markedly

diminished. Following odor training, the

population response at the second odor
cue was uncorrelated with the response at the first odor cue

(Figure 5A). This result is consistent with a spatial strategy

rather than a strategy based upon sensory discrimination. In

addition, we observe that over the course of 4 days of training

with odor cues, the number of neurons that respond at both

odor locations decreases more than 2-fold from day 1 to day

4 (Figures 5B, 5C, 5D, and 1J; 5.7%, 137 of 2405 neurons on

day 1 to 2.4%, 68 of 2,778 neurons on day 4). Place fields
n 109, 4036–4049, December 15, 2021 4041



Figure 4. The gradual and sequential emer-

gence of place cell maps and improvement

in navigation behavior

(A and B) Trial- and mouse-average lick rate (A) and

speed (B) over the course of odor training (days 1-4).

(C) Mouse-average spatial density of place cells

over the course of odor training (days 1-4).

(D) Trial- and mouse-average lick ratio during pre-

training (days�2 and�1) andCa2+ imaging (days 0–

5) (STARMethods). On day 5, only trials with no odor

cues are shown. During pre-training and the first day

of odor training, the lick ratio did not change

significantly across days (two-sided Wilcoxon rank-

sum test, p = 5.83 10�2, day�2 versus day�1; p =

1, day�1 versus day 0; p = 7.43 10�2, day 0 versus

day 1). By contrast, the lick ratio increased with

each additional day of odor training (p = 1.43 10�9,

day 1 versus day 2; p = 3.7 3 10�10, day 2 versus

day 3; p = 1.4 3 10�2, day 3 versus day 4). During

day 5, on trials with no odor cues, the lick ratio

decreased compared to day 4 (p = 6.6 3 10�11;

Bonferroni correction for 7 comparisons between

adjacent days; n = 250 trials for days 1–4, n = 125

trials otherwise). Error bars: mean ± standard error

across mice and trials.

(E–G) Trial-average activity of place cells across all

mice, sorted by place field centers, for day 1 (E), day

2 (F), and day 3(G).

(H) Decoder error (root-mean-square) over the

course of odor training. The error decreased

through odor training (two-sided Wilcoxon rank-

sum test, p = 4.4 3 10�25, day 0 versus day 4) and

increased once odors were removed on day 5 (two-

sided Wilcoxon rank-sum test, p = 6.53 10�12, day

4 versus day 5). Trial counts same as in c. Error bars:

mean ± standard error across mice and trials.

*p < 0.05, **p < 10�2, ***p < 10�3
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unique to the 1-m odor cue location are present at first day of

training, whereas place fields unique to the 3-m odor emerge

after several days of training. At this time, the population level

activity is decorrelated and the number of neurons that respond

at both odor cue locations has decreased substantially. There-

fore, on the initial days of training the mice may have incorrectly

recognized the distal odor cue at 3 m as the more proximal 1-m

spatial landmark. Together, these data suggest that the two

odor cues were gradually and sequentially recognized as

spatial landmarks marking distinct locations.

We also performed principal component analysis (PCA) to

study the state-space trajectory of neural population activity as

themice learned the task. Projecting the trial-average population

state (combining neurons across mice) onto the first two PCA di-

mensions revealed a striking relationship between the structure

of neural population activity and the structure of the task. Our

virtual task has the topology of a circle because the mice ‘return’

to the start position on the next trial after reaching the reward

location. After four days of odor training, the two-dimensional

neural trajectory had the shape of a closed loop, and distances

on the track were roughly proportional to corresponding dis-

tances along the neural trajectory (36.5% variance explained;

Figures 5E, S5A, and S5B). Thus, the trajectory of this low-

dimensional projection of population activity bears topological

and metrical resemblance to the task.
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We next examined the evolution of the neural trajectory during

odor training. On the first day of odor exposure, the trajectory

beyond the odor cue at 3m loops back and retraces a path similar

to the trajectory taken after the odor cue at 1 m (Figures 5F, S5B,

and S5C). Also, the point on the trajectory corresponding to the

reward location at 4 m was close to the point corresponding to

2 m. This trajectory is consistent with the misrecognition of the

3-m odor cue as the 1-m spatial landmark. Backward looping

was reduced with training and by the fourth day was absent (Fig-

ures 5G and 5H). Thus, the decorrelation of the population re-

sponses evoked by the 1-m and 3-m odor cues is accompanied

by a disentangling of the neural trajectory with relation to space.

Removal of odor cues or a rewarded location modifies
place cell representations
Wenext askedwhether the enrichedplace cell representation and

improved navigational behavior that emerged during odor training

persist in the absence of odor cues. On day 5, following 4 days of

odor training, the mice performed a session in which pinene

trials were randomly interleaved with no-odor trials (Figure 6A).

We compared the place cell representations observed during

no-odor trials onday 5 to no-odor trial onday 0.Although the num-

ber of place cells was larger (Figures 6B and 6C), and the licking

behavior more accurate (Figures 6D) on day 5 than on day 0, the

density of place cells decayed rapidly with a length constant only
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Figure 5. Population level activity and state-

space trajectories in CA1 reflect the gradual

evolution of a cognitive spatial map.

(A) Correlation between population vectors at cor-

responding 0.1–2 m and 2.1–4 m spatial bins as a

function of distance from the 1-m or 3-m odor cues.

On days 1–3, population vector correlations peak

following the odor location (two-sided Wilcoxon

rank-sum test, day 1 p = 1.53 10�21; day 2 p = 3.93

10�9; day 3 p = 2.7 3 10�4; n = 190 correlation

values for –0.9–0m versus n = 200 correlation values

for 0–1 m). By day 4, the peak following the odor

location was suppressed (p = 0.39). Error bars:

mean ± standard error across mice and trial types.

(B–D) Trial-average activity of neurons that meet

place field criteria at both sites of odor presentation

(1.2-2 m and 3.2-4 m) and excluded from place cell

sorting, combined limonene and pinene trials. (B)

day 1 odor training. (C) day 2 odor training. (D) day 3

odor training.

(E–H) Trial-average state-space trajectories of

neural population activity during the task, visualized

in the leading 2 PCA dimensions (neurons combined

across mice). (E) Day 4, pinene trials. (F) Day 1,

pinene trials. (G) Day 2, pinene trials. (H) Day 3,

pinene trials.

*p < 0.05, **p < 10�2, ***p < 10�3
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slightly greater than observed on day-0 length constant ± boot-

strapped standard error: 1.45 ± 0.18 m; one-sided bootstrap test

versus day-0 length constant ± bootstrapped standard error:

0.97 ± 0.20 m, p = 3.73 10�2).

We also compared the place cell representation of day-5 trials

with odor cues to the representation of trials without odor. The

number of place cells beyond 2 m was 2.4 times greater on

day-5 trials with odor cues than on trails without odor (308 versus

128 of 3,087 neurons, Figures 6E and 6F). In addition, the antic-

ipatory licking was less accurate on day-5 trials without odor

cues (Figure 6G).

We next explored the dependence of place cell activity on

reward. On day 6, the mice performed a session in which the wa-
Neuron
ter reward was not delivered (Figure 6H).

Under these conditions, the mice ran at

similar speeds but did not lick or stop at

4 m (Figures 6I and 6J). The proportion of

place cells decreased from 35% to 0.7%

(29 of 3,919 neurons, 18 on limonene trials

and 11 on pinene trials; Figure 6K; see Ta-

ble S1D for significance tests). Thus, the

robust place cell representation in our

task is contingent on the presence of the

reward. The absence of place cells when

the reward is withheld may reflect the loss

of spatial information provided by the

reward cue or a lack of task motivation.

A model for the convergence of path
integration and odor landmarks in
place cell formation
The observation that odor cues can serve as navigational land-

marks motivated a model to explain how the convergence of

path integration and odor cues generates a cognitive spatial

map in the hippocampus. The model consists of a population

of place cells driven by inputs from a set of path integrators,

and feedback from the place cells back to the path integrators

(Figure 7A; STAR Methods). In the absence of odor cues, each

path integrator generates an independent estimate of the dis-

tance that the animal has traveled from the starting point, and

each estimate drives a different spatially modulated input to

the place cells.

In our model, each path integrator samples a velocity esti-

mate on each trial from a distribution centered at the animal’s
109, 4036–4049, December 15, 2021 4043
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Figure 6. Removal of odor cues or a re-

warded location modifies place cell repre-

sentations

(A) Schematic of virtual track on day 5. Top, half of

trials with no odor cues. Bottom, half of trials with

pinene odor cues. Trial types were randomly inter-

leaved.

(B) Trial-average place cell activity on day 5, no odor

cues.

(C) Spatial densities of place cells. Black, day 5, no

odor cues. Gray, day 0, no odor cues. Error bars:

mean ± standard error across mice.

(D) Mean lick rate, colors as in (C). Error bars:

mean ± standard error across mice.

(E) Trial-averaged place cell activity on day 5, pinene

trials.

(F) Spatial densities of place cells on day 5. Red,

pinene trials. Black, no odor cues. Error bars:

mean ± standard error across mice.

(G) Trial- and mouse-average lick rate day 5. Red,

pinene trials. Black, no odor cues. Gray, day 0, no

odor cues. Error bars: mean ± standard error across

mice (and across trial types for day 4).

(H) Schematic of virtual track on day 5. No water

rewards delivered on any trial. Top, limonene trials.

Bottom, pinene trials. Trial types were randomly

interleaved.

(I and J) Trial- and mouse-average behavioral data

on day 6 (no water reward). Blue, limonene trials.

Red, pinene trials. (I) Speed. (J) Lick rate. Error bars:

mean ± standard error across mice.

(K) Trial-average place cell activity on day 6 with (no

water reward). Top, limonene trials. Bottom, pinene

trials.

***p < 10�3
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true velocity which, for simplicity, was modeled as being the

same on each trial. To model variability in path integrator dy-

namics, we introduce noise into the velocity integral. Due to

both velocity uncertainty and integration noise, the path inte-

grators’ estimates of position and, consequently, the inputs

they drive vary from trial to trial. The trial-to-trial variance grows

with the distance traveled as path integration becomes less reli-

able (Figures 7B).

Model place cells form by a process that simulates the ef-

fects of plateau potentials observed during CA1 place cell for-
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mation (Bittner et al., 2015; Bittner et al.,

2017; Magee and Grienberger, 2020).

The model posits that, in each cell, a

plateau potential occurs at a random

location, resulting in plasticity that sets

the weights of the synapses from the inte-

grators to that place cell to values propor-

tional to the presynaptic input at the time

of the plateau. Following this plasticity,

the cell performs template matching, re-

sponding if there is a sufficiently close

match between the current input rates

and the rates experienced at the time of

the plateau. This process creates reliable

place cells at short distances from the
starting location because the inputs driven by path integration

are similar from trial to trial at these locations and therefore

well matched to the template. For large distances, on the other

hand, inputs vary considerably from trial to trial, rarely match

the template, and reliable place cells cannot form. We chose

a level of noise for the path integrators so that reliable place

cells form only at distance less than 2 m (Figure 7C).

Model place cells project back to the path integrators, and this

projection is also subject to plasticity. At the same time that plas-

ticity modifies synapses from path integrators to a place cell, it
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Figure 7. A model for the convergence of

path integration and odor landmarks in place

cell formation

(A) Schematic of the computational model. A pop-

ulation of noisy path integrators drives a population

of place cells, which form reciprocal connections

onto the path integrators. Odor cues gate the con-

nections from place cells onto path integrators.

(B) The trial-to-trial variability of the position esti-

mates of model path integrators grows mono-

tonically with distance in the absence of odor cues

(black) and is reduced at the locations of the odor

cues due to resetting of the path integrators by the

place cells (red).

(C) Without odor cues, few model place cells form

beyond �2 m.

(D) In the presence of odor cues, model place cells

tile the entire 4-m track.

(E) Spatial density ofmodel place cells.Black, noodor

cues on initial day of training (day 0). Red, after 4

training sessions in the presence of odor cues (day 4).

(F) Reliability of model place cells as a function of

distance along the 4-m track. Black, no odor cues on

initial day of training (day 0). Red, after 4 training

sessions in the presence of odor cues (day 4).

(G) Reliability of model place cells as a function of

distance along the 4-m track over the course of

training. Lighter to darker shades or red indicate

successive days of training in the presence of odor

cues.

(H)Spatial densityofmodelplacecellsover thecourse

of training. Lighter to darker shades of red indicate

successive days of training in the presence of

odor cues.
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also modifies connections from this place cell back to the path

integrators. This plasticity stores a trace of the distance estimate

provided by each path integrator at the time of the plateau. The

result is a projection by which the activity of a place cell can reset

a path integrator back to the value it took when the place field

formed. In our model, this projection is only engaged when a

sensory cue, the odor, appears (Figure 7A).Other work suggests

that this one-shot plasticity rule could be replaced by a form of

slow-timescale Hebbian plasticity (Ocko et al., 2018).

In the model, when an odor appears, place cell activity drives

the path integrators to their previously stored values (Figure 7B).

Although these values are no more accurate than the estimates
Neuron
of distance on any other trial, they are

consistent from trial to trial due to the reset

provided by the odor-activated place cells.

Thus, place cells that form beyond the 2-m

point have inputs that aremore reliable as a

consequence of the odor cues. This con-

sistency allows reliable place cells to be

created beyond 2 m by the plateau poten-

tial mechanism. This process is then

repeated at the location of the 3-m odor

cue in an iterative process that enables a

complete place cell representation along

the entire 4-m track (Figure 7D).
The system we have described consists of two networks—the

place cells and the path integrators—that store within their syn-

apses the traces of their relationship at the time of place cell

formation. Place cells are maximally driven by path integrators

that match the input that occurred when their place fields

formed. Reciprocally, place cell inputs to each path integrator

store the value that the path integrator had when the place field

formed. This system is calibrated by an external event that iden-

tifies when these relationships are consistent. This event is a

landmark.

This model is also consistent with our experimental observa-

tions. First, in the model and in our experimental data following
109, 4036–4049, December 15, 2021 4045
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odor training, equivalent sensory inputs presented at different

locations activate distinct subpopulations of place cells. In the

model, this occurs because only the place cells active when an

odor cue is encountered are involved in resetting the path inte-

grators and this, in turn, strongly drives a location-specific set

of place cells in the vicinity of the cue. This is consistent with

the role of the hippocampus in the transformation of egocentric

sensory information into an allocentric cognitive spatial map of

the external world. Second, the model predicts that place cell

density and reliability (STAR Methods) decrease as a function

of distance from odor cues, with local peaks in density and reli-

ability at the site of each cue (Figures 7E and 7F). This is a conse-

quence of model place cells being driven by a population of path

integrators with independently accumulating errors. If path inte-

gration is implemented by grid cells in the MEC (McNaughton

et al., 2006), as has been widely suggested, these independent

path integrators could correspond to distinct grid modules

(Stensola et al., 2012). In addition, the model predicts that the

reliability of place cells along the entire track will improve with

training in the presence of odor cues (Figures 7Fand 7G). Both

of these model predictions are in agreement with our experi-

mental data (Figures 2D and 2E).

Finally, the iterative mechanism of spatial map extension

posited by themodel is consistent with our experimental findings

regarding the evolution of place cell representations over the

course of training. The model predicts that the same sensory

cue presented at two different locations leads to the formation

of local peaks in place cell density in an iterative and sequential

manner (Figure 7H). In both the model and our data, a peak in

place cell density initially emerges at the sensory cue nearest

the start (1 m), and over several training sessions, the place

cell map tiles the gap between 1 m and 3 m, eventually forming

a second peak at 3 m (Figure 4C). Interestingly, our model pre-

dicts that an odor cue cannot be recognized as a landmarkwithin

an extant cognitive spatial map if its distance froma proximal cue

is much greater than the decay length scale of the place cell

representation, which is approximately 2 m.

DISCUSSION

For most organisms, olfaction is the central sensory modality by

which they communicate with their environment. We have exam-

ined the role of olfaction in the generation of a cognitive spatial

map essential for navigation. The interaction of path integration

and visual landmarks in the control of place cells and navigation

has been extensively studied(Poucet et al., 2014; Savelli and

Knierim, 2019). However, interpretation is complicated by the

fact that visual features (real or virtual) can be seen at a distance,

have inherent spatial dimensions, and can be used to estimate

velocity using optic flow and parallax motion. Previous studies

have established that olfactory cues in concert with path integra-

tion, in the absence of visual information, can support place cell

representations in the hippocampus (Radvansky and Dombeck,

2018; Save et al., 2000; Zhang and Manahan-Vaughan, 2015). In

these studies, the odor cues were either not confined to a spe-

cific location or were presented as spatial gradients over a virtual

track. Therefore, the specific contributions of sensory cues and

path integration in the formation of the place cell representations
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were not clearly discernible. We have recorded the activity of a

large number of neurons in CA1 during an olfactory-guided nav-

igation task with localized odor cues and observed the process

by which internal path integration imposes a spatial meaning

onto an odor cue to create a landmark. This experimental para-

digm allowed us to observe the convergence of olfactory infor-

mation and internal path integration signals in the hippocampus

during the emergence of place cell representations. The emer-

gence of these place cell representations correlated with an

increase in the accuracy of navigational behavior.

First, we found that internal path integration alone, in the

absence of sensory cues, cannot support stable place fields or

accurate navigation over distances longer than �2 m from the

start of the virtual track. As the animal moves further from the

start landmark, the rapid decline in place cell density is consis-

tent with the accumulation of errors in the internal path integra-

tion signals. The presentation of an odor cue at 1 m leads to

the formation of a new peak in place fields at that location and

thus a new spatial landmark. Different odors at the same 1-mdis-

tance along the track result in the activation of different place cell

ensembles. Therefore, the spatial representations generated by

olfactory landmarks do not represent distance alone but instead

the convergence of path integration and olfactory sensory

features.

In addition, we observe that the enhanced place cell represen-

tation generated by odor cues at 1 m leads to an increase in the

density of place fields beyond 1 m. This implies that the number

of place cells active at one location influences the number of

place cells active at subsequent locations. In the absence of

new sensory information, this influence diminishes as the path

integrator becomes progressively less accurate. Place field den-

sities show a qualitatively similar rapid decrease as a function of

distance from either the start location or from the location of

olfactory landmarks. Thus, the presence of olfactory cues

appears to reset internal path integration signals.

The ability of an odor cue to serve as a spatial landmark de-

pends on the accuracy of the path integrator at positions leading

up to the odor location. When the same odor cue is present at

two different locations, 1 m and 3 m, the cue nearest the starting

position is the first to generate a unique place cell representation

and appears to reset the path integrator. Over several days of

training, place fields are generated that span the gap between

the two spaced, but identical, odor cues. Only then does the

odor cue at 3 m generate a distinct place cell representation

and an additional peak in the density of place fields at 3 m.

The gradual and sequential extension of place fields over the

entire virtual track and the improvement in navigational accuracy

reflect the disambiguation of two identical odor cues as distinct

spatial landmarks. Thus, the same sensory features present at

multiple locations can be identified as unique landmarks by an

iterative process that relies on path integration.

Our experiments demonstrating that path integration and odor

cues interact to form a cognitive spatial map in CA1 motivated a

model in which reciprocally connected path integrators and

place cells generate spatial selectivity via bidirectional plasticity.

The model we propose explains how place cell ensembles in the

hippocampus can be generated at the site of spatial landmarks

through the coincidence of localized odor information and
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reliable path integration signals. The high dimensionality that re-

sults from a place cell ensemble code implies that a very large

number of unique landmarks can be represented in the hippo-

campus. In addition, our model posits that a landmark represen-

tation in the hippocampus improves the accuracy of path inte-

gration signals via direct feedback projections to the MEC.

Previous models describing the interaction of landmarks and

path integration require dedicated landmark cells (Campbell

et al., 2018; Ocko et al., 2018). Our model does not assume the

pre-existence of cells dedicated to the recognition and represen-

tation of landmarks as abstract spatial features. Instead, the

model postulates that landmark-related activity arises in the hip-

pocampus through the convergence of sensory and path integra-

tion signals. This leads to the recognition and representation of a

given sensory feature as a spatial landmark and then informs path

integration circuits through feedback and plasticity mechanisms.

In conclusion, we have combined CA1 population record-

ings with theoretical modeling to provide evidence for a pro-

cess in which odor cues serve as landmarks that reset noisy

path integrators, enabling the iterative expansion of a cogni-

tive spatial map in the hippocampus. The convergence of

path integration and olfactory landmarks in the hippocampus

allows mice to construct spatial maps that support navigation

over distances far greater than would be possible with path

integration alone.
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Experimental models: Organisms/strains

Mouse: wild type C57BL/6J Jackson Laboratory 000664; RRID:IMSR_JAX:000664

Software and algorithms

nVista Acquisition Software Inscopix, inc. Version 2.0

Mosaic Inscopix, in. 1.1.1b; RRID:SCR_017408

CNMF-E Zhou et al., 2018 https://github.com/zhoupc/CNMF_E

OASIS Friedrich et al., 2017 https://github.com/j-friedrich/OASIS

MATLAB Mathworks https://www.mathworks.com/products/

matlab.html; RRID:SCR_001622

Arduinio IDE Arduino https://www.arduino.cc/en/software

Python 3.6 Python https://www.python.org/;

RRID:SCR_008394

iPython and Jupyter https://jupyter.org/; RRID:SCR_018414

Custom analysis code Python https://doi.org/10.5281/zenodo.5526602

Other

pENN.AAV.CamKII.GCaMP6f.WPRE.SV40 Addene 100834-AAV1

GRIN lens 1.00mm diameter, 4.0mm length Inscopix, inc. Part ID:1050-004595

Miniature fluorescent microscope Inscopix, inc. nVista v2.0; RRID:SCR_017407
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Richard Axel (ra27@

columbia.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Original data have been deposited to Mendeley Data:

‘‘Fischler-Ruiz2021,’’ Mendeley Data, V1, https://doi.org/10.17632/62zmrvt6jy.1

The code used for analysis is available at:

https://doi.org/10.5281/zenodo.5526602

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We report data here from 5 adult male (8-12 weeks old) C57BL/6J mice acquired from Jackson Laboratory. Mice were individually

housed and maintained on a 12 hour reverse light/dark cycle. All experiments were conducted during the dark cycle when mice are

most active. All experiments and surgical protocols were performed in accordance with the guide of Care and Use of Laboratory

Animals (NIH) and were approved by the institutional Animal Care and Use Committee at Columbia University.

METHOD DETAILS

Surgeries
Mice underwent two surgical procedures under isoflurane (1%–2% vol/vol). We injected �500 nL of a 1:3 dilution in PBS of AAV2/1

serotype virus expressing GCaMP6f under the control of the CaMKII promoter (UPENN Vector Core, AAV1.CamKII.GCaMP6f.

WPRE.SV40, titer 1–3 3 1013 vg/ml) with a thin glass pipette into the left hemisphere of dorsal CA1 (–2.2 mm from bregma,

1.6 mm mediolateral, –1.2 mm dorsoventral). 1–2 weeks after viral injection we implanted a 1.8 mm diameter imaging cannula
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(metal cannula with a glass coverslip attached at the bottom, Inscopix part number 1050-002189) over the dorsal surface of CA1

centered on the site of viral injection after aspiration of the overlying cortical area as previously described(Barretto et al., 2011).

We then secured the cannula and a custom metal head bar to the cranium of the mice using dental cement (Dentsply). 1–2 weeks

after cannula implantation we inserted a 1 mm diameter gradient refractory index (GRIN) micro-endoscope (Inscopix part number

1050-002176) into the cannula and a plastic baseplate (Inscopix part number 1050-002192) was cemented into place after confirming

even expression of GCaMP6f in healthy tissue using a miniaturized fluorescent microscope (Inscopix nVista, v2.0).

Virtual odor-guided navigation system
Mice were head-fixed on a spherical treadmill (20-cm diameter Styrofoam ball) rotating on a single axis. The axis of the treadmill

was attached to an analog rotary encoder (US Digital part number MA3-A10-125-B) connected to an Arduino Mega2560. Angular

displacement was converted to a linear distance based on the circumference of the treadmill. A water port consisting of a small

gavage needle (Cadence Science part number 7901) connected to a water reservoir was placed within reach of the mouse’s

tongue. A capacitance touch sensor (Sparkfun part number MPR121) was attached to the water port to measure licking and

the sensor was connected to the Arduino Mega2560. Small 2–4 mL drops of water were delivered by the brief opening a solenoid

valve (Lee Valves part number LHDA 12712154) connected to the water port. Custom Arduino software was used to deliver water

drops at reward locations. Limonene and pinene odor cues were delivered via a custom olfactometer controlled by an Arduino

Mega2560. 10% solutions of limonene (Sigma part number 183164) and pinene (Sigma part number P45680) diluted in mineral

oil (Fisher Scientific part number 0121-1) were added to syringe filters (Whatman part number 6888-2527) and an additional filter

of pure mineral oil was used to provide blank odor stimuli between the 1 s presentations of limonene and pinene cues. Custom

Arduino software was used to control odor valves for switching between limonene or pinene and blank (mineral oil) filters. Two

mass flow controllers (MFCs) were used to maintain a constant airflow of compressed medical grade air for odor delivery. One

MFC was set to deliver air to the odor and blank filters at 0.3 L/min. The other MFC was set at 0.7 L/min to deliver clean air

for a carrier stream. The combined airflow experienced by the mouse was a constant 1 L/min in the absence or presence of limo-

nene and pinene odor cues. The odor or blank air streams and the carrier stream were combined in an 8-port odor manifold (Island

Motion Corporation 020206.0001) connected to one side of a custom odor port that was placed within 2 mm of the nose. A vac-

uum was connected to the opposite side of the odor port. The vacuum line was controlled by an MFC set at 1 L/min to remove air

and odor continuously from the odor port. Speakers delivering white noise at 70 dB were placed in front of the mouse to cancel

out ambient noise and the sound of the valves opening and closing. The entire experimental system was enclosed by black hard-

board (Thorlabs part number TB4) on the sides, Blackout nylon fabric (Thorlabs part number BK5) on the top, and the lights were

kept off in the room to maintain a dark environment. Mice were monitored using an IR camera (Basler A601f) and illuminated using

an IR light.

Measurement of time-varying odorant dynamics
Odor concentrations were measured using a photoionization detector (miniPID 201A Aurora Scientific) placed in the airstream that

was used to deliver odors to the nose of the mice. The 0–10 V output of the PID was converted to a normalized concentration range

plotted in arbitrary units. Measurements were done with the exact same dilutions of odor used in all of the experiments: 10%dilutions

of either limonene or pinene inmineral oil. Flow rates werematched to those used in all experiments: 0.3 L/min odor source combined

with a constant 0.7 L/min or clean air.

Behavior training
After surgeries, the mice were placed on a 12-hour reverse light/dark cycle. All experiments were performed in the middle of the

active (dark) period. The mice were habituated to handling for several days. The mice were then habituated to head-fixation on

the spherical treadmill for several days before being put on water restriction. After 2–3 days on water restriction (�2 mL water per

day), the mice were trained to walk increasing linear distances to receive water rewards. On the initial day of training, the distance

to reward was set at 0.5 m. After the mice were able to complete > 60 trials in one 20-min session (1 session per day) the distance

was gradually increased from 0.5 to 1 m, then from 1 m to 4 m in 1 m increments. After graduating to the 4-m track, the mice were

required to complete R 80 trials in a single 20-min session for 3 consecutive days, at which point we began collecting the data for

these experiments. The 5 mice used in this study achieved these criteria after 4–11 days of training at 4 m.

Reward delivery
Rewards consisted of 2–4 mL drops of water. The delivery of the first reward is triggered when the mice reach 4 m. No licking is

required for the first reward. Each additional reward is triggered by two licks. This design allows the mice to control reward delivery

and avoids a buildup of water at the port. After reaching 4 m, the mice are free to progress on the treadmill and trigger rewards for a

period of 4 s. After 4 s, rewards cease and the next trial begins. Additionally, if the mice traverse more than 1 m within the 4 s period,

rewards cease and the next trial begins (rare). The number of rewards was variable as mice triggered water drops themselves,

excluding the first drop. On each trial, 5–15 drops were typically delivered. Note that there is no explicit signal for the start of

each trial other than cessation of the water reward.
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Imaging and behavioral data collection
At the beginning of each experimental session, mice were head fixed on the spherical treadmill and the miniature microscope

(Inscopix, v2.0) was attached to the plastic baseplate. The field of view containing GCamp6f-expressing neurons was examined

to confirm that the site was alignedwith previous recording sessions. Imaging data were collected at a frame rate of 20Hz. LEDpower

was set between 30%–40%. The data were initially collected at a resolution of 1440 3 1080 pixels and then subsequently down-

sampled by a factor of 4 for further analysis.

Processing of imaging data
Calcium imaging movies were preprocessed using the Mosaic software package (Inscopix). During preprocessing, movies were

spatially cropped to fit the imaging site and motion corrected. Individual neurons were isolated using the publicly available

CNMF-E MATLAB package(Zhou et al., 2018). The calcium signals extracted using CNMF-E were then deconvolved using the

publicly available OASIS algorithm(Friedrich et al., 2017). The inferred activity yielded by OASIS (denoted by s in OASIS) was

used for analysis in this study.

Behavioral data processing and alignment to neural activity
We used custom Arduino software to convert rotary encoder signals to a virtual linear distance and speed was calculated over rolling

200 ms time windows. Lick detection from touch sensor signals was aligned to virtual distances. A TTL pulse was sent to the Arduino

Mega2560 from the microscope on the acquisition of each imaging frame to align neural activity to virtual distance, speed, and

licking. Signals for the opening and closing of odor and water reward valves were recorded by Arduino Mega2650 and aligned to

behavior and activity data.

Spatial binning and selection of trials for analysis
For all analyses except for decoding-related analyses, aligned behavioral and imaging data were averaged within spatial bins of

100 mm on each trial, yielding a total of 40 spatial bins. We excluded the first bin (0–100 mm) to limit our analyses to periods

when the mice were actively running toward the reward location. In all analyses, we excluded any data after initiation of the initial

water reward, so all licking shown is pre-reward. Because there was no explicit signal for the start of the experiment other than

the termination of the water reward, several 4 m reward crossings were typically required before mice showed engagement with

the task. Thus, the first 5 trials for each trial type in a session were excluded. We analyzed trials 6–30 for each trial type. During

pre-training, the mice performed sessions with > 60 trials, but only trials 6–30 were analyzed for consistency with Ca2+ imaging

sessions.

Behavioral quantification (lick ratio and lick rate center of mass)
To quantify behavioral performance, we computed a lick ratio using the spatially binned lick rate. On each trial, we computed the ratio

of themean lick rate over the last 3 spatial bins (3.7–4m) to themean lick rate over the last 30 spatial bins (1–4m). Thus, the lick ratio is

unity when licking is uniform across the track andmaximized (lick ratio = 10) when licking is withheld until 3.7–4 m. The first 10 spatial

bins (0–1m) were excluded from the analysis since, toward the beginning of the track, mice often continued to lick following the most

recent reward. To assess the dependence of licking behavior on trial-to-trial velocity deviations, we computed the center of mass of

the spatially binned lick rate on each trial, excluding the first 10 spatial bins (0–1 m) from the computation.

Place cell analysis
Place cells were classified using the spatially binned neural data according to the following procedure. First, the track was divided

into 4 approximately equal-length segments: 0.1–1.1m, 1.1–2m, 2–3.1m, and 3.1–4m. These segments consisted of 10, 9, 11, and 9

spatial bins, respectively (for a total of 39 bins rather than 40, since the first bin was excluded from analysis). Candidate place cells

had at least one segment in which two criteria were simultaneously satisfied: (1) a bin had trial-average activity greater than 3 times

the trail-average activity over the whole track, and (2) a bin had z-scored activity greater than 1 in more than 25% of trials (7 or more

trials). We z-scored neural activity prior to spatial binning. If condition (1) was met in both the 1.1–2 m and 3.1–4 m segments and the

bin of peak trial-average activity fell in one of these ranges, the cell was not classified as a place cell (such neurons are described in

the text as ‘neurons that responded at both sites of odor presentation’). Otherwise, the cell was classified as a place cell. This

procedure selects cells with consistent spatially localized activity. A place field’s center was taken to be the spatial bin with peak

trial-average activity, excluding the first bin.

To assess the false-positive rate of our place cell selection procedure, we performed shuffling tests. To shuffle the data, we used

both circular permutations, which preserved the spatial autocorrelation of each neuron’s activity, as well as arbitrary permutations,

which destroyed all spatial structure. These methods resulted in similar shuffled distributions of place cell counts (Figure S1F). On

shuffled data, our procedure selected 1–2 orders of magnitude fewer place cells than on unshuffled data. No shuffles yielded

more place cells than yielded by unshuffled data. We conclude that the false-positive rate of our procedure is low, and that the place

cell counts reported in the text are significant with respect to shuffled distributions.

We also performed a test specifically designed to reveal a potential bias against selecting place cells at boundaries between 1-

m bins (Figure S1G). Using circular spatial shifts, we moved the bin of peak trial-average activity for each cell to either 1 m or 3 m.
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As a result, all place cells selected by our procedure had centers at 1 m or 3 m. Rather than drastically reducing the number of

place cells, shifting the data yielded slightly larger numbers of place cells. It is therefore unlikely that the proposed bias affected

our results.

Characterization of place cell quality (reliability, jitter, and width)
Place field reliability was defined as the fraction of trials on which the z-scored activity for a given place cell was greater than unity

within ± 1 spatial bin (100 mm) of the place cell’s center. Neural activity was z-scored prior to spatial binning. For artificial place

cells in our computational model, place field reliability was defined as the fraction of trials on which a place cell had activity greater

than a threshold (0.15) at its central location. Place field jitter was defined as the root-mean-square difference between a place

field’s center and its center on single trials (location of peak single-trial activity). For jitter computation, activity outside of ± 10

spatial bins of a place field’s center was zeroed out, and trials on which a cell was not active within ± 10 bins of the center

were excluded from the calculation. Finally, to avoid confusing jitter with place field expansion, we computed width on a sin-

gle-trial basis. On each trial, we computed a width by dividing the sum-total activity by the peak activity. These single-trial values

were then averaged across trials to obtain a place field’s width. As in the computation of jitter, activity outside of ± 10 spatial bins

of a place field’s center was zeroed out, and trials on which a cell was not active within ± 10 bins of the center were excluded from

the calculation.

Correlation between fluctuations in the numbers of active places cells at the 1-m and 3-m odor cues
On a given trial, we defined the number of place cells active at the 1-m (3-m) odor cue to be the number of place cells with centers

between 1.2 m and 2 m (3.2 and 4 m) whose z-scored activity was greater than one within +- 1 bins of the center bin (0.1 m bins). We

z-scored this quantity within each mouse, odor type, and location (i.e., 1 m or 3 m). We plot the correlations in these z-scored

quantities for each mouse and pooled across mice.

Population vector analyses
The stability of the vector of population activity across trials was computed as follows. First, using the spatially binned neural data, we

computed the even- and odd-trial-average population vectors at each spatial bin. Then, we computed at each bin the element-wise

Pearson correlation between the two vectors. To analyze remapping, we performed a similar analysis, but computed the element-

wise correlation between the even-trial-average population vectors for different odor types. To analyze the gradual orthogonalization

of the population responses evoked by the 1-m and 3-m odor cues, we computed the correlation between the trial-average popu-

lation vectors at locations x and x+ 2m for 0.1m% x% 2m, as described in themain text. The first bin (0–100mm)was excluded from

this analysis as usual.

Position decoding
We used a naive Bayesian decoder to decode position from neural activity. In the signal extracted from the Calcium imaging data,

each neuron’s activity is related to its true spiking activity by an unknown proportionality constant. However, the value of zero is non-

arbitrary and corresponds to the neuron being silent. We therefore performed the decoder analysis on binarized neural data, assign-

ing ‘1’ to time bins where the inferred activity was positive and ‘0’ otherwise. Time bins were 50 ms, corresponding to the 20 Hz im-

aging frame rate. We modeled the i-th neuron’s activity, denoted by ni, using a Bernoulli spiking model with a position-dependent

spike probability denoted by ri(x). That is, p(ni|x) �Bernoulli(ri(x)). In turn, ri(x) was given as the spike probability (across training set

trials) of the i-th neuron at position x, where position was binned in 50 mm bins, and the trial-average activity was smoothed using

a Gaussian kernel (s = 0.2 m). In bins in which ri(x) was less than a minimum spike probably pmin, we set ri(x) = pmin, a form of reg-

ularization (pmin = 10�4). We used 15 bins of neural activity (total of 750 ms), centered at the current time step, to decode position

at each time step. The key assumption of the naive Bayesian decoder is that neural responses are conditionally independent given

position, so that p(n1:N|x) =
Q

ip(ni|x). The decoded position estimate at time t was computed as bxt = arg maxx p(x|n1:N) = arg maxx
p(n1:N|x), assuming a uniform prior on position. We used leave-one-out cross validation. On days with two odor conditions (days

1–4), we fit the decoder using only trials of the same odor condition. Thus, the decoder was always fit using 24 trials and evaluated

on one. We began decoding at 100 mm.

Reversion to the mean velocity analysis
We computed the error of the decoder on the i-th trial as εi =

1
Ti

R Ti

0 xdec;i tð Þ � xi tð Þ
� �

dt, where xdec,i(t) is the decoder output, xi(t) is the

mouse’s actual position, and Ti is the duration of the i-th trial. Thus, εi is positive when the decoder overestimates position on average

and negative when the decoder underestimates position on average. Note that we use the RMS decoder error, rather than the

‘signed’ error described here, to measure the overall performance of the decoder. The velocity deviation on the i-th trial was

computed as Dvi = vi - vavg, where vi = (3.9 m)/Ti and vavg = (Sivi)/25. We used 3.9 m instead of 4 m since this analysis excluded

the first 100 mm of the track. To obtain the slope of the relationship between decoder errors and velocity deviations corresponding

to a total reliance on the average velocity, we computed each εi by using the trial-average position for the decoder output: xdec,i(t) =

(Sixi(t))/25. Then, we fit a line to the relationship between the resulting εi’s and Dvi’s and extracted the fitted slope.
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A model of place cells driven by and interacting with path integrators
Model place cells receive inputs that are modulated by a set of locations estimated by path integration (Figure 7a). All of the model

place cells receive the same set of 100 spatially tuned inputs with firing rates fi(xi) for i = 1, 2, ..., 100. Each function fi is generated

initially by a Gaussian random process, using a Gaussian kernel with length constant 0.35 m, and then held fixed. Each variable

xi(t) is an independent noisy estimate of the location of the animal at time t, obtained by integrating a noisy estimate of the animal’s

velocity with added white-noise fluctuations. Specifically, on each trial, velocities for these integrators are chosen from a Gaussian

distribution around the true velocity of the animal, taken to be 0. 4 m/s, with a standard deviation of 0.05 m/s. In addition, Gaussian

white noise was added to the integrated velocity, configured to produce a standard deviation of 0.175m after 1 s. This causes each xi
to differ from the others on every trial and also to vary from trial to trial. As a result, the modulated inputs, fi(xi(t)), are also different and

vary from trial to trial. These fluctuations increase as a function of t as the animal moves along the virtual track because the integrator-

to-integrator and trial-to-trial variance of the location estimates increases as a function of the integration interval. Additionally, each

integrator is randomly initialized at the starting location using a zero-mean Gaussian with standard deviation 0.2 m.

The input to place cell a, for a = 1, 2, ..., 150, is Siwai fi(xi(t))/|f(x(t))|, where the expression in the denominator is the norm of the vector

with components fi(xi(t)), and wai is the weight of the input from integrator i to place cell a. A threshold of 0.55 is subtracted from this

input, and the place cells firing rate, ra(t), is determined by rectifying the result. Independent Gaussian noise with standard deviation

0.055 is applied to each place cell’s threshold at each time step.

When a place cell is subject to plasticity, we choose a time ta* for this plasticity to take place, simulating the effects of a dendritic

plateau potential(Bittner et al., 2015; Bittner et al., 2017). We denote the values of the path integrators at this time and on this trial by

xi*(ta*). The result of this plateau is that the weights to model place cell a are set towai = fi(xi*(ta*))/|f(x*(ta*))|, i.e., the input at time of the

plateau. Following this plasticity, the input to place cell a is equal to the cosine of the angle between the vector f(x*(ta*)) (the input

vector at time t* on the trial when the plasticity occurred) and the vector f(x) at the current time on the current trial. If the place cell

happened to form near the start of the virtual track, it is likely that it will fire on subsequent trials because the vector f(x) only fluctuates

by a small amount from trial to trial when the integrators only have to integrate over a short distance. If, on the other hand, the place

cell formed at a larger distance from the start, the larger fluctuations in f(x) from trial to trial cause a poormatch to theweights and, as a

result, the place cell is unlikely to fire. This is the reason that reliable place cells only form across the first 2 m of the virtual track.

For comparisonwith our experimental data, we ran themodel using artificial notions of days and trials.We used 5 artificial dayswith

80 artificial trials per day. Odor landmarks were present on all days except the first. On each trial, 3 cells have plateau potentials. If

such a cell is active on the next trial, its status as a place cell is cemented and it is no longer subject to plasticity. Otherwise, it

becomes subject to plasticity once again. On each day, a maximum of 80 place cells can form. Using the parameter settings

described here, all 80 place cells successfully formed on each day.

Thus far, we have described the connections from the path integrators to the place cells, but there are connections from place cells

to path integrators in the model as well (Figure 7a), and these are also plastic. When plasticity acts on the inputs to place cell a, we

imagine that it also acts on the inputs from that place cell back to the path integrators. This is assumed to be similar to the plasticity

discussed in reference(Campbell et al., 2018), but we do not model this circuit in full, focusing instead on the results of this plasticity.

The effect of this plasticity is that the value x*i(ta*) is stored in synapses from place cell a to a path integrator i. Specifically, if an odor is

present at time todor, which we assume gates the effect of place cells on the path integrators (Figure 7a), path integrator i is reset to

xi(todor) = Sax*i(ta*)ra(todor)/Sa ra(todor). The result of this resetting is that, after the odor appears, the trial-to-trial variability of the path

integrator estimates is greatly reduced. This consistency produces a better match between the weight vectors of place cells formed

beyond the odor location and the input vectors generated by the path integrators. The result is that reliable place cells can now form

along the entire virtual track (Figure 6E).

Statistical analysis
Data analysis and computational modeling were performed using MATLAB and Python.

To assess changes in place cell proportions, we used Pearson’s x2 tests. In caseswhere this test yielded a P value of exactly zero in

MATLAB (using the ‘chi2cdf’ function), we report p < 10�16. To assess the significance of correlations in Figures 2K and S1Mwe used

two-sided t tests. To assess differences in a quantity between two unpaired groups, we used two-sidedWilcoxon rank-sum tests. To

assess whether two fitted slopes were different, or whether a fitted slope was less or greater than some value, we used one-sided

bootstrap tests with 10,000 bootstraps. In caseswhere no bootstraps were in favor of the null hypothesis, we report p < 10�4. To fit an

exponential function to place cell densities, we used a standard curve fitting function. We used 10,000 bootstraps to place error bars

on length constants and to compare different length constants. In order to correct for multiple comparisons, we apply Bonferroni

corrections by multiplying raw P values by the number of comparisons. In cases where this yielded a corrected P value greater

than unity, we report p = 1. No statistical methods were used to predetermine sample sizes.
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