
Limits on the memory storage capacity of
bounded synapses
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Memories maintained in patterns of synaptic connectivity are rapidly overwritten and destroyed by ongoing plasticity related to the
storage of new memories. Short memory lifetimes arise from the bounds that must be imposed on synaptic efficacy in any realistic
model. We explored whether memory performance can be improved by allowing synapses to traverse a large number of states
before reaching their bounds, or by changing the way these bounds are imposed. In the case of hard bounds, memory lifetimes
grow proportional to the square of the number of synaptic states, but only if potentiation and depression are precisely balanced.
Improved performance can be obtained without fine tuning by imposing soft bounds, but this improvement is only linear with
respect to the number of synaptic states. We explored several other possibilities and conclude that improving memory
performance requires a more radical modification of the standard model of memory storage.

The idea that memories are stored through long-lasting modifications
of synaptic strengths within neural circuits has become a basic postulate
of neuroscience. Experimentalists have made great strides in providing
evidence for this viewpoint1,2, and theorists have added further sup-
port3,4. In particular, theorists have shown thatmodels using long-term
synaptic plasticity as a storage mechanism can retain enormous
numbers of memories for long periods of time. The models used to
establish this result involve many simplifying assumptions and not-so-
realistic features, but it has generally been believed that their impressive
memory performance is not an artifact of these simplifications and
would generalize to more realistic models. Unfortunately, this is not
true. The remarkable memory capacity of the classic neural network
models depends critically on one of their least realistic features, the fact
that their synapses are unbounded. Modifying this single feature by
placing reasonable bounds on synaptic efficacies reduces memory
capacity in these models so drastically that it shakes the entire
theoretical underpinnings supporting the link between memory (and
learning) and long-lasting modifications of synaptic strength5–7.
The dominant factor that causes memory traces to decay over time in

models5–7, experiments involving in vitro8–12 and in vivo12–19 synaptic
modification, and psychophysical studies20–22 is overwriting of the
synaptic modifications representing the memory by ongoing plasticity.
This can occur due to synaptic modifications arising from spontaneous
activity, or synapses retaining a trace of one memory can be overwritten
when other memories are stored that share some of the same synapses as
the first memory. We use the term ‘ongoing plasticity’ to refer to both of
these effects. In the models we consider, the rate of ongoing plasticity
events, whichwe denote by r, is a critical parameter that sets the scale for
memory lifetimes. It is difficult to know what value r takes, but it can be
estimated. For example, spike pairings suitable for inducing synaptic

potentiation or depression through spike timing–dependent plasticity
(see, for example, ref. 23) caused by pre- and postsynaptic neurons
firing at 1 Hz occur about once a minute. We keep r as an unknown
factor that sets the scale for the memory lifetimes we compute, but we
estimate that 1/r lies somewhere between 10 and 100 s.
To study how quickly memories are forgotten, we focus on one

particular memory and track its mnemonic trace in the presence of
ongoing plasticity. We isolate the synapses that are modified during
storage of the specific tracked memory, and we determine the rate at
which these synapses return to an equilibrium distribution and the
memory trace is lost. To simplify this calculation, we assume that
ongoing plasticity that is due to spontaneous activity and to the storage
of new memories is uncorrelated with the plasticity that stored the
particular memory we are tracking.
Previous work has shown that ongoing plasticity causes an expo-

nential degradation ofmemory traces if synaptic efficacies are restricted
to lie within realistic ranges5–7,24. We refer to the time constant
governing this exponential decay as the memory lifetime and denote
it by t. Memories can only be recovered from a population of
n synapses for a time of order t ln(n) after they have been stored5–7

(see also Methods). Because the lifetime t is proportional to 1/r, which
we estimate to be around 1 min, and the logarithm is such a slowly
increasing function, memory capacity is extremely small even if n
includes every synapse in the brain. Two methods come to mind for
evading this catastrophe. One is to require synapses to traverse many
different states before they reach their bounds. It has been suggested
previously that this might improve memory performance signifi-
cantly6. Here we show that this improvement is not robust. The
other, which we also explore, is to modify how the bounds that limit
the range of synaptic efficacy are implemented. It should be stressed
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that neither of these changes affects the logarithmic dependence of
memory capacity on the number of synapses used to store the
memories. Changing this requires a more dramatic shift in the way
synapses store memories25. Instead, we explore here whether the
coefficient t multiplying the logarithmic dependence can be increased
enough to compensate for the severe limits on memory capacity in
models without such metaplasticity.

RESULTS
Studying memory storage, maintenance and retrieval by neural circuits
raises numerous questions and problems for both theoretical and
experimental investigation. We attempted to reduce the number of
issues and uncertainties by taking an ‘ideal observer’ approach25.
Rather than constructing a hypothetical neural network that stores
and recovers memories through synaptic modification, we directly
track the states of the synapses that such a network would use. In other
words, we model how synapses are modified during both memory
storage and ongoing activity and ask whether a memory trace can be
detected within this population of synapses by examining the synapses
directly, rather than by examining the output of network neurons. Of
course, we are not proposing that neural circuits directly measure
synaptic strengths as we do. Rather, our approach extracts an upper
bound on memory performance that optimal circuits may approach
but that no circuit can exceed. The advantage of this approach is that it
allows us to determine the strength and lifetime of memory traces
without having to speculate about how neural circuits actually recover
and reveal those traces.
We characterize the strength of each synapse by a weight parameter,

w, that falls between 0 and 1. Thus, we measure synaptic strength in
units of the maximum possible synaptic efficacy. When synaptic
plasticity occurs, the synapse is modified according to

w ! w + q+ðwÞ or w ! w # q#ðwÞ ð1Þ

for potentiation and depression, respectively. The expressions q+(w)
and q–(w) represent weight-dependent factors that determine the size
of the potentiation and depression modifications.
In addition to the rate of ongoing plasticity, r, we needed to know the

relative amounts of potentiation and depression making up the
ongoing plasticity. We denote the probability of plasticity being
potentiating as f+ and the corresponding probability for depression
as f–, with f+ + f– ¼ 1. The rates of events that cause potentiation and
depression are thus rf+ and rf–, respectively.
With these parameters defined and set to particular values, we can

proceed to examine the memory storage properties of populations of n
synapses. We subject these synapses to continuous modifications at the
rates given above until an equilibrium configuration is achieved. This
equilibrium is characterized by constant distributions of synaptic
efficacy, although modification of individual synapses is still proceed-
ing. We denote the average value of synaptic efficacy at equilibrium by
!w. We then introduce a particular memory that we will track over time
to study features of memory storage. It should be stressed that this
particular memory is no different from any of the other memories
whose storage is represented by the ongoing synaptic modifications,
nor is it the only memory being stored by the system. It is just a
particular memory that we happen to choose to monitor.
The tracked memory is initially stored by imposing a pattern of

synaptic potentiations and depressions on the population of synapses.
At any later time, we define the memory trace or ‘signal’ as the average
distance separating the potentiated and depressed synapses from their
equilibrium values. In other words, the memory signal for n synapses is

S ¼ 1

n

X

i¼ pot

ðwi # wÞ #
X

i¼ dep

ðwi # wÞ

 !

ð2Þ

where the sums are over all the synapses potentiated (first sum) and
depressed (second sum) by the memory event being tracked. Note that
the average value of the synaptic strengths does not have to be altered
by memory storage. The tracked memory is detectable only because we
have divided the population of synapses into two groups on the basis of
whether they were potentiated or depressed during the storage of this
particular memory.
The signal given by equation (2) must be detected despite the fact

that synapses are continually changing their values as a result of
ongoing plasticity, which causes the memory signal to fluctuate and
degrade. The fluctuations introduce a ‘noise’ N, defined as the s.d. of
the signal (see Methods). The detectability of the memory trace is
determined by the signal-to-noise ratio, S/N. Specifically, we use two
quantities to characterize the quality of memory storage25: the initial
signal-to-noise ratio right after the tracked memory is stored, labeled
S0/N0, and thememory lifetime t, which is the time constant describing
the exponential decay of the memory signal-to-noise ratio over time6,7.
S0/N0 gives the strength of the initial memory trace and t controls how
long it is detectable, as discussed in the introduction. Our primary
interest is in the memory lifetime, so we concentrate on that quantity,
but we report S0/N0 values as well to verify that the memory trace for
which we are reporting a given lifetime is detectable.
To compute the memory signal given by equation (2), we need to

split the population of synapses into two groups: those potentiated and
those depressed by the tracked memory. This is what we do for all the
mean-field simulations (see Methods). However, when we discuss and
compute memory lifetimes, we keep track of only one of these two
groups, the group potentiated by the tracked memory. We do this
because the analysis for the depressed group of synapses is identical to
that for the potentiated group, except for obvious reversals of the roles
of potentiation and depression. In particular, the lifetimes we report for
the potentiated group of synapses apply equally to the depressed set if
the parameters for depression and potentiation are interchanged.
A basic issue we explore is whether memory lifetimes can be

increased by reducing the amount by which each potentiation and
depression modifies synaptic efficacies. The idea is that smaller changes
are less destructive to a stored memory6,7,26,27. We use a parameter a to
characterize the magnitude of each potentiation or depression, and
many of our results are expressed in terms of this parameter. There are a
number of ways in which a can be interpreted. For the description we
use here, the entire allowed range of synaptic efficacy, from the weakest
allowed synapse to the strongest, defines 1 unit of synaptic strength. In
these units, a sets the scale of the efficacy change induced by a single
plasticity event. We consider the case when the range of synaptic
efficacies is kept fixed and the plasticity step size, controlled by a, is
modified. Alternatively, the plasticity step size could be held fixed and
the allowed range of efficacies could be expanded proportional to 1/a.
The results we report for memory lifetimes apply to either case. Our
results for the initial signal-to-noise ratio, however, should be multi-
plied by 1/a if this latter interpretation is used. In either case, the
number of unitary plasticity events of a given type (potentiation or
depression) required to move the synapse from one limit of its efficacy
range to the other is proportional to 1/a. We typically treat synaptic
efficacy as a continuous variable taking any value in the allowed range,
but our results apply equally to cases in which synaptic strength only
takes a numberm of discrete values corresponding tom synaptic states.

486 VOLUME 10 [ NUMBER 4 [ APRIL 2007 NATURE NEUROSCIENCE

ART ICLES
©

20
07

 N
at

ur
e 

Pu
bl

is
hi

ng
 G

ro
up

  h
ttp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e



In this case, 1/a is equivalent to m. In other words, reducing a can be
interpreted as increasing the number of synaptic states.
Having described the framework we use, we now explore how

different plasticity modification functions, q+(w) and q–(w), affect
memory performance. Recall that the poor memory performance
in the class of models we are studying arises from the presence of
bounds on the synaptic strengths that store the memories. We will
focus on two aspects of plasticity: the magnitudes of q+(w) and q–(w)
and their dependence on the synaptic strength w. Studying the first
allows us to see whether memory performance can be improved by
forcing the synapse to step through many states before it reaches a
boundary. The second aspect relates to the question of whether
modifying the way in which bounds on synaptic strength are imposed
can improve memory performance.

Hard bounds
We begin by considering the so-called hard boundary case in which the
step sizes for potentiation and depression are constant, independent of
the synaptic weight,

q+ðwÞ ¼ q#ðwÞ ¼ a ð3Þ

within the range 0 o w o 1, and the boundaries at w ¼ 0 and w ¼ 1
are imposed by truncating any transitions that would take a
synaptic weight outside the allowed range between 0 and 1. (We
could allow for different values of a for potentiation and depression,
but any such differences can be absorbed into the factors f+ and f–
that we have introduced, so we do not consider this further.)
Memory storage under these conditions is illustrated in Figure 1,
which shows histograms for the population of synapses potentiated by
the tracked memory.
We distinguish two cases in Figure 1: the balanced case when

potentiation and depression are equally likely (f+ ¼ f–, Fig. 1a), and
the unbalanced case in which they are not (f+ a f–, Fig. 1b). In the
balanced case, the equilibrium configuration for synaptic strengths
before storage of the tracked memory is uniform (Fig. 1a, left),
indicating that synaptic strengths are equally likely to take any of the
allowed values. In the distribution immediately after this set of synapses
has been potentiated during the storage of the tracked memory
(Fig. 1a, middle), potentiation of the synapses has emptied the left-
most bin and moved the excess into the right-most bin. At a time
t ¼ 50/r after the tracked memory was stored, the distribution of
synaptic weights has returned to its equilibrium configuration, and no
trace of the storedmemory remains. Recalling that we estimate 1/r to be

of order 1 min, this illustrates the short memory lifetime in models
with bounded synapses.
The lower row of panels in Figure 1a illustrates the improvement in

memory lifetime caused by reducing the potentiation step size by a
factor of 2. The left, middle, and right panels show the distribution of
synaptic strengths at the same times as the upper row of panels. In this
case, the distribution of synaptic strengths has not yet returned to
equilibrium by the time t ¼ 50/r shown in the rightmost panel,
indicating that the memory trace had not yet vanished. Thus, halving
the step size for potentiation improved the memory lifetime6. This
improvement provided the motivation for our study, because we
wondered how general and robust it was.
A simple argument can explain the improved memory lifetime

(Fig. 1a). When potentiation and depression are balanced, the random
walk in the space of synaptic weights due to ongoing plasticity is
unbiased, so the return to equilibrium is a diffusion process. In other
words, when the synapses move up and down by the same average
amount, their evolution is described by a random walk without drift.
This description is not valid when the randomwalk hits the boundaries,
but we use it as an approximation to estimate the motion between the
boundaries. Each new plasticity event represents a step in this random
walk, and in time t there are rt such steps. The distance traveled by a
random walk of step size a in rt steps is of the order of a

ffiffiffiffi
rt

p
. Memory

storage moves a block of synapses all the way from the leftmost bin of
the strength histogram to the rightmost bin (Fig. 1a, middle panels).
Thus, the effects of the storage of the tracked memory will be erased
roughly when the randomwalk has had time to move these synapses all
the way across the histogram, a distance of 1. This occurs when
a

ffiffiffiffi
rt

p
% 1, from which we find the memory lifetime to be t E 1/

(ra2). Thus, in the balanced case, thememory lifetime grows as 1/a2, the
inverse of the square of the plasticity step size.
When potentiation and depression are not balanced, the equilibrium

distribution is not flat, but rather exponential (Fig. 1b, left). In the
case shown, f+ o f–, so the equilibrium distribution is skewed toward
the lower bound of synaptic strength. When the memory is stored
(Fig. 1b, middle), the distributions for both values of a (upper and
lower panels) shift one bin to the right. In this unbalanced case, both
distributions return to equilibrium and the memory trace has dis-
appeared by the time t ¼ 50/r, corresponding to the rightmost panels.
Thus, the advantage of a smaller potentiation step size that we found
when potentiation and depression were balanced disappears in the
unbalanced case.
When potentiation and depression are unbalanced, the randomwalk

that erases the memory trace is biased away from the middle of the
synaptic range, producing an overall drift of the system at a speed ar
(the contribution of the much slower diffusion is negligible in this

F

F

W
0 1

0 1 0 1 0 1

0 1

0 1

0 1

0 1

0 1

W W

W W W

F

F

a

b

Figure 1 Distributions F of strength for synapses potentiated by the tracked
memory and constrained by hard bounds. In both a and b, the upper row of
panels corresponds to a ¼ 1/8 and the lower row to a ¼ 1/16. The bin sizes
are set equal to the value of a, so potentiation shifts synapses one bin to the
right in both cases. The left panels show the synaptic strength distribution at
equilibrium, before the tracked memory is stored. The distribution is uniform
and the tick marks outside the frames indicate the height of the bins at
equilibrium. The middle panels show the distribution immediately after the
tracked memory has been stored, and the right panels show the distribution
at a time t ¼ 50/r after memory storage. The scale for F is such that the total
area under the histogram is 1 in all cases. (a) Balanced potentiation and
depression ( f+ – f– ¼ 0). Memory lifetime is longer for smaller values of
a (lower row of panels). (b) Unbalanced potentiation and depression
(f+ – f– ¼ –0.2). Memory lifetime is no longer improved by making a smaller.
In the upper row of panels, the x axis has been scaled by a factor of 2.
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case). In addition, as can be seen from the
middle column of panels in Figure 1b, mem-
ory storage in the unbalanced case moves the
histogram only one bin to the right, a distance
a. The time required to undo this shift is then
determined by art¼ a, which gives a memory
lifetime of t ¼ 1/r, which is independent of a.
Thus, in the unbalanced case, there is no
advantage in terms of the memory lifetime
when the step size for plasticity is decreased.
Memory performance, quantified by the

memory lifetime t and the initial signal-to-
noise ratio S0/N0, in both the balanced and
unbalanced cases is illustrated in Figure 2.
The memory lifetime is defined as the time
constant of the slowest exponential compo-
nent in the convergence to the equilibrium distribution. We deter-
mined t both by fitting an exponential function to the signal-to-noise
ratio for large times and by numerically computing the subdominant
eigenvalue of the matrix of synaptic transitions (see Methods). The two
results were almost identical, so we plot only the one obtained from the
subdominant eigenvalue. As a decreases, t continues increasing quad-
ratically over the whole interval shown in Figure 2a only when
potentiation and depression are perfectly balanced. If the balance
between the effects of potentiation and depression is not maintained,
the improvement due to reducing the potentiation step size becomes
negligible (Fig. 2a,b). The initial signal-to-noise ratio is proportional to
a in the balanced case and tends to a nonzero constant in the
unbalanced case (Fig. 2c). The latter is due to the fact that both the
signal and the noise go to zero at the same rate as a decreases.
We have described two effects of plasticity step size on memory

lifetime depending on whether the plasticity is balanced or not, but
what determines the degree of balance that separates these two
behaviors? We can answer this question by computing the memory
lifetime analytically. This is done by describing the ongoing plasticity
that degrades the tracked memory as a Markov process. The detailed
calculation is given in the Supplementary Methods online. Briefly, the
decay of the memory trace is controlled by the subdominant eigenvalue
lM of the Markov matrix describing ongoing synaptic modification,
specifically t ¼ 1/(r(1 – lM)). When the potentiation step size is small,
the resulting lifetime is

t ¼ 1

rð
ffiffiffiffi
f+

p
#

ffiffiffiffiffi
f#

p
Þ2 + a2p2r

ffiffiffiffiffiffiffiffi
f+f#

p ð4Þ

This illustrates the two behaviors we have been describing. When f+ is
close enough to f– so that the second term in the denominator
dominates over the first term, the memory lifetime is approximately

t % 1

a2p2r
ffiffiffiffiffiffiffiffi
f+f#

p ð5Þ

which grows with decreasing a like 1/a2. However, if the first term
dominates, we have

t % 1

rð
ffiffiffiffi
f+

p
#

ffiffiffiffiffi
f#

p
Þ2

ð6Þ

which is independent of a. For any nonzero degree of imbalance
(f+ – f– a 0), no matter how small, there is a point beyond which

reducing a does not enhance memory lifetime quadratically. The
requirement for approximately quadratic improvement is

a4
j

ffiffiffiffi
f+

p
#

ffiffiffiffiffi
f#

p
j

pðf+f#Þ
1
4

ð7Þ

In summary, decreasing the plasticity step size leads to improved
memory lifetimes only when synaptic potentiation and depression
are balanced against each other, and for any degree of imbalance there is
a minimum step size below which no further improvement in memory
performance occurs.
Notice that in our analysis we decided to track a generic memory,

which is preceded by a large number of events that have already
generated memory traces. Hence the initial distribution of the synapses
was chosen to be the equilibrium distribution. If we prepare the
synapses in a special state before we store the memory that we intend
to track, its memory lifetime can be improved by decreasing the
plasticity step size even when potentiation and depression are not
balanced. For example, if the synapses are all set to an intermediate
strength, the decay of the memory trace becomes exponential and
governed by the t of equation (4) only after a time proportional to 1/a.
Before this time, the synapses are dragged toward one of the two
extremes of the synaptic range, but they do not feel the boundaries, so
they behave like unbounded synapses. This improvement is illusory
because the condition that all synapses start from a specific value can be
imposed for only one memory, so the event that generates it becomes
special. Such a dependence on the initial distribution has been
exploited to build models of primacy and recency28.

Soft bounds
The hard bounds considered in the previous section are a rather harsh
way of limiting synaptic strength, and this raises the question of
whether the requirement of balance formemory performance improve-
ment might be due to this particular form of bounding. In this section
we therefore consider a ‘softer’ way of limiting synaptic strength29–31.
Soft bounds are introduced by allowing q+(w) and q–(w) to depend on
synaptic strength and by requiring that they vanish at the boundaries.
One way of doing this is to write

q+ðwÞ ¼ að1# wÞ and q#ðwÞ ¼ aw ð8Þ

In this case, the equilibrium distribution of synaptic strengths is
approximately Gaussian, centered around a point !w (Fig. 3a). Owing
to ongoing plasticity, synapses increase in strength at an average rate
of q+ð!wÞf+, and they decrease in strength at an average rate of

10,000 f+ – f–

8,000 0.02
0
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0.16,000

rτ
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Figure 2 Memory performance with hard bounds. All lines are mean-field simulations for n ¼ 10,000
synapses. (a) Memory lifetime (in units of 1/r) versus 1/a for different levels of imbalance, as indicated in
the key. (b) Memory lifetime (in units of 1/r) versus the degree of imbalance for different values of 1/a,
as indicated in the key. (c) Initial signal-to-noise ratio versus 1/a for different levels of imbalance, as
indicated in the key.
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q#ð!wÞf#. The equilibrium point is where these two opposite
synaptic drifts cancel each other. That is, !w is determined by
q+ð!wÞf+ ¼ q#ð!wÞf#, which gives af+ð1# !wÞ ¼ af# !w. From this
we find that !w ¼ f+=ðf+ + f#Þ ¼ f+. The last equality follows from
the fact that f+ + f– ¼ 1.
The two panels in Figure 3a show distributions of synaptic

strengths for the balanced (f+ ¼ f–, left) and unbalanced (f+ 4 f–,
right) cases. Note that these distributions are virtually identical except
for a shift. This suggests that there may be no significant difference
between the balanced and unbalanced cases when soft bounds are
applied—which, as we will see, is the case.
A simple calculation can be done to estimate the memory lifetime

to a remarkable degree of accuracy in the case of soft bounds. Recall
that to calculate the memory lifetime we need to find the slowest
exponential component in the convergence to the equilibrium dis-
tribution. The slowest component is determined by the location
where the drift is minimal, which is in the neighborhood of the
equilibrium point !w. Therefore, we focus on the motion of synapses
in that region. We can think of the storage of the tracked memory
as shifting the potentiated synapses starting at !w by an amount

q+ð!wÞ. This moves them from the equilibrium point !w to a value
!w + q+ð!wÞ. Shifting away from the equilibrium point induces a drift
velocity that pushes synapses back toward equilibrium (in the presence
of a drift, the effects of diffusion are small). The drift velocity is the
difference between the rightward velocity at the shifted point,
rf+q+ð!w + q+ð!wÞÞ, caused by potentiation and the leftward velocity,
rf#q#ð!w + q+ð!wÞÞ, caused by depression. The resulting drift speed is
then vdrift ¼ r f+q+ð!w + q+ð!wÞÞ # f#q#ð!w + q+ð!wÞÞjj . The drift of the
distribution will undo the effects of memory storage at a time t when
vdriftt ¼ q+ð!wÞ. This gives a memory lifetime of

t ¼ q+ðwÞ
rjf+q+ðw + q+ðwÞÞ # f#q#ðw + q+ðwÞÞj

ð9Þ

Using the equations given above, we find, after a little algebra, that
t ¼ 1/(ar), which grows linearly with 1/a and is independent of
the state of balance or imbalance. This linear improvement is due to
the fact that the drift velocity is proportional to a2 and the drift
distance is proportional to a. The value of t given by equation (9) is
compared with mean-field simulation results in the left panel of
Figure 3b, and the linear improvement with 1/a is readily apparent.
In addition, the right panel of Figure 3b shows the initial signal-to-
noise ratio, which is proportional to

ffiffiffi
a

p
because the signal is propor-

tional to a and the noise, given by the width of the equilibrium
distribution, is proportional to

ffiffiffi
a

p
.

In conclusion, memory lifetime is proportional to 1/a for synapses
constrained by these soft bounds. This produces a smaller improve-
ment in memory lifetime as a is decreased than the 1/a2 dependence of
the balanced case with hard bounds, but the improvement in this case is
not destroyed by unbalancing. Thus, the effects of small a with soft
bounds, though more modest, are more robust than those observed
with hard bounds.

Generalized soft bounds
A more general form for q+(w) and q–(w) that still imposes soft
bounds is31

q+ðwÞ ¼ að1# wÞg and q#ðwÞ ¼ awg ð10Þ
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Figure 3 Soft bounds. (a) Histograms of equilibrium distributions of synaptic
efficacies with soft bounds for balanced (left) and unbalanced (right)
conditions, from mean-field simulations. (b) Memory performance. The level
of imbalance does not affect the result in this case. Left, memory lifetime (in
units of 1/r) versus 1/a. Right, initial signal-to-noise ratio versus 1/a. The
lines are mean-field simulations for n ¼ 10,000 synapses and the points are
the theoretical prediction based on equation (9).
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Figure 4 Memory performance with generalized soft boundaries.
(a,b) Memory lifetime versus the inverse step size a when potentiation and
depression are balanced (f+ ¼ f– ¼ 0.5; a) and unbalanced (f+ ¼ 0.4 and
f– ¼ 0.6; b). The memory lifetimes are computed using a mean-field
approach. Different curves correspond to different values of the power g. For
g 4 0, the memory lifetime always scales linearly (slope of 1 on the log-log
plot) with 1/a, for small a, in both the balanced and the unbalanced cases.
(c,d) The slope of rt versus 1/a estimated according to equation (13) as a
function of g for the balanced case (c), and for two unbalanced cases (d):
f+ ¼ 0.4 and f– ¼ 0.6, as in (b), and f+ ¼ 0.3 and f– ¼ 0.7. The theoretical
estimates (solid lines) are compared to the results of the mean-field
simulations (diamonds, which correspond to the balanced case (c), circles
to f+ ¼ 0.4 (d) and triangles to f+ ¼ 0.3 (d) (with f– ¼ 1 – f+). For all plots
the number of synapses n is 104.
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In this case, the average synaptic strength at equilibrium is

w ¼ 1

1 + ðf#=f+Þ
1
g

ð11Þ

We can compute the lifetime in this case from equation (9). The
calculation simplifies if we assume that a is small, so that we can write

q±ðw + q+ðwÞÞ % q&ðwÞ+ q
0

&ðwÞq+ðwÞ ð12Þ

where the prime symbol denotes differentiation. After some algebra, we
find that

t ¼ 1

agrðf+ð1# wÞg#1 + f#wg#1Þ
ð13Þ

with !w given by equation (11). As in the case of g ¼ 1, considered in
the previous section, this lifetime scales as 1/a whether potentiation
and depression are balanced or not, as long as g40. The memory
lifetime is plotted against 1/a in Figure 4a,b for the balanced and
the unbalanced cases, respectively. Different curves correspond to
different values of g. For g ¼ 0, we recover the results for the hard
bounds: in the balanced case, the memory lifetime grows quadratically
with 1/a, whereas when potentiation and depression are unbalanced, the
memory lifetime saturates. For g 4 0, the memory lifetime t always
scales linearly with the inverse step size 1/a. In all these cases, t is
proportional to 1/a and themultiplying factor can be estimated by using
the approximate expression of equation (13). The theoretical estimate is
plotted for the balanced and unbalanced cases in Figure 4c,d, respec-
tively, and compared to the value obtained by running mean-field
simulations (diamonds, triangles and circles). The agreement between
the theoretical estimate and the simulations is excellent and the simple
estimate of equation (13) also captures the nonmonotonicity of the
curve corresponding to f+ ¼ 0.3. Models with large g seem to perform
better in terms of memory lifetime. However, the price to be paid is a
reduced initial signal-to-noise ratio that actually decreases rapidly with g
(as a power law).

Optimally adjusted bounds
The soft bound cases considered in the previous two sections have
memory lifetimes proportional to 1/a owing to their nonzero drift
velocities away from the equilibrium point. These models outperform
those with hard bounds for small a, except when potentiation and
depression are balanced, in which case hard bounds give a lifetime
proportional to 1/a2 as opposed to the 1/a dependence that occurs with
soft bounds. We now ask whether it is possible to construct a model
with soft bounds that retains the 1/a dependence in the unbalanced
case, but matches the 1/a2 performance of hard bounds when potentia-
tion and depression are balanced.
Such a model does indeed exist. Consider

q+ðwÞ ¼
a
2
ð1# ð2w # 1ÞgÞ and

q#ðwÞ ¼
a
2
ð1 + ð2w # 1ÞgÞ

ð14Þ

for g equal to an odd positive integer. The memory lifetime for this
model can be derived from equations (9) and (12), yielding

t ¼ 1

garð2!w # 1Þg#1

This shows that the model matches the 1/a dependence of other soft-
bound models. However, consider what happens in the balanced
situation when f+ ¼ f–. In this case, !w ¼ 1/2 (as can be derived by

setting q+ð!wÞ ¼ q#ð!wÞÞ, and the denominator in the above lifetime
goes to zero. Clearly, something has gone wrong with the calculation in
this case. Looking back at the expansion of equation (12), we see what
the problem is. The first derivatives q0&ð!wÞ ¼ q0&ð1=2Þ are zero. As a
result, we must extend the expansion to second derivatives, but at this
point the diffusion term becomes as important as the drift term (see the
discussion below). Thus, we expect a quadratic dependence on 1/a, as
in the case of hard boundaries. This is confirmed by the mean-field
results shown in Figure 5.
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Figure 5 Optimal soft-boundaries. Mean-field analysis of initial signal-to-
noise ratio (top) and memory lifetime (bottom) versus 1/a with n ¼ 104

for the balanced (left) and the unbalanced case (right) with f+ ¼ 0.4 and
f– ¼ 0.6. Different curves correspond to different values of g (g ¼ 1, 3, 5,
from dark to light). The black curve corresponds to the soft bound case
(g ¼ 1), and it does not depend on the imbalance between potentiation and
depression. The other two curves show a memory lifetime which has an
almost quadratic dependence on 1/a (slope of 2 on the log-log plot) in the
balanced case, and a linear dependence (slope of 1 on the log-log plot)
in the unbalanced case.

Table 1 Dependences of memory lifetime and initial signal-to-noise
ratio on a

Model f+ ¼ f– t S0/N0

Hard bounds (equation 3) Balanced a–2 a
Hard bounds (equation 3) Unbalanced a0 a0

Soft bounds (equation 8) Balanced a–1
ffiffiffi
a

p

Soft bounds (equation 8) Unbalanced a–1
ffiffiffi
a

p

Generalized soft bounds (equation 10) Balanced a–1
ffiffiffi
a

p

Generalized soft bounds (equation 10) Unbalanced a–1
ffiffiffi
a

p

Special bounds (equation 14) Balanced a1/g–2 a1–1/(2g)

Special bounds (equation 14) Unbalanced a–1
ffiffiffi
a

p

Shown are the dependences of memory lifetime and initial signal-to-noise ratio on the
plasticity step size a for the models considered in the text in the balanced (f+ ¼ f–) and
unbalanced (f+ a f–) cases. The equations refer to the definitions of q+(w) and q–(w) in
the different models.
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The above calculation might suggest that we can improve perfor-
mance even more by increasing the value of g. However, this does not
actually improve performance because diffusion, not drift, dominates
the dynamics for larger g, producing a 1/a2 dependence (Fig. 5).
For g ¼ 5, the diffusion process again dominates, and the dependence
on 1/a is still quadratic in the balanced case and linear in the
unbalanced case. Notice that the estimate of t of equation (12) is
based on the assumption that the dynamics are entirely dominated by
drift. In the case in which diffusion also plays a role, the estimate is no
longer valid.

DISCUSSION
A summary of our results (Table 1) indicates that an improvement with
small plasticity step size proportional to 1/a2 cannot be achieved
without some form of fine-tuning that maintains a balance between
potentiation and depression. It is more reasonable to expect that
memories might be retrievable for a time of order ln(n)/(ar) (recalling
the logarithmic dependence on the number of synapses mentioned
in the introduction to this article). Although we discuss
primarily memory lifetimes, we have included results for the initial
signal-to-noise ratios of the memory trace in Table 1. This is because
it is often possible to extend memory lifetimes at the expense of
the initial signal-to-noise ratio, so both must be considered.
Memory storage involves a compromise between plasticity, which
improves the initial signal-to-noise ratio, and rigidity, which
maintains memories.
The factor 1/a is obtained in the unbalanced case by introducing soft

bounds that prevent the weights from moving too far away from their
equilibrium value. The equilibrium point !w is where the two synaptic
drifts cancel. So far we have restricted our analysis to the case of a single
equilibrium point, but we also investigated whether the existence of
multiple equilibrium points could significantly improve memory
performance. To answer this question, we have analyzed the periodic
case (q+(w) ¼ q+(w + b), q–(w) ¼ q–(w + b)), with m ¼ 1/b different
equilibria. To simplify the analysis, we assumed that q+(w) ¼ q–(w) ¼
q(w).We found that the dependence ofmemory lifetime onm is similar
to the dependence on 1/a in the case of hard bounds: in the balanced
case the memory lifetime grows quadratically with the number of
minima, whereas in the unbalanced case it does not depend onm. The
memory lifetime is also inversely proportional to the rate at which the
transitions from one equilibrium to the neighboring one occurs. This
rate is always larger than the minimum of q(w) over one period32. By
reducing this rate, the memory lifetime can be extended without
limitations. However, this happens at the price of reducing the initial
signal-to-noise ratio by the same factor. If the initial signal-to-noise
ratio becomes too small, memories cannot be retrieved, even immedi-
ately after they have been stored. To conclude, even in the more
complex case of multiple equilibrium points, the memory lifetime is
of order ln(n)/(ar), where 1/a can be regarded either as the number of
synaptic states or the number of equilibria.
Using n¼ 1012 synapses and taking a¼ 0.01 and 1/r¼ 1 min allows

memories to be recovered over a period of around 2 d, which is still
quite modest. We think it is more likely that a is not much smaller than
1 (refs. 33–36), and thatmemory storage through synapses like the ones
we have been describing lasts only for several minutes. It is interesting
to note that this is similar to the retention times for explicit memories
in people with medial temporal lobe lesions37. Perhaps the residual
memory seen in such cases is due to storage in the type of synapses we
have been studying. If so, it is also interesting to note that there is no
need for the potentiation and depression responsible for such memory
storage to persist for more than the several minutes that memories last

before ongoing plasticity erases them. In other words, there is no need
for the synapses to be more persistent than the memories they store.
We can extend our analysis to consider the possibility of synapses

being created and destroyed38 by introducing an additional state that
corresponds to the absence of the synapse. This can then be treated in
the same way as the other synaptic states. In this case, the memory
lifetime is still of the order of ln(n)/(ar) with roughly the same a, but n
can now be regarded as the number of potential synapses, which can be
as large as 1020. Even if we consider all these synapses, we still get a
modest memory lifetime because the increase in the logarithm is a
factor less than 2. If the transitions to and from the special state are
slow, the situation is similar to the case of multiple equilibria discussed
previously: the memory lifetime is controlled by the lowest transition
rate and can be very long, but at the price of a reduced initial signal-to-
noise ratio.
In our study, we considered a mnemonic trace (the signal) that is

read out by comparing the average synaptic weight of synapses
potentiated by the tracked memory to the average of synapses that
have been depressed. One might wonder whether the variance of the
synapses or some other higher-order statistics of the distribution might
contain a mnemonic trace that lasts longer than such averages (a first-
order statistics). Although we cannot answer this question in the most
general case, we believe that it is not possible. An analysis of second-
order statistics shows that the subdominant eigenvalue of the Markov
matrix controlling the convergence to equilibrium of the variance of the
synaptic weights is the same as the subdominant eigenvalue that
controls the decay of the mean, even if we consider correlations
between different synapses on the same dendritic tree.
How, then, are memories stored for longer periods of time?

One possibility is that long-lasting memories are protected from
overwriting by some mechanism39,40, or that synapses are modified
in a clever way by exploiting the feedback of an internal or external
supervisor that knows which synapses have to be modified to store a
new memory without compromising the old ones (for example, the
mechanism of learning of the perceptron41–43). A second possibility is
that the amount of information acquired with each stored memory is
small, to the point that previous memories are essentially left
untouched. This can be achieved either by reducing the amount of
information contained in each memory (for example, in the case
of sparse patterns of neural activity6,44) or by reducing the rate at
which synapses are modified (for example, by randomly selecting
only a small fraction of synapses whose modifications are consoli-
dated5,6,45). In the latter case, it is possible to store a large number
of memories, provided that the events that generate them are repeated
a large number of times26. This is yet another expression of the
tradeoff between memory lifetime and signal-to-noise ratio discussed
earlier: slowing down learning can extend memory lifetimes, but
this happens at the price of reducing the amount of information stored
after every synaptic modification.
Our results indicate that good memory performance requires

multistate synapses, but that the multiple states should not differ
simply in their synaptic efficacy. We have suggested elsewhere that
longer-term memory storage is possible using synapses the combine
plasticity with metaplasticity46–48 in a cascade of states25. The
experimental implication of our results is that connecting synaptic
plasticity to memory requires more than simply accumulating
evidence about long-lasting modifications of synaptic efficacy.
Rather, we must map out the full synaptic state space and focus
on transitions not merely between states with different strengths but,
more importantly, between states that are subject to different degrees
and forms of plasticity.
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METHODS
The model.We study the forgetting process by considering a scenario in which
synapses are exposed to a continuous stream of events, each generating a
memory. We select a particular memory and track its mnemonic trace while
other memories are being stored. In particular we consider the synapses that are
modified when the tracked memory is stored. Some of these are potentiated
(group ‘pot’, which is a fraction f+ of all synapses) and others are depressed
(group ‘dep’, which is a fraction f–):

wi ! wi + q+ðwiÞ; i 2 pot

wi ! wi # q#ðwiÞ; i 2 dep

where wi is the synaptic strength of synapse i and q+, q– are the amounts by
which the synaptic strength is modified. In general, these factors depend on the
synaptic strength preceding the synaptic update. When other memories are
stored, we assume that the synaptic modifications are random and uncorrelated
with the modifications that generated the tracked memory. In particular, every
synapse is modified at rate r (that is, in a time interval t each synapse is updated
rt times on average). Every time the synaptic strength w is modified, it is either
potentiated with probability f+ or depressed with probability f–:

w ! w + q+ðwÞ with probability f+

w ! w # q#ðwÞ with probability f#

Both synapses in group pot and in group dep are updated in the same way,
other than when the tracked memory is stored.

Signal and noise. The memory trace reflects the difference between the
synapses that have been potentiated and the synapses that have been depressed
by the tracked memory. The memory signal is a measure of this difference
defined as the average distance Spot separating the potentiated synapses from
their equilibrium value minus the average distance Sdep between the depressed
synapses and their equilibrium values:

SðtÞ ¼ SpotðtÞ # SdepðtÞ ð15Þ

where:

Spot=depðtÞ ¼
1

n

X

i¼pot=dep

ðwiðtÞ # wÞ ð16Þ

The noise is defined as the s.d. of the signal:

NðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X

i¼pot

ðwiðtÞ # wÞ2 # S2pot +
1

n

X

i¼dep

ðwiðtÞ # wÞ2 # S2dep

s
ð17Þ

Mean-field analysis. The mean-field analysis was performed on a discrete
version of the synaptic model that is equivalent to the continuous model
described in the text. We discretized the synaptic weights by introducing 1/a
states with synaptic strengths 0, a, 2a,y1. Every time the synapses are updated,
transitions from one state to one of the neighboring states occur stochastically:

w ! w+ a with probability f+q+ðwÞ=a

w ! w # a with probability f#q#ðwÞ=a

This model is equivalent to the continuous one if a is small enough. We now
introduce the occupancy Fk (k ¼ 1,y, 1/a), defined as the fraction of synapses
in the kth synaptic state. The occupancies for the synapses that have been
potentiated by the event generating the tracked memory are denoted by Fk

+.
Analogously, Fk

– are the occupancies for the synapses that have been depressed.
When the subscript index k is dropped, F± denotes a vector. The signal is
estimated by

SðtÞ ¼ n½f+WTðF+ðtÞ # F1Þ # f#W
TðF#ðtÞ # F1Þ(

where W is a vector containing the strengths of the synaptic states (W ¼ 0, a,
2a,y, 1) and FN is the set of occupancies for the equilibrium distribution.

To compute the occupancies at time t we proceed as described in refs. 6 and
7: every time a new memory is stored, the distribution of synaptic weights is

updated as a Markov process. Because the mean-field dynamics is the same for
F+ and F–, we drop the superscript index ± to simplify the notation. Whenever
a new memory is stored, the vector F of occupancies of the synaptic states
undergoes the transformation

FT ! FTM

where M is the matrix of transition probabilities and is 0 everywhere, except
on the diagonal where Mkk ¼ 1 – f+q+(Wk) – f–q–(Wk), and around the
diagonal where Mk,k + 1 ¼ f+q+(Wk), Mk,k – 1 ¼ f–q–(Wk). After the storage of rt
memories,

FT ! FTMrt

In order to compute Mrt we use its spectral decomposition

M ¼
Xm

k¼1

lkukvTk

where u and v are, respectively, the left and the right eigenvectors of M

Mvk ¼ lvk; uTk M ¼ luTk ; v
T
k ul ¼ dkl

Using this,

Mrt ¼
Xm

k¼1

lrtk ukv
T
k

If the Markov process is irreducible6,7, there is a single eigenvalue equal to 1,
whose right eigenvector corresponds to the equilibrium distribution FN. All the
other eigenvalues are smaller. The largest of these, called the subdominant
eigenvalue, determines the speed of convergence to the equilibrium distribu-
tion, and hence the memory lifetime. In other words, for rt large enough, we
find that

ðFðtÞÞT % ðF1ÞT + ðFð0ÞÞT lrtMmMv
T
M

where F(0) is the distribution after the tracked memory is stored and lM is the
subdominant eigenvalue. We can then rewrite the signal as

SðtÞ % Sð0ÞlrtM % Sð0Þ expð#rtð1# lMÞÞ ¼ Sð0Þ expð#t=tÞ

where t ¼ 1/(r(1 – lM)) is the memory lifetime (here we have assumed that lM
is close to 1). The expected value of the noise is

NðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nf+½ðW2ÞTF+ðtÞ#ðWTF+ðtÞÞ2(+ nf#½ðW2ÞTF#ðtÞ#ðWTF#ðtÞÞ2(

q

where (W 2) ¼ 0, a2, (2a)2, (3a)2,y1. The noise depends weakly on t because
FN does not cancel out as it does in the case of the signal6. Hence, for large t we
can rewrite the noise as

N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n½ðW2ÞTF1 # ðWTF1Þ2(

q

The signal-to-noise ratio scales as

SðtÞ
NðtÞ %

ffiffiffi
n

p
expð#t=tÞ

Such a quantity decreases exponentially with t and it remains above some
threshold y as long as

tot
"
1

2
logn# logy

#

The total time for which the signal-to-noise ratio is larger than y is propor-
tional to t and to log n (which reproduces the result stated above).

Mean-field simulations. In the mean-field simulations we computed numeri-
cally F±(t) for all times in order to compute the signal and the noise. We started
from F± ¼ FN. Then, for the synapses which have to be potentiated, F+(0) is
given by

F+ð0ÞT ¼ ðF1ÞTM+
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where M+ is M with f+ ¼ 1 and f– ¼ 0. Analogously for M–, we impose f+ ¼ 0
and f– ¼ 1. For the next time steps we used the equation

F&ðtÞT ¼ ðF&ð0ÞÞTMrt ¼ ðF1ÞTM&M
rt

Note: Supplementary information is available on the Nature Neuroscience website.

ACKNOWLEDGMENTS
We are grateful to M. Mattia for useful discussions about Brownian particles in
periodic potentials. This research was supported by US National Institute of
Mental Health grant 58754 and by a US National Institutes of Health Director’s
Pioneer Award, part of the NIH Roadmap for Medical Research, through grant
number 5-DP1-OD114-02.

COMPETING INTERESTS STATEMENT
The authors declare no competing financial interests.

Published online at http://www.nature.com/naturegenetics
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions

1. Bliss, T.V. & Collingridge, G.L. A synapticmodel ofmemory: long-term potentiation in the
hippocampus. Nature 361, 31–39 (1993).

2. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40,
361–379 (2003).

3. Amit, D.J. Modeling Brain Function (Cambridge University Press, New York, 1989).
4. Hertz, J., Krogh, A. & Palmer, R.G. Introduction to the Theory of Neural Computation

(Addison Wesley Longman, Boston, 1991).
5. Amit, D.J. & Fusi, S. Constraints on learning in dynamic synapses.Network 3, 443–464

(1992).
6. Amit, D.J. & Fusi, S. Learning in neural networks with material synapses. Neural

Comput. 6, 957–982 (1994).
7. Fusi, S. Hebbian spike-driven synaptic plasticity for learning patterns of mean firing

rates. Biol. Cybern. 87, 459–470 (2002).
8. Staubli, U. & Lynch, G. Stable depression of potentiated synaptic responses in the

hippocampus with 1–5 Hz stimulation. Brain Res. 513, 113–118 (1990).
9. Larson, J., Xiao, P. & Lynch, G. Reversal of LTP by theta frequency stimulation. Brain

Res. 600, 97–102 (1993).
10.O’Dell, T.J. & Kandel, E.R. Low-frequency stimulation erases LTP through an NMDA

receptor–mediated activation of protein phosphatases. Learn.Mem.1, 129–139 (1994).
11. Xiao, M.Y., Niu, Y.P. & Wigstrom, H. Activity-dependent decay of early LTP revealed by

dual EPSP recording in hippocampal slices from young rats. Eur. J. Neurosci. 8,
1916–1923 (1996).

12. Zhou, Q., Tao, H.W. & Poo,M-m. Reversal and stabilization of synaptic modifications in a
developing visual system. Science 300, 1953–1957 (2003).

13.Barnes, C.A. Memory deficits associated with senescence: a neurophysiological
and behavioral study in the rat. J. Comp. Physiol. Psychol. 93, 74–104 (1979).

14. Ahissar, E. et al.Dependence of cortical plasticity on correlated activity of single neurons
and on behavioral context. Science 257, 1412–1415 (1992).

15.Manahan-Vaughan, D. & Braunewell, K.H. Novelty acquisition is associated with
induction of hippocampal long-term depression. Proc. Natl. Acad. Sci. USA 96,
8739–8744 (1999).

16. Fu, Y.-X. et al. Temporal specificity in the cortical plasticity of visual space representa-
tion. Science 296, 1999–2003 (2002).

17. Xu, L., Anwyl, R. & Rowan,M.J. Spatial exploration induces a persistent reversal of long-
term potentiation in rat hippocampus. Nature 394, 891–894 (1998).

18. Abraham, W.C., Logan, B., Greenwood, J.M. & Dragunow, M. Induction and experience-
dependent consolidation of stable long-term potentiation lasting months in the hippo-
campus. J. Neurosci. 22, 9626–9634 (2002).

19. Villarreal, D.M., Do, V., Haddad, E. & Derrick, B.E. NMDA receptor antagonists sustain
LTP and spatial memory: active processes mediate LTP decay. Nat. Neurosci. 5, 48–52
(2002).

20. Jenkins, J. & Dallenbach, K. Oblivescence during sleep and waking period. Am. J.
Psychol. 35, 605–612 (1924).

21.Brown,M.W. & Xiang, J.Z. Recognition memory: neuronal substrates of the judgement of
prior occurrence. Prog. Neurobiol. 55, 149–189 (1998).

22.Wixted, J.T. & Ebbesen, E.B. Genuine power curves in forgetting: a quantitative analysis
of individual subject forgetting functions. Mem. Cognit. 25, 731–739 (1997).

23.Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons:
dependence on spike timing, synaptic strength, ad postsynaptic cell type. J. Neurosci.
18, 10464–10472 (1998).

24.Parisi, G. A memory which forgets. J. Phys. A. 19, L617–L620 (1986).
25. Fusi, S., Drew, P.J. & Abbott, L.F. Cascade models of synaptically stored memories.

Neuron 45, 599–611 (2005).
26.Brunel, N., Carusi, F. & Fusi, S. Slow stochastic Hebbian learning of classes of stimuli in

a recurrent neural network. Network 9, 123–152 (1998).
27. Fusi, S. & Senn, W. Eluding oblivion with smart synaptic updates. Chaos 16, 026112

(2006).
28.Kahn, P.E., Wong, K.Y.M. & Sherrington, D. A memory model with novel behaviour in

sequential learning. Network. Comput. Neural Sys. 6, 415–427 (1995).
29. van Rossum, M.C., Bi, G.Q. & Turrigiano, G.G. Stable Hebbian learning from spike

timing-dependent plasticity. J. Neurosci. 20, 8812–8821 (2000).
30.Rubin, J.E. Steady states in an iterativemodel for multiplicative spike-timing dependent

plasticity. Network 12, 131–140 (2001).
31.Gutig, R., Aharonov, R., Rotter, S. & Sompolinsky, H. Learning input correlations through

nonlinear temporally asymmetric Hebbian plasticity. J. Neurosci. 23, 3697–3714
(2003).

32. Festa, R. & Galleani D’Agliano, E. Diffusion coefficient for a brownian particle in a
periodic field of force. Physica A 90A, 229–244 (1978).

33.Petersen, C.C., Malenka, R.C., Nicoll, R.A. & Hopfield, J.J. All-or-none potentiation at
CA3–CA1 synapses. Proc. Natl. Acad. Sci. USA 95, 4732–4737 (1998).

34.O’Connor, D.H., Wittenberg, G.M. & Wang, S.S.-H. Graded bidirectional synaptic
plasticity is composed of switch-like unitary events. Proc. Natl. Acad. Sci. USA 102,
9679–9684 (2005).

35.O’Connor, D.H., Wittenberg, G.M. & Wang, S.S.-H. Dissection of bidirectional synaptic
plasticity into saturable unidirectional processes. J. Neurophysiol. 94, 1565–1573
(2005).

36.Montgomery, J.M. &Madison, D.V. Discrete synaptic states define amajormechanism of
synapse plasticity. Trends Neurosci. 27, 744–750 (2004).

37.Scoville, W.B. & Milner, B. Loss of recent memory after bilateral hippocampal lesions.
J. Neurol. Neurosurg. Psychiatry 20, 11–21 (1957).

38.Chklovskii, D.B., Mel, B.W. & Svoboda, K. Cortical rewiring and information storage.
Nature 431, 782–788 (2004).

39.Willshaw, D.J., Buneman, O.P. & Longuet-Higgins, H.C. Non-holographic associative
memory. Nature 222, 960–962 (1969).

40.Grossberg, S. Processing of expected and unexpected events during conditioning and
attention: a psychophysiological theory. Psychol. Rev. 89, 529–572 (1982).

41.Rosenblatt, F. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychol. Rev. 65, 386–408 (1958).

42.Block, H. The perceptron: a model for brain functioning. I. Rev. Mod. Phys. 34,
123–135 (1962).

43.Minsky, M.L. & Papert, S.A. Perceptrons (MIT Press, Cambridge, Massachusetts, 1969;
expanded edition, 1988).

44. Tsodyks, M.V. & Feigelman, M.V. The enhanced storage capacity in neural networks with
low activity level. Europhys. Lett. 6, 101–105 (1988).

45. Tsodyks, M.V. Associative memory in neural networks with binary synapses.Mod. Phys.
Lett. B B4, 713–716 (1990).

46.Abraham, W.C. & Bear, M.F. Metaplasticity: the plasticity of synaptic plasticity. Trends
Neurosci. 19, 126–130 (1996).

47. Fischer, T.M., Blazis, D.E., Priver, N.A. & Carew, T.J. Metaplasticity at identified
inhibitory synapses in Aplysia. Nature 389, 860–865 (1997).

48.Montgomery, J.M. & Madison, D.V. State-dependent heterogeneity in synaptic depres-
sion between pyramidal cell pairs. Neuron 33, 765–777 (2002).

NATURE NEUROSCIENCE VOLUME 10 [ NUMBER 4 [ APRIL 2007 493

ART ICLES
©

20
07

 N
at

ur
e 

Pu
bl

is
hi

ng
 G

ro
up

  h
ttp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e


