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SUMMARY

Documenting the extent of cellular diversity is a crit-
ical step in defining the functional organization of tis-
sues and organs. To infer cell-type diversity from
partial or incomplete transcription factor expression
data, we devised a sparse Bayesian framework that
is able to handle estimation uncertainty and can
incorporate diverse cellular characteristics to opti-
mize experimental design. Focusing on spinal V1
inhibitory interneurons, for which the spatial expres-
sion of 19 transcription factors has been mapped,
we infer the existence of �50 candidate V1 neuronal
types, many of which localize in compact spatial
domains in the ventral spinal cord.We have validated
the existence of inferred cell types by direct experi-
mental measurement, establishing this Bayesian
framework as an effective platform for cell-type char-
acterization in the nervous system and elsewhere.
INTRODUCTION

Tissues and organs are comprised of diverse cell types, pos-

sessing characteristic morphology and specialized function.

The diversification of cell types attains prominence in the ner-

vous system, where neuronal distinctions depend on the activ-

ities of transcription factors (TFs) and their downstream effectors

(Kohwi and Doe, 2013). Attempts to define the link between tran-

scriptional identity and neuronal diversity have benefitted from

the analysis of long-distance projection neurons, for which dis-

tinctions in target innervation provide a clear correlate of func-

tional divergence (Molyneaux et al., 2007; Sanes and Masland,

2015). In the retina and cerebral cortex, functional subclasses

of ganglion and pyramidal neurons have been delineated

through their transcriptional identities (Siegert et al., 2009; Greig

et al., 2013). Similarly, the hierarchical ordering of motor neuron

subtypes in the spinal cord has its origins in discrete profiles

of transcription factor expression (Dasen et al., 2005; Dasen

and Jessell, 2009). Yet, local interneurons represent by far the

most prevalent neurons within the mammalian CNS, collectively
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shaping the output of long-range-projection neurons (Isaacson

and Scanziani, 2011). The local confinement of interneuron

axons, however, has made it difficult to obtain objective mea-

sures of identity and diversity.

Genome-wide mRNA expression profiles have been informa-

tive in distinguishing neuronal cell types (Usoskin et al., 2015;

Zeisel et al., 2015; Macosko et al., 2015; Tasic et al., 2016).

Nevertheless, documented dissociations between mRNA and

protein expression (Gygi et al., 1999; Vogel and Marcotte,

2012) emphasize the merits of analysis of protein expression

at the level of individual neurons (Sharma et al., 2015). But

if many genes are involved in defining individual subpopula-

tions, then the validation of protein co-expression will be con-

strained by the limited repertoire of primary and secondary

antibodies.

This practical limitation could be overcome through the devel-

opment of a statistical method that is able to resolve the extent of

neuronal diversity from sparsely sampled transcriptional data-

sets. Such a method should provide: (1) an objective measure

of confidence in the existence of cell types and their prevalence

within a parental population, (2) improvement in estimation accu-

racy upon integrating independent cellular characteristics with

molecular phenotype, and (3) informative predictions to guide

further experiments. To meet these goals, we developed a

sparse Bayesian framework that models co-expression data

based on incomplete combinations of TFs. Our focus on TF

expression was governed by the well-established role of DNA-

binding proteins in defining neuronal identity (Dalla Torre di San-

guinetto et al., 2008; Amamoto and Arlotta, 2014).

We used this Bayesian approach to assess the diversity of V1

interneurons in the spinal cord, a major inhibitory interneuron

population implicated in motor control (Zhang et al., 2014). V1 in-

terneurons are defined by developmental expression of the ho-

meodomain transcription factor En1 (Saueressig et al., 1999)

and include Renshaw cells and Group Ia reciprocal interneurons,

which mediate recurrent and reciprocal inhibition, respectively

(Sapir et al., 2004; Zhang et al., 2014). Yet these two physiolog-

ically defined subtypes represent only a small fraction of the

parental V1 population (Alvarez et al., 2005), implying a greater

diversity of V1 neurons. Indeed, the V1 population has recently

been subdivided on the basis of the expression of 19 TFs (Bikoff

et al., 2016 [this issue of Cell]).
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Figure 1. Cell Type Discovery Using Tran-

scription Factor Expression Information

(A) Fraction of V1 interneurons labeled by each of

the 19 individual TFs, in p0 lumbar spinal cord.

Mean ± SEM, n R 3 animals.

(B) Fraction of V1 interneurons labeled by pairs

of TFs. (N.M., not measured). Diagonal values

represent identity. Mean ± SEM, n R 3 animals.

(C) Number of cell types selected per HMC itera-

tion (for which the fraction fk was nonzero).

(D) Transcriptional profiles of top 40 inferred cell

types. Cell types (top) are arranged by descending

posterior inclusion probability (middle). Black

indicates TF expression, white indicates absence

of expression. Bottom: fraction of each cell type

in the parental V1 population (mean ± SD of all

nonzero sampled values).

(E) Number of selected cell types remains close to

29 when varying the set of observed TFs. Red and

blue curves denote the maximum and minimum

number for different TF sets.

(F) Number of potential cell types. Red and blue

curves denote maximum and minimum numbers

after reduction by measured TF pairs that exhibit

no co-expression.

See also Figure S1.
Here, we apply sparse Bayesian approach to assess the diver-

sity of V1 neuronal subtypes marked by these TFs. Our analysis

has generated threemajor findings: (1) an estimate of the number

of V1 interneuron types, on the order of 50 subtypes; (2) an esti-

mate of the expression profiles of the 19 TFs across these in-

ferred types; and (3) a cladistic description of V1 diversity that

guides experiments aimed at monitoring and manipulating

distinct V1 subpopulations. In several instances, the predicted

assignment of V1 neuronal type has been validated through

single-cell qRT-PCR, immunohistochemistry, and assessment

of spatial distribution. Finally, we demonstrate that this sparse

Bayesian analysis serves as an effective platform for identifying

cell types within other diverse populations.

RESULTS

A Sparse Bayesian Approach for Uncovering Neuronal
Diversity
The companion paper (Bikoff et al., 2016) used comparative

microarray screening to identify and map the expression of 19

TFs in V1 interneurons. We used three sets of data to infer V1

neuronal diversity: (1) the fraction of neurons within the parental

V1 population that express each of the 19 TFs (Figure 1A), (2)

the fractions of neurons co-expressing various pairs of TFs (Fig-
Cell 165, 220–23
ure 1B), and (3) the position of V1 inter-

neurons expressing each of the 19 TFs

(Figure 3A). Complete analysis of all TF

pairs is hindered by the fact that pri-

mary antibodies generated in the same

host species cannot be distinguished

easily by fluorescently tagged secondary

antibodies. We therefore developed an
approach that permits statistical inference on the basis of

incomplete data.

In this statistical analysis, a cell type is defined by the expres-

sion pattern of the 19 TFs under consideration. We characterize

TFs as either expressed or not expressed, and thus each expres-

sion pattern is specified by a vector of 19 binary numbers, Jk,a,

for pattern k, with a ranging from 1 to 19. Jk,a is set to 1 if TF a

is expressed in expression pattern k and to 0 if it is not. This re-

sults in 219 possible binary expression patterns for the 19 TFs.

This large number was reduced by eliminating combinations

that include pairs of factors not co-expressed within the same

neuron. Analysis of the pairwise expression revealed that 67

out of 148 measured TF pairs fail to co-express (Figure 1B),

thereby reducing the possible diversity to 1,978 potential

expression patterns (see Statistical Model in the Supplemental

Information). Thus, for the variables Jk,a specifying the expres-

sion patterns, k runs from 1 to 1,978.

We designate the fraction of cells with expression pattern k,

the cell-type fraction, denoted by fk, with k again ranging across

all the potential expression patterns (1 to 1,978). Cell-type frac-

tions must be positive (fk R 0) and sum to 1 (Sk fk = 1), indicating

that the entire V1 population is accounted for. The fraction of V1

neurons expressing TF a (the data in Figure 1A) is Sk fk Jk,a, and

the fraction co-expressing factors a and b (the data in Figure 1B)
3, March 24, 2016 ª2016 Elsevier Inc. 221



isSk fk Jk,a Jk,b (Supplemental Information). Fitting datawithin this

framework amounts to choosing a set of cell-type fractions that

provide a good match to the expression and co-expression data

and that satisfy non-negativity and sum-to-one constraints (by

the definition of fk). Under these conditions, the number of non-

zero inferred cell-type fractions determines the inferred number

of cell types, and the variables Jk,a for a = 1, ... 19 and for k values

with fk s 0, provide candidate expression patterns of these

selected cell types.

In principle, the model could be fit to observed data by mini-

mizing the summed squared difference between the measure-

ments and the predictions generated by the inferred fractions.

This amounts to a non-negative constrained least-squares

(NNCLS) minimization problem (see Experimental Procedures)

(Wang et al., 2006; Abbas et al., 2009; Gong et al., 2011; Grange,

et al., 2014). But the NNCLS approach fails in this case because,

despite the constraint of non-negativity, it generates an infinite

number of equally valid solutions. Indeed, for any single pre-

sumed cell type it is possible to find alternative solutions that

exclude this cell type while maintaining an optimal summed

squared difference.

We therefore resorted to a Bayesian approach in which un-

known cell-type fractions are modeled as random variables,

allowing their uncertainty to be characterized by probability dis-

tributions. The use of a prior distribution enables previous knowl-

edge and expectations to be incorporated into the model, and a

likelihood function reflects the probability that the observed data

were generated by the model. As a biologically plausible prior

distribution over cell-type fractions, we chose a constrained

‘‘spike-and-slab’’ (SnS) distribution (Ishwaran and Rao, 2005).

This prior incorporates the biologically reasonable assumption

that only a small fraction of the 1,978 potential cell types actually

exist within the parental V1 population. The SnS prior favors con-

figurations in which only a small subset of the coefficients fk are

non-zero (Supplemental Information).

The use of Bayes’ rule to combine prior and data likelihoods

results in a posterior distribution from which estimates of confi-

dence about the existence and identity of cell types can be

determined. In our case, the posterior distribution cannot be

computed directly, necessitating the use of a Monte Carlo sam-

pling method (Gelman et al., 2013). In particular, we adapted a

Hamiltonian Monte Carlo (HMC) algorithm to draw random sam-

ples from the posterior distribution. This Monte Carlo procedure

is specialized for constrained SnS posteriors and permits effi-

cient sampling from our posterior distributions (Pakman and

Paninski, 2013, 2014) (Figure S1).

Each iteration of the sampling algorithm generates a set of

cell-type fractions that satisfy the constraints and provide a

good fit to the data. The number of selected cell types and their

expression patterns vary across iterations. Combining samples

across a large number of iterations allows us to infer the proper-

ties of the posterior probability distribution. For example, the

proportion of Monte Carlo samples for which a particular expres-

sion pattern is selected determines that type’s posterior inclu-

sion probability and serves as a confidence measure of its

necessity to explain the data. We also computed the distribution

of the number of cell types selected in each iteration, which

provides an estimate of the total number of distinct cell types
222 Cell 165, 220–233, March 24, 2016 ª2016 Elsevier Inc.
required to explain the observed data. Repeated sampling also

enables us to compute cross-correlations between cell-type

fractions that are used to construct a list of candidate expression

profiles along with the probabilities of their correspondence to

actual cell types. As with an expression pattern, a candidate

expression profile is a 19-component vector, with each compo-

nent representing a different TF, but now these components are

allowed to be real numbers between 0 and 1. In this scheme,

component a of the candidate expression profile represents

the probability that TF a is expressed. Finally, the quantification

of uncertainty in the Bayesian approach provides a tool that

can enhance experimental design by selecting, in a principled

way, the measurement that is expected to maximally reduce

uncertainty (see Experimental Design in the Supplemental

Information).

We validated the ability of the Bayesian approach to accu-

rately infer cellular diversity by performing computational

cross-validation experiments, as well as experiments on simu-

lated datasets, for which the underlying cell types and corre-

sponding cell-type fractions are known (see Computational

Validation of the Bayesian Model in the Supplemental Informa-

tion). This approach provides convincing evidence thatmeaning-

ful and accurate estimates of cellular diversity can be extracted,

encouraging us to apply the Bayesian approach to V1 datasets.

V1 Diversity Extracted Solely from Transcription Factor
Expression Data
We first applied this Bayesian framework to TF expression

without including spatial information (Figures 1A and 1B, but

not 3A). As discussed, each iteration of the HMC sampling algo-

rithm generates a possible set of cell types, but their number and

identity vary across HMC iterations. Over the course of the full

HMC run, the number of types selected (those with non-zero

cell-type fractions) ranged from 25 to 33 with a mean ± SD

of 29 ± 2 (Figure 1C). The identity of the selected cell types varied

across different HMC iterations.

Computing the posterior inclusion probability of each expres-

sion pattern across many samples led to a rank-ordered list of

candidate expression patterns. The 40 candidate patterns with

the highest inclusion probabilities and their inferred cell-type

fractions are shown in Figure 1D. The expression pattern with

the highest inclusion probability corresponds to the Renshaw

interneuron, a defined V1 neuronal type that mediates recurrent

inhibition of motor neurons (Renshaw, 1946) and co-expresses

the TFs Oc1, Oc2, and MafB (Stam et al., 2012). This analysis

also infers the existence of MafA+ and MafA� subsets of Re-

nshaw interneurons (patterns 1 and 30 in Figure 1D), a molecular

diversity that may correspond to their known morphological het-

erogeneity (Fyffe, 1990).

We examined the sensitivity of these results to the number of

TFs used in the analysis, selecting 11 to 18 of the 19 measured

TFs. The average number of selected cell types, 29 for the full

19 factors, decreases only gradually when smaller numbers of

TFs are analyzed.Moreover, when 16 to 19 TFs are incorporated,

the number of selected cell types remains relatively constant,

close to 29 (Figure 1E). In contrast, the number of potential cell

types (1,978 for the case of 19 factors) depends much more

strongly on the chosen TF subset (Figure 1F). These findings
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See also Figure S2.
suggest that Bayesian calculations of cellular diversity based

solely on the available TF data may be close to saturating with

the use of a majority subset of the 19 TFs examined here.

What is the diversity of potential TF expression patterns within

the V1 population? We detected 131 different expression

patterns with posterior inclusion probabilities >0.05 (i.e., ap-

pearing in more than 5% of the HMC samples). We constructed

candidate expression profiles by clustering the 131 most likely

expression patterns into ‘‘groups’’ (Figure 2A; see Clustering

Cell Types into Groups in the Supplemental Information). A

group is defined as a set of expression patterns that satisfies

two conditions: (1) the members of a group express similar

sets of TFs (Figure S2A), and (2) in all or almost all of the HMC

samples, only a single member of a group is selected (i.e., has

a non-zero cell-type fraction), although different members may

be selected in different samples (Figure S2B). The second con-

dition causes the members of a group to be negatively corre-

lated with each other (Figure S2A). These conditions permit

the interpretation of a group as a single cell type with an uncer-

tain expression pattern.

We developed a recursive algorithm for constructing these

groups. All candidate expression profiles with inclusion probabil-

ities >5% were assigned, with most groups having only a single

member selected across all of the HMC samples and no group

having more than one member selected in >3% of the samples

(Figure S2D). To examine the robustness of the inferred groups,

we varied systematically the threshold for selecting the list of

candidate expression patterns from which groups were con-

structed. As this threshold is lowered, the number of groups first

increases linearly because each high-ranked expression pattern
Cell 165, 220–23
spawns its own group (Figure S2C). How-

ever, this growth slows as lower-ranked

patterns join existing groups, resulting in

a weak dependence on the inclusion

threshold. With an inclusion threshold

of 5%, the clustering algorithm identifies

35 groups (Figure 2A).

Each group gives rise to a single candi-

date expression profile (Figure 2B), and

for each profile, we assign an expression

probability to each TF, weighting the bi-

nary expression patterns of eachmember

of the group by the frequency with which

it appears in theHMCsamples (Figure 2B,

top). In addition, we compute a posterior
inclusion probability (Figure 2B, bottom) for each candidate

expression profile. These are much higher than the inclusion

probabilities of the corresponding candidate expression pat-

terns from which they are constructed (Figure 1D). Nevertheless,

there is still considerable uncertainty in the identity of the cell

types predicted by TF expression data alone (Figure 2B).

Furthermore, the existence of 131 candidates for only �30 cell

types (the average number per sample; Figure 1C), and the

fact that few of the top expression patterns in Figure 1D have

posterior inclusion probabilities near one both indicate that

expression-only data is insufficient for specifying cell-type iden-

tity (Figure S3).

Incorporating Spatial Information Reveals Further V1
Interneuron Diversity
Certain classes of spinal interneurons are known to localize in

discrete spatial domains (Thomas and Wilson, 1965; Hultborn

et al., 1971), prompting us to ask whether the incorporation of

spatial information could refine estimates of V1 group diversity.

For spatial analysis, we divided the ventral spinal cord into 196

bins, mapped spatial expression data into specific bins, and

defined cell-type fractions for each bin (Figure 3A). We then

applied an appropriately generalized Bayesian analysis to the

spatially resolved data (see Supplemental Information, Sections

2.1 and 3.1).

Incorporating spatial information into the Bayesian analysis

increased the number of candidate cell types that the HMC

sampler selected per iteration from 29 to 50 ± 2 (mean ± SD);

and the degree of confidence in the inferred expression

profiles also increased (Figure 3B). With the addition of spatial
3, March 24, 2016 ª2016 Elsevier Inc. 223
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Figure 3. Cell Types Revealed by Incorporating Transcription Factor Spatial Information

(A) Spatial distributions for each of the 19 TF V1 subpopulations. Black dots represent cell positions. Red contours represent kernel density estimates, based on

a 14 3 14 grid (a.u.). Scale bar, 100 mm.

(B) Number of selected cell types in each HMC iteration (cf. Figure 1C).

(C) Condensed representation of candidate expression profiles of 57 V1 groups. Gray scale indicates the likelihood that each TF is expressed within the group

(as in Figure 2B). Bottom: posterior inclusion probability for each V1 group.

(D) Posterior inclusion probability for expression-inferred cell types and groups (gray) and expression-and-spatially inferred cell types and groups (blue); ‘‘g+’’

indicates groups, and ‘‘g�’’ indicates cell types.

See also Figure S3.
information, only 75 total expression patterns are assigned pos-

terior inclusion probabilities >0.05 (compared to 131 for the non-

spatial analysis), and many of their inclusion probabilities are

close to one (Figure S2F; cf. Figure 1D). We repeated the

grouping procedure for these 75 total cell types and uncovered

57 candidate expression profiles, most of which are identified
224 Cell 165, 220–233, March 24, 2016 ª2016 Elsevier Inc.
with high inclusion probabilities (Figure 3C), permitting a more

confident assignment of expression patterns (Figure 3D).

An additional benefit of this spatial analysis is that it provides

estimates of how each inferred cell type localizes in the ventral

spinal cord (Figure 4). Although the method does not impose

continuity on cell-type distributions, we find that many of the
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See also Figure S4.
inferred cell types are localized in relatively compact, contiguous

domains, covering the full positional spectrum of the parental V1

interneuron distribution along both the dorsoventral and medio-

lateral axes. Notably, one inferred cell type with the expression

profile of Renshaw interneurons (expressing MafB, Oc1, and

Oc2) is predicted to be confined to the most ventral region within

the parental V1 population (Figure 4I), in agreement with their

known settling position (Alvarez and Fyffe, 2007; Stam et al.,

2012). Other inferred cell types, characterized by FoxP2,

FoxP4, Nr3b3, and/or Nr4a2 expression, showed clustered dis-

tributions ventral to the central canal and dorsomedial to motor

neurons (Figure S4). Such distributions are similar to the pro-

posed location of group Ia reciprocal interneurons (Hultborn

et al., 1971), a subset of which are known to reside within the

parental V1 population (Zhang et al., 2014). Taken together,

these findings document novel molecular and spatial diversity

in the V1 interneuron population.

A Cladistic Analysis of Transcription Factor Expression
To characterize the minimal number of TFs needed to provide

selective access to an individual cell type, we developed a clas-

sification scheme that relies on a recursive algorithm to sequen-

tially subdivide the parental population and arrange every cell

type along a clade diagram (see Supplemental Information; Fig-

ure S5). In this representation, the central node of the diagram

corresponds to the full V1population,with branches representing

TFs expressed in a mutually exclusive fashion covering the high-

est fraction of the parental population. This process is repeated

until the candidate cell types from which the analysis is con-

structed are revealed at the extremities of the plot. Our analysis
reveals that 64% of the V1 parental population can be divided

into four main clades on the basis of the mutually exclusive

expression of FoxP2, Pou6f2, Sp8, and MafA (Figure 5A). Each

clade contains from 4 to 19 cell types, with a total of 36 cell types

fallingwithin the fourmain clades (Figure 5B). Theminimumnum-

ber of TFs needed to target each cell type ranges from two (in

the case of Pou6f2, Nr5a2 neurons) to six (as in the final leaves

of the FoxP2 clade) with a mean number of 4 ± 1 (mean ± SD).

Analysis of clade settling positions shows that the MafA, Sp8,

and Pou6f2 clades exhibited little spatial overlap, whereas the

FoxP2 clade displays a broad spatial distribution with significant

overlap with the other three clades (Figure 5C). At the second tier

of our clade assignment, V1 subclasses become more spatially

restricted (Figure 5D), with additional restrictions for progres-

sively higher tiers (not shown). Cell types within the Pou6f2 clade

exhibit medio-lateral gradations in their spatial distributions,

determined by the expression of the TFs Nr5a2 and Lmo3,

respectively. In certain instances, however, cell types within a

single clade show overlapping spatial distributions, best exem-

plified by the FoxP2 clade, characterized by numerous inter-

mingled cell types with no statistically significant difference in

their centroid coordinates (Figure S4). In summary, this clade

analysis provides predictive insight into the relative contributions

of individual TFs as well as spatial information of use in delin-

eating the hierarchy of V1 interneuron candidate cell types.

Validation of Bayesian Model Predictions
The merits of our computational analysis depend critically on

the ability to infer cellular diversity accurately (see Computa-

tional Validation of the Bayesian Model in the Supplemental
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Figure 5. Mutually Exclusive Cell Types Divide the V1 Parental Population into Four Clades

(A) Clade diagram constructed from the set of 50 cell types corresponding to the collection that occurs most frequently among the samples (mode of the

posterior). Each terminal node corresponds to a cell type, with its TF profile obtained by traversing the diagram from the center to the outermost levels. Diagram is

portrayed up to level 6 in the hierarchy and contains 15 cell types out of the 19 belonging to the FoxP2 clade. Bar above a TF name denotes lack of expression.

(B) Expression profiles of inferred cell types contained within each of the four clades. Gray box contains remaining cell types not expressedwithin V1FoxP2, V1MafA,

V1Pou6f2, or V1Sp8 clades.

(C) V1MafA, V1Pou6f2, and V1Sp8 clades represent mutually exclusive subsets but overlap spatially with the V1FoxP2 clade. Scale bar, 100 mm.

(D) V1 spatial distributions corresponding to subpopulations at the second tier of the clade diagram. Blue corresponds to cell typeswithin the V1FoxP2 clade, green

correspond to V1MafA, yellow corresponds to V1Pou6f2, and red corresponds to V1Sp8. Scale bar, 100 mm.

See also Figure S5.
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Information; Figure S6). We sought to assess the biological ac-

curacy of the Bayesian model’s predictions, comparing first

experimental findings and inferred results from Bayesian anal-

ysis with single-cell qRT-PCR data (Figure 6). We focused on

15 TFs for which reliable qRT-PCR probes could be identified

and analyzed TF expression within En1+ neurons, isolated

at random from p0 lumbar spinal segments of En1::Cre;

RCE::lsl.GFP mice. We assessed whether qRT-PCR and

immunocytochemistry gave comparable co-expression values.

Appropriate thresholds for each gene were set, relative to the

expression of the ubiquitously expressed gene b-actin, with

the aim of comparing the measured qRT-PCR patterns against

our immunohistochemical measurements. Thresholds were cho-

sen by minimizing the distance between qRT-PCR generated

expression values and immunohistochemical measurements

(Experimental Procedures, Single Cell qRT-PCR Characteriza-

tion). After applying appropriate thresholds, TFs were classified

either as ‘‘expressed’’ or ‘‘not expressed’’ within individual

En1+ interneurons. The patterns of gene expression emerging

from qPCR exhibited high correlation with immunohistochemical

data for both individual and paired TF measurements (Figures

6A–6C, correlation coefficient = 0.88).

We then asked whether qRT-PCR transcriptional patterns

correlate with the clade results of our Bayesian analysis, seeking

to validate the general organization of our candidate expression

patterns, instead of individual cell types. Individual V1 inter-

neuron gene expression profiles can be segregated along the

four major inferred clade populations, indicating that our compu-

tational predictions accurately reflect gene expression relation-

ships in vivo (Figure 6D). Importantly, qRT-PCR identified closely

related expression patterns predicted by the model. These re-

sults validate the general organization of the Bayesian cell-type

predictions.

We next tested predictions involving triple labeling of combi-

nations of TFs not previously measured, guided by experimental

design considerations (Figure S7). We focused on V1Sp8 inter-

neurons, noting that predicted fractions for the seven potential

combinations of Sp8, Prox1, and Prdm8 are in good agreement

with their measured values (Figure 7A; Table S1). Predictions

arising from spatial analyses tend to be more constrained,

with smaller SDs and are generally more accurate than the

non-spatial predictions. Moreover, we validated the predicted

absence of the combination Prdm8+, Prox1+, Sp8� (Figure 7B).

Taken together, these results indicate that the Bayesian

approach accurately infers the TF expression profile of neuronal

types within the parental V1 population.

Finally, our results also enabled us to test predictions about

unmeasured spatial distributions of neurons expressing pairs

of TFs, on the basis of measured spatial information for single

TFs. We focused on cases in which a combination of two TFs

confined an inferred V1 neuronal type to a highly restricted

region of the parental V1 distribution. We found that our

predictions faithfully co-localize with the actual distributions

assessed in p0 caudal lumbar spinal segments (Figures 7C–

7E). These results indicate that the Bayesian approach, by

virtue of incorporating dual cellular sources of information,

correctly predicts the spatial distribution of novel gene

combinations.
Generalization of Bayesian Diversity Estimates
To establish the general applicability of our Bayesian approach,

we evaluated its ability to identify cell types in systems where an

estimate of cellular diversity had been extracted by other anal-

ysis procedures.

We first focused on the zebrafish embryo, for which single

cells have been transcriptionally profiled by RNA sequencing

(RNA-seq) and mapped to their location of origin (Satija

et al., 2015). Although the delineation of the entire cellular

repertoire was not attempted in that work, the analysis of sin-

gle cell cluster profiles across the marginal region of the em-

bryo is consistent with seven cell types (Figure 7G). We sought

to determine whether our sparse Bayesian methods are able to

achieve this result given simulated data generated by

randomly subsampling the dataset from Satija et al. (2015)

(see Ground Truth Data Generation from RNA-Seq Measure-

ments in the Supplemental Information). In the absence of

spatial information, the sparse Bayesian algorithm estimated

5 ± 1 cell types. The transcriptional profile of each inferred

cell type corresponds to one of the ground-truth candidates,

but our procedure underestimated total cell-type number (Fig-

ure 7I). Introducing spatial information into the analysis in-

creases the number of correctly inferred cell types to 6 ± 1

(Figure 7J), close to 7, the ground-truth number. Thus as in

the V1 study, inference is improved by incorporating additional

cellular characteristics—in this case location. The similar

shape of some spatial distributions, together with the random

selection of the subset of genes incorporated in our analysis

(see Supplemental Information for details), are likely reasons

that the algorithm slightly underestimates cell-type diversity.

Nevertheless, the results obtained by the Bayesian approach

are generally in good agreement with those obtained by clus-

tering the original RNA-seq data.

We next analyzed cortical interneuron diversity, where 16

interneuronal cell types have been identified on the basis of

RNA-seq data in mouse somatosensory cortex and hippocam-

pal CA1 neurons (Zeisel et al., 2015). From this dataset, single

and pairwise measurements were created, with errors as-

signed to each measurement (Supplemental Information). We

used this dataset to construct Bayesian estimates of neocor-

tical diversity in the absence of spatial information, varying

the number of genes used in the analysis, the noise in the mea-

surements and the amount of missing data (representing anti-

body incompatibility). From this, we inferred 12.7 ± 0.3 cell

types over a range of 13 to 16 genes used, all 12 correspond-

ing to correctly inferred expression profiles (Figure 7K). In

every example, the sparse Bayesian analysis outperformed

the NNCLS approach, which overestimated the number of

cell types by nearly 100%. We next used all selected genes

to estimate sensitivity to noise and missing data and observed

a larger effect for noise (Figure 7L). As the noise level and

amount of missing data tend to zero, we correctly infer

the total number of cell types and their expression profiles

(Figure 7M).

These analyses establish the sparse Bayesian approach as

an effective means of estimating neuronal type diversity and

provide further insight into the benefits of incorporating spatial

information when obtaining accurate estimates.
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Figure 6. Single-Cell qRT-PCR Confirms Antibody Measurements and Validates Candidate Clade Expression Profiles

(A) Matrix of V1 interneurons representing fraction of cells expressing single and paired TFs (same as in Figures 1A and 1B, reproduced to compare against

B here). Fractional values of single TFs represented as diagonal elements.

(B) Co-expression matrix calculated using single-cell qRT-PCR information (plotted as in A); n = 86 cells.

(C) Immunohistochemistry versus qRT-PCR values. (A) versus (B) show a correlation value of 0.88.

(D) Single-cell expression profiles can be arranged according to cladistic analysis; second tier predictions are corroborated in the Pou6f2 clade. The clade

expression profile (C.E.P.) was computed by averaging expression profiles of inferred cell types belonging to each clade, weighted by their posterior inclusion

probability. These profiles, computed solely from immunohistochemistry data, match the clustered qRT-PCR measurements. Twenty-five of 86 total cells span

the remainder (i.e., were not assigned to the clusters shown here; data not shown), consistent with the ratio of remainder cell types shown in Figure 5B.

See also Figure S6 and Table S2.
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Figure 7. Biological Validation of Bayesian Predictions

(A) Eighteen potential cell types expressing Sp8 TF (top), along with their inferred fractions within the parental population (mean ± SD, as in Figure 2A, middle and

bottom), calculated using solely TF expression information (middle) or both expression and spatial information (bottom).

(B) Predicted prevalence for measured triplet antibody combinations. Mean measured value is depicted as a red line. Predicted values are indicated in gray or

blue (computed using protein expression information only, or with spatial information, respectively). See also Table S1.

(C–E) Spatial distributions for dual transcription factor-gated V1 subsets can be predicted accurately. Left: indicates prediction. Right: measured distributions.

Scale bar, 100 mm.

(F) Expression profiles of zebrafish cell types identified by Satija et al. (2015).

(G) Spatial distribution of each cell type in (F).

(legend continued on next page)
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DISCUSSION

Objective assessment of the extent of mammalian cellular diver-

sity has remained challenging. The sparse Bayesian framework

presented here provides a general method for characterizing

cellular heterogeneity on the basis of sparsely sampled biolog-

ical information. We have used this framework to study spinal

V1 interneuron diversity. By analyzing the spatial expression

densities of individual TFs as well as their patterns of pairwise

expression, candidate expression profiles for �50 inferred V1

cell types are provided. The integration of distinct phenotypic as-

pects of cellular heterogeneity, in this instance TF expression

and settling position, markedly enhances the confidence in

assignment of predicted V1 interneuron cell types. We note

that this approach provides a general method for delineating

the heterogeneity of cell types in any mixed tissue.

Bayesian and Other Approaches to Cell-Type Diversity
Estimates of cell-type diversity can be obtained through compu-

tational approaches that employ hierarchical clustering (see

Armañanzas and Ascoli, 2015 for a recent review). But these

methods have drawbacks—it is challenging to use hierarchical

clustering to determine the number of cell types automatically

and their inferences can be sensitive to the choice of similarity

measures (Augen, 2005).

A different set of computational approaches based on decon-

volution algorithms have been used to characterize cellular

diversity from information about gene expression profiles

(Shen-Orr and Gaujoux, 2013). These can be divided into two

major methodologies. Regression approaches can be applied

when the expression profile of cell types of interest is known a

priori (Wang et al., 2006; Abbas et al., 2009; Gong et al., 2011;

Zuk et al., 2013; Grange, et al., 2014). In contrast, matrix-factor-

ization approaches become relevant when cell-type expression

profiles are not known (Repsilber et al., 2010; Erkkilä et al.,

2010; Bazot et al., 2013; Zhong et al., 2013; Liebner et al.,

2014). The latter approaches suffer from similar limitations as

the NNCLS method: matrix factorizations are inherently non-

unique, and estimation of confidence levels can be difficult.

Past attempts to overcome these challenges have relied on the

premise that particular genes are expressed in only a single

cell type, which does not represent the general biological case

(Gaujoux and Seoighe, 2012). A more recent approach, concep-

tually akin to the methods developed here, uses SnS priors to

reduce the mathematical ambiguities inherent in matrix factor-
(H) In blue, posterior mean ± SD number of cell types per sample. In gray, mean

(I) Examples of two correctly inferred spatial distributions.

(J) Interneuronal cell types identified by Zeisel et al. (2015). Commonly used mark

in black.

(K) Sparse Bayesian regression underestimates total cell type. We randomly sel

mean ± SD number of cell types per sample. In gray, mean ± SD number of c

compared to the true patterns. The red dashed line indicates the ground-truth va

(L) Impact ofmissingdata anderror in themeasurement dataset. Top: fixing themea

of the algorithm remains constantwhen varying the amount of data removed. Botto

(J), the performance of the algorithm decreases as the measurement noise appro

(M) Landscape representing the mean number of inferred cell types when varyi

indicates a level of missing data and noise similar to V1 interneurons.

See also Figure S7.
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ization and has recently been applied to the identification of

genetic disease pathways (Shen et al., 2015), albeit without

addressing cell-type diversity.

Our approach sidesteps previous limitations by focusing on

the fractional prevalence of individual and paired TFs within a

parental population, with well-defined values between zero and

one, in contrast to expression levels that may be scaled arbi-

trarily (see Supplemental Information for further discussion).

Mathematically, our model resembles previous regression

models (Wang et al., 2006; Abbas et al., 2009; Gong et al.,

2011; Zuk et al., 2013; Grange et al., 2014), but has the virtue

of incorporating the SnS prior and a binary set of regressors

that span all possible cell types. For the data considered here,

the resulting regression problem is highly ill-posed (Figure S3),

necessitating a fully Bayesian approach to capture uncertainty

in resultant estimates.

A distinctive feature of our approach is that we start by consid-

ering all of the possible expression patterns for the genes being

considered, 219 in our case and, in general, 2N for a study

involving N genes. We note that this factor 2N may be prohibitive

for applications of the method to RNA-seq data, where a large

number of genes are typically tracked. Although applications in

which N is several thousand would appear impractical, it may

be possible to identify a subset of genes expected to be partic-

ularly informative about cell type and restrict the analysis to this

subset. Even with a reducedN, 2Nmay be dauntingly large, but it

is important to recall that in our analysis a preliminary screening

reduced the number of expression patterns by a factor of �265,

from 219 (524,288) to 1,978. Greater N values may yield even

larger reductions.

The Extent of Transcriptional Diversity
Our analysis has identified extensive transcriptional diversity

within V1 interneurons on the basis of the expression of 19

TFs. The first issue this raises is whether further diversity will

follow inevitably with the inclusion of additional V1 TFs. We

analyzed the impact of varying the number of TFs in our analysis

and found only a weak dependence of the number of cell types

on the number of TFs (Figures 1E and 1F). Thus, 19 TFs appear

sufficient to uncover a substantial fraction of the total underlying

transcriptional heterogeneity.

A second issue is the impact of incorporating spatial informa-

tion on cell type. In our analysis, the inclusion of spatial data

increased inferred cell-type number by �70% and markedly

enhanced confidence in the inferred expression profiles. Spatial
± SD number of correctly identified cell types.

ers are color coded as in Zeisel et al. (2015) and additional markers are colored

ected 13 to 16 genes from the list of markers defined in (J). In blue, posterior

orrectly identified cell types. The expression profile of the first 16 patterns is

lue of 16.

surement error at 10%andusing all thegenesdescribed in (J), theperformance

m: fixing the amount ofmissing data at 10%andusing all the genes described in

aches 20%. The red dashed line indicates the ground-truth value of 16.

ng the amount of missing data and the noise in the measurements. Red Dot



information has a much stronger impact on cell-type assignment

than variation in the number of TFs, indicating that settling posi-

tion carries significant cell-type information which is indepen-

dent from the information carried by the expression patterns of

the 19 TFs examined here.

A third issue is the impact of V1 cell-type spatial segregation

on synaptic input specificity (Bikoff et al., 2016). An inordinate di-

versity in spatially restricted cell types may be necessary to

satisfy highly diverse spinal circuit computations. Our data indi-

cate that spatial segregation only partially accounts for spinal V1

diversity. A large number of inferred cell types, marked by

expression of FoxP2, localize in the same ventral region (Fig-

ure S4). Additional heterogeneity might be realized by the

expression of surface molecules that impose and constrain con-

nectivity with different synaptic partners.

We note that transcriptional diversity could, in some instances,

reflect variation in functional cell state, rather than indicating a

distinct neuronal subtype. However, consistent with the genetic

specification of cell-type identity, we find that the position of

transcriptionally distinct V1 subsets are segregated, stereotyped

from animal to animal, and stable across development (see

Bikoff et al., 2016) (Figures 3H, S4A, and S4B). The spatial

segregation argues strongly against the ‘‘cell state’’ possibility.

Nevertheless, activity-shaped differences in Er81 expression in

fast-spiking cortical interneurons have been shown to mark

delay-type or non-delayed firing states (Dehorter et al., 2015).

In addition, activity-dependent induction of Npas4 expression

has been described for cortical neurons (Lin et al., 2008), with

implications for homeostatic regulation of sensitivity to inhibitory

transmitters. Further studies will therefore be needed to dissect

the functional consequences of V1 diversity, to resolve whether

certain state-dependent functional properties are reflected in the

diversity of V1 transcriptional profiles.

Broader Implications of a Bayesian Analysis of Cellular
Diversity
Our statistical approach has relevance well beyond a focus on

spinal V1 interneurons and could prove useful in further delin-

eating neuronal cell types elsewhere in the nervous system.

Cortical projection neurons fractionate into a few broad classes

based on patterns of target innervation and distinctions in gene

expression, yet the extent to which any single broad class of

pyramidal neurons is itself heterogeneous remains unclear

(Greig et al., 2013). The classification of interneuron cell types

in the brain has proven particularly challenging (Ascoli, 2008;

DeFelipe et al., 2013; Kepecs and Fishell, 2014), although

studies of hippocampal interneuron diversity suggest a degree

of heterogeneity that approaches that found for spinal V1 inter-

neurons. Within CA1 hippocampus, over 20 inhibitory inter-

neuron subtypes have been identified, based on anatomical,

molecular, or electrophysiological distinctions (Krook-Magnu-

son et al., 2012). Single-cell transcriptome analysis of primary

somatosensory cortex or CA1 hippocampus interneurons has

identified 16 molecularly distinct interneuron cell types, which

likely represents a lower bound on diversity (Zeisel et al.,

2015). Thus, insight into interneuronal diversity in the spinal

cord may inform studies to address heterogeneity throughout

the brain.
Our analysis also has implications for genetic strategies aimed

at manipulating circuit elements throughout the nervous system.

Theminimal number of TFs needed to define a single V1 cell type

uniquely has been identified on the basis of clade profiles and is,

on average, 4 ± 1. This indicates that individual TFs are generally

not sufficient to isolate V1 neuronal types, consistent with find-

ings in other neuronal systems (Sanes and Masland, 2015).

The difficulty in identifying single TFs that uniquely define a cell

type may reflect the prevalence of combinatorial TF codes (Phil-

ippidou andDasen, 2015) and could explain the difficulty in delin-

eating individual motor neuron pools (De Marco Garcia and Jes-

sell, 2008).

EXPERIMENTAL PROCEDURES

Immunohistochemistry

Immunohistochemistry was performed as in Bikoff et al. (2016). Briefly, p0

En1::cre; Tau.lsl.nLacZmice were transcardially perfusedwith 4%paraformal-

dehyde in 0.1 M phosphate buffer, followed by a 2-hr postfixation. Tissue was

then washed, cryoprotected by equilibration in 30% sucrose in 0.1 M phos-

phatebuffer, embedded inOCT, andcryostat-sectioned in the transverseplane

at 20 mm. Immunohistochemistry was performed on tissue through sequential

exposure to primary antibodies (overnight at 4�C) and fluorophore-conjugated

secondary antibodies (1 hr at room temperature). Sectionsweremountedusing

Fluoromount-G (SouthernBiotech) and coverslipped for imaging. Confocal

images were obtained on an LSM 710 Meta Confocal microscope (Carl Zeiss)

at 1,0243 1,024 resolution, using a Plan-Apochromat 203/0.8 M27 objective.

See Bikoff et al. (2016) for a description of antibodies used.

Transcription Factor Co-expression

Confocal images of transcription factor co-expression were analyzed in Imaris

(Bitplane) using the ‘‘Colocalization’’ and ‘‘Spots’’ functions with thresholds set

to exclude nonspecific background reactivity, followed bymanual validation to

confirm co-expression within V1 interneurons. For each transcription factor

combination, at least two independent sections from three or more animals

were analyzed, totaling >580 lumbar sections and >1,100 lumbar hemisections

in this dataset.

Spatial Analysis

Interneuron spatial distributions are described in Bikoff et al. (2016). Sections

were normalized to a standardized spinal cord hemisection (distance from

central canal to lateral boundary: 650 mm; distance from central canal to bot-

tom-most boundary: 400 mm). Coordinates were exported from Imaris and

plotted using the contour function in MATLAB.

Bayesian Sparse Regression Model

The Supplemental Information includes a detailed description of the Bayesian

model and Hamiltonian Monte Carlo algorithm for sampling from the posterior

distribution of the fractional values f given the observed data, under the SnS

prior.

Single-Cell qRT-PCR Characterization

GFP+ cells from lumbar spinal cords of p0 En1::Cre; RCE.lsl.GFP mice were

dissociated using the Papain Dissociation Kit (Worthington), and single cells

were isolated by fluorescence-activated cell sorting using a Beckman Coulter

MoFlo Astrios cell sorter. Cells were directly deposited into 96-well plates

containing lysis buffer (Ambion Single Cell-to-CT Kit; Life Technologies).

Reverse transcription and pre-amplification were performed according to

the manufacturer’s protocol (Ambion, Life Technologies). Pre-amplified prod-

ucts were loaded on Biomark 48.48 Dynamic Arrays and run on the Biomark

HD microfluidic multiplex qRT-PCR platform (Fluidigm). Gene expression

levels were assayed using TaqMan probes (Life Technologies) directed

against housekeeping genes and 15 of the 19 transcription factor-encoding

genes, excluding FoxP1, MafA, Nr3b3, and Zfhx4 for which reliable probes

could not be identified (see Table S2 for a description of TaqMan probes
Cell 165, 220–233, March 24, 2016 ª2016 Elsevier Inc. 231



and Supplemental Experimental Procedures). Ct values were measured by

Biomark software, where relative transcript levels were determined by 2-Ct

normalization to Actb transcript levels. The co-expression matrix for single

cell qRT-PCR data was calculated using an optimization approach. Briefly, a

threshold for each gene was computed by minimizing the distance between

a co-expression matrix calculated by qRT-PCR and immunohistochemistry.

The fraction of cells expressing gene X was computed simply by calculating

the number of cells expressing gene X divided by the total number of cells.

All experiments and procedures were performed according to NIH guidelines

and approved by the Institutional Animal Care and Use Committee of

Columbia University.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2016.01.026.
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Zeisel, A., Muñoz-Manchado, A.B., Codeluppi, S., Lönnerberg, P., La Manno,
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