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Abstract

Synaptic depression modeled after that seen in cortical slices removes correlations from
realistic spike sequences. If not removed, such correlations can lead to ine$cient and redundant
neural codes. We suggest that this redundancy reduction at individual synapses enables
a neuron to better process information from multiple inputs. ! 1999 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Many hippocampal and neocortical synapses appear to be surprisingly unreliable,
with only a small fraction of presynaptic action potentials successfully triggering
vesicle release [8]. Despite this high failure rate, a neuron's ability to process
information about its inputs may not be severely compromised. We suggest that the
activity dependence of synaptic transmission enhances a neuron's information-pro-
cessing capability by increasing the amount of information carried per vesicle release
and by allowing the neuron to temporally "lter individual inputs before integrating
them.
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Fig. 1. Decorrelation achieved by synaptic depression. (a) Autocorrelation of a presynaptic spike train of
average rate 15 Hz. Note that short-time negative correlations characteristic of post-spike refractory e!ects
cannot be seen at this scale. (b) Autocorrelation of the successful transmissions through a randomly
transmitting synapse. (c) Autocorrelation of the successful transmissions through a depressing synapse
(!p"0.25, "

$
"380 ms) with the same average percentage of successful transmissions as in (b).

Previous studies have emphasized the bene"ts of removing correlations from
natural visual images (see, for example [2]) and have suggested that such redundancy
reduction may be one of the functional characteristics of the early visual system. Here
we focus on reduction of the temporal autocorrelations observed in spike trains
modeled after those recorded in area IT of awake monkeys freely viewing natural
scenes (videos) [3]. We show that synaptic depression similar to that measured in
cortical slices [1,6,9,10] removes correlations from these spike trains and demonstrate
how integration of multiple inputs nevertheless produces correlated spike trains.

2. Model description and methods

Our work is based on a model that generates spike sequences with statistical
structure similar to that of spike trains recorded in area IT of awake monkeys
watching videos [3]. Model spike trains are constructed to simulate the spike
sequences generated by a typical visually responsive neuron when an animal is
making saccades and viewing a natural visual environment. At each saccade, a max-
imum Poisson "ring rate r

%!&
is chosen from an exponential "ring-rate distribution

[3,4], and this value is held until the next saccade. Between saccades, spike sequences
are generated at a rate r(t) which is set to 0 following a spike and recovers exponen-
tially to r

%!&
with time constant 8 ms. Intersaccade intervals of mean duration

#t
'!##

$"365 ms are chosen from a "t to an observed distribution of intersaccade
intervals [11]. The probability density for an intersaccade interval of duration t

'!##
is

proportional to (e"#$$!'!###e%#%&}$"#&%!'!##)'(. The mean of the exponential "ring-rate
distribution is chosen such that the long-time average "ring rate of the cell is 15 Hz.

Synaptic transmission is modeled as in references [1,9,10]. In our model, however,
synaptic amplitudes are interpreted as being proportional to the probability of
synaptic transmission. After each successful transmission, transmitter release prob-
ability is reduced by an amount !p, with a #oor set at 0. Between transmissions,
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release probability recovers exponentially toward a "xed maximal value p
%!&

with
time constant "

"
. For the simulations shown, p

%!&
is set at 1.

Autocorrelations are calculated according to the formula

C(")"#s(t)s(t#")$!#s(t)$&

#s(t)$&
, (1)

where s(t) is a sum of delta functions corresponding to either presynaptic spike arrivals
or successful transmissions, and # $ indicates time averaging. The denominator
normalizes for e!ects due solely to a change in average rate and sets the value for
perfect negative correlations to !1.

3. Results

3.1. Decorrelation at a single synapse

Fig. 1 illustrates the decorrelating e!ect of synaptic depression. The presynaptic
spike trains generated by our saccade model are characterized by strong positive
correlations (Fig. 1a). Figs. 1b and c show autocorrelations for the sequences of
transmission events resulting from these presynaptic trains' arrival at a synapse that
transmits with constant probability (Fig. 1b) and a synapse with the stochastic
dynamics of depression outlined above (Fig. 1c). For realistic parameters of synaptic
depression, the positive correlations in the presynaptic train are almost completely
removed (Fig. 1c). Random failures of synaptic transmission alone do not produce
decorrelation (Fig. 1b). Rather, it is the activity-dependent dynamics of synaptic
depression that achieve decorrelation by transmitting spikes following a rate change
more reliably than spikes occurring during the intersaccade periods of constant-rate
"ring.

Fig. 2 illustrates the e!ects of changing the magnitude of depression by adjusting !p
and the recovery time from depression by varying the time constant "

$
. This can yield

almost complete decorrelation (center), introduce strong negative correlations (bot-
tom right), or decorrelate on short time scales while introducing negative correlations
on longer time scales (bottom left). Not surprisingly, decorrelation is maximal when
"
$

is close to the time scale of the input correlations.

3.2. Integration of many decorrelated synaptic inputs

If each synapse decorrelates its transmissions, why are correlated spike trains seen
at all? To address this question, we examine the e!ect of integrating EPSPs from 30
stochastic, depressing synapses using an integrate-and-"re neuron with membrane
time constant 30 ms. Each input to the neuron consists of a positively correlated spike
train generated by the saccade model discussed above. Consistency requires that the
statistics of input and output spike sequences in recurrent cortical circuits should be
the same [7]. Fig. 3b shows the con"guration of inputs which was found to produce
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Fig. 2. Autocorrelation of the successful transmissions through a synapse with the speci"ed values of !p
and "

$
. Columns left to right show !p"0.1, 0.25, 0.5. Rows top to bottom show "

$
"80, 380 and 1000 ms.

Presynaptic trains are as in Fig. 1a.

output spike sequences with statistics consistent with the presynaptic input spike
sequences. At each saccade, a subset of inputs (dotted lines) with identical maximum
rates r

%!&
arrive synchronously at the neuron. These synchronous inputs are then

followed by an asynchronous subset of inputs (solid lines) with the same rates as the
"rst group but with rate changes that are delayed with the length of the delay chosen
from an exponential distribution of mean "

!((
. The synchronous subset consists of

43% of the total inputs. The mean delay in arrival time "
!((

matched the depression
time constant "

$
"380 ms. Other simulations (not shown) indicate that the syn-

chronous subset is required to match the short-time correlations, while the asyn-
chronous subset "lls out the longer-time correlations. We note that the arrival of
a large synchronous group of inputs followed by an exponentially decaying group of
inputs would be expected if a feedforward group of inputs were to excite a neuronal
population and cause a reverberation of activity, with each loop back to the neuron
multiplicatively decayed in amplitude.
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Fig. 3. Con"guration of inputs required to match input and output correlations. (a) Autocorrelation of
presynaptic spike trains. (b) Pattern of arrivals of an identical change in rate along 30 presynaptic inputs to
an integrate-and-"re neuron. 43% of arrivals are synchronous (dotted lines) and the remainder arrive
asynchronously (solid lines), with density of arrivals decaying exponentially over time with "

!((
"380 ms. (c)

Autocorrelation of successful transmissions through a synapse with !p"0.2, "
$
"380 ms. (d) Autocorrela-

tion of the postsynaptic spike train.

4. Discussion

4.1. Implications of decorrelation at a single synapse

Our results show that depressing synapses with realistic dynamics decorrelate spike
trains typical of those recorded in behaving animals. Decorrelation, while not com-
pletely equivalent to information maximization, is an e!ective way of compressing
information while minimizing total synaptic transmission and thus utilization of
synaptic resources. Such information compression could be important in allowing
a neuron to respond to its changing inputs while "ltering out constant inputs. In this
sense, it is a manifestation of the cortical gain control mechanism discussed in Ref. [1].
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However, decorrelation goes beyond the simple notion of cortical gain control by
systematically eliminating temporal redundancy in inputs rather than just normaliz-
ing against di!erent input rates.

While this paper has focused on the information-compression bene"ts of decorrela-
tion, synapses might also be tuned to transmit or remove particular types of correla-
tions. Facilitation, for example, has been argued to be e!ective in reliably transmitting
bursts while "ltering out intermittent spikes [5]. While synaptic depression removes
positive correlations from spike trains, facilitation removes negative correlations
characteristic, for example, of refractory e!ects. This suggests that the amount and
type of short-term plasticity seen in di!erent brain regions may be related to typical
regional patterns of neuronal activity.

4.2. Consistency of input and output statistics

We have demonstrated how correlated spiking can arise in a neuron which
integrates decorrelated trains of EPSPs. The correlations emerge as a result of
integrating cross-correlated inputs whose &spatial' correlations cannot be removed by
the synapse-speci"c mechanisms of synaptic depression. The conversion of spatial
correlations to temporal correlations occurs because membrane potential #uctuations
produced by a rate change at one input are extended over time by the arrival of the
same rate change along correlated a!erents.

Keeping spatial correlations while removing temporal ones could be advantageous
in information processing. While the redundancy inherent in temporal correlations
might be useful in averaging away noise, such temporal "ltering would be inherently
slow; spatial averaging, in contrast, is instantaneous.

5. Conclusion

We have seen that depressing synapses may act as temporal "lters that remove
redundancy from realistic inputs. By eliminating autocorrelations at individual
synapses, neurons become more sensitive to information-rich changes distributed
across their inputs. Thus, synaptic unreliability combined with short-term plasticity
may increase, rather than decrease, a neuron's information-processing capability.
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