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SUMMARY
The balance between excitatory and inhibitory (E and I) synapses is thought to be critical for information pro-
cessing in neural circuits. However, little is known about the spatial principles of E and I synaptic organization
across the entire dendritic tree of mammalian neurons. We developed a new open-source reconstruction
platform for mapping the size and spatial distribution of E and I synapses received by individual geneti-
cally-labeled layer 2/3 (L2/3) cortical pyramidal neurons (PNs) in vivo. We mapped over 90,000 E and I syn-
apses across twelve L2/3 PNs and uncovered structured organization of E and I synapses across dendritic
domains as well as within individual dendritic segments. Despite significant domain-specific variation in the
absolute density of E and I synapses, their ratio is strikingly balanced locally across dendritic segments.
Computational modeling indicates that this spatially precise E/I balance dampens dendritic voltage fluctua-
tions and strongly impacts neuronal firing output.
INTRODUCTION

The spatial organization of synapses throughout the dendritic

tree is a critical determinant of their integration properties and

dictates the somatic firing patterns of individual neuronal

subtypes (Gidon and Segev, 2012; Katz et al., 2009; Liu, 2004;

Polsky et al., 2004). Within dendritic branches, clustered poten-

tiation of excitatory and inhibitory (E and I) synaptic inputs under-

lies both circuit development and experience-dependent

plasticity (Chen et al., 2012; Frank et al., 2018; Harvey and Svo-

boda, 2007; Kleindienst et al., 2011; Makino andMalinow, 2011).

Recently there has been substantial progress toward mapping

neuronal connectivity on multiple spatial scales (Hildebrand

et al., 2017; Iacaruso et al., 2017; Meijering et al., 2016; Sigal

et al., 2015). However, significant roadblocks remain in identi-

fying basic principles of synaptic organization for individual

neuronal subtypes (Dickstein et al., 2016; Fogarty et al., 2013;

Helmstaedter, 2013; Kleinfeld et al., 2011), leaving important

questions unanswered. Are there multiple spatial scales of E

and I organization within neurons? Are there hotspots of
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enhanced synaptic connectivity? Is there a structural correlate

of E/I balancewithin specific dendritic domains or individual den-

dritic segments? Finally, how does E and I synaptic organization

characterizing a given neuronal subtype influence the dendritic

and somatic firing properties of these neurons?

Comparing the distributions of E and I synapses within the

same neuron is particularly important to determine the cellular

logic of synaptic organization. At the circuit level, a precise bal-

ance of excitation and inhibition is critical for calibrating both

global and fine-scale levels of activity throughout development

and during adult function (Dorrn et al., 2010; Froemke, 2015;

Marlin et al., 2015). In both the auditory and somatosensory cor-

tex, the co-tuning of E and I conductances is set by experience-

dependent refinement of intracortical inhibition (D’amour and

Froemke, 2015; Higley and Contreras, 2006). An anatomical ba-

sis for E/I balance within individual neurons has also been

observed in the visual cortex and CA1, where excitatory inputs

onto pyramidal neurons (PNs) are continuously offset by somatic

inhibition (Takahashi et al., 2016; Xue et al., 2014). A conserved

ratio of the numbers of E/I synapses was observed throughout
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Figure 1. Spatial and Morphological Annota-

tion of Synapses across Whole Neurons with

Synapse Detector

(A) Sparsely labeled layer 2/3 pyramidal neuron

(PN). Scale bar: 500 mm. Inset, higher magnification

of the neuron shown.

(B) Single-synapse resolution image volume

compiled from 3 adjacent tissue sections containing

a complete layer 2/3 PN expressing tdTomato.

(C) Neuron trace of (B) (left) rotated to display the

tissue section plane (right). Each color (magenta,

silver, and green) represents a fragment of the

dendritic arbor traced and stitched from adjacent

tissue sections.

(D) Dendritic spines annotated throughout the basal

dendritic arbor of (B) (top panel). Scale bar: 50 mm.

Annotated spines (green in middle panel) and

inhibitory Gephyrin-EGFP labeled synapses con-

tained (blue in bottom panel) from the top panel

inset. Scale bar: 5 mm.

(E) Neuron trace of (B) annotated with the Subtree

Labeling program. Scale bar: 50 mm.

(F) From left to right: tdTomato volume from inset

in (E) with identified inhibitory synapses labeled in

white, corresponding trace, overlaid spine anno-

tations, and inhibitory synaptic annotations

associated with nodes within the trace. Scale

bar: 2 mm.
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the dendrites of cultured hippocampal neurons, suggesting that

the spatial distribution of synapses might also contribute to E/I

balance (Liu, 2004). However, this finding has not been extended

to neurons in vivo. Activation of N-methyl-D-aspartate (NMDA)-

type glutamate receptors leads to input-specific long-term

potentiation of dendritic inhibition mediated by somatostatin-ex-

pressing interneurons, linking excitation and inhibition within in-

dividual dendritic segments (Chiu et al., 2018).

Here we have developed an adaptable open-source platform

for imaging and mapping E and I synapses (ES and IS, respec-

tively) across the entire dendritic arbor of individual neurons.

We created whole-neuron reconstructions of individual, optically

isolated PNs containing information about the size, shape, and

continuous position of E and I synapses across their entire den-

dritic arbors: the first dataset of its kind for any neuronal subtype.

We focused our study on layer 2/3 (L2/3) PNs of the adult mouse

primary somatosensory cortex, where substantial prior knowl-

edge of the synaptic microstructure and connectivity allowed

validation of our platform and some of our findings (Ballesteros-

Yáñez et al., 2006;DeNardo et al., 2015; Frangeul et al., 2016; Ku-

bota et al., 2007; Lefort et al., 2009; O’Connor et al., 2010) as well

as identification of newprinciples of Eand I synaptic organization.

RESULTS

Synapse Detector: A Platform to Create Whole-Neuron
Structural Input Maps
To obtain optically isolated complete L2/3 PNs for these synaptic

reconstructions, we co-electroporated Cre-dependent Flex-
tdTomato with low levels of Cre recombinase for extremely

sparse in utero electroporation (Atasoy et al., 2008; Schn€utgen

et al., 2003) (Figure 1A; Video S1). We also labeled inhibitory syn-

apses received by individual PNs by co-electroporating the

inhibitory postsynaptic scaffolding protein Gephyrin tagged

with EGFP, a strategy previously shown to reliably label

GABAergic and glycinergic inputs without affecting their devel-

opment (Chen et al., 2012; van Versendaal et al., 2012). We

achieved single-synapse resolution (0.12 mm/pixel with 0.1 mm

z-steps) with confocal microscopy by imaging neurons across

2–3 serial 150 mm vibratome sections with a 1003 1.49 NA

objective lens (Figures 1B and 1D; Video S2).

This new Synapse Detector toolkit within Vaa3D generates

synaptic maps by taking image data and a trace of the dendritic

tree as input to automatically isolate E and I synapses within a

user-defined radius of each dendrite. Within this toolkit, dendritic

spines are classified with a Spine Detector module that identifies

regions of fluorescence surrounding the dendritic trace (top and

middle panels in Figure 1D; Videos S3, S4, and S5). Dendritic

spines are the target of >90% of E synapses in the mammalian

brain, including those targeting L2/3 PNs (Harris and Kater,

1994; Knott et al., 2006; Nimchinsky et al., 2002; Santuy et al.,

2018b). More than 96% of spines in L2/3 PNs contain at least

one postsynaptic density, and of those spines, >94% contain a

single E synapse (Arellano et al., 2007; Santuy et al., 2018b).

To validate the identification of dendritic spines as a structural

proxy for E synapses in our system, we assessed the colocaliza-

tion of Homer1c-tdTomato puncta with dendritic spines (Figures

S2C–S2E). We found that �90% of Homer1c puncta, a core
Neuron 106, 566–578, May 20, 2020 567



Figure 2. Synaptic Distribution Profile for

Layer 2/3 Somatosensory PNs

(A and B) Example of complete reconstruction of

8,115 dendritic spines (green in A) and 1,045 I syn-

apses (blue in B) throughout the dendritic tree of a

single layer 2/3 PN (neuron 1; red cell filler, tdTo-

mato). Scale bar: 50 mm

(C) From left to right: boxplots showing the distri-

bution of dendritic length, dendritic spine number,

dendritic spine density, inhibitory synaptic number,

inhibitory synaptic density, and dually innervated

spine proportions for all layer 2/3 PNs mapped in

this study.
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postsynaptic scaffolding component of excitatory synapses,

were localized to dendritic spines compared to the dendritic

shaft in L2/3 PNs (Hayashi et al., 2009; Usui et al., 2003).This

observation confirms that, in mouse L2/3 PNs, the vast majority

of excitatory synapses are made onto dendritic spines. Despite

our observation that �90% of E synapses onto L2/3 PNs target

dendritic spines, the remaining 10% that target the dendritic

shaft nonetheless represents a significant population of presyn-

aptic inputs onto these cells and it will be interesting in future

studies to explore their impact on dendritic integration.

Inhibitory synapses are identified using an IS Detector program

that identifies EGFP-Gephyrin puncta that co-localize with cyto-

solic Flex-tdTomato (bottom panel in Figure 1D; Videos S1–S3).

Together, these software modules measure the position of each

E and I synapses throughout the dendritic tree in 3D as well as

morphological features of E and I synapses such as their volume,

spine neck length, and position of I synapses along dendritic shaft

or on spine heads (so-called dually innervated spines) (Chen et al.,

2012; Fossati et al., 2016; Kubota et al., 2007). During reconstruc-
568 Neuron 106, 566–578, May 20, 2020
tion, Synapse Detector’s editing features

allow the user to edit the volume of each

identified synapse and eliminate false posi-

tives (Figure S1). Synapse Detector has a

minimal false negative rate compared to

manual reconstructions and generates

consistent annotation results among multi-

ple users (Figures S2J–S2M). Following

reconstruction, synaptic features are asso-

ciatedwithnodes, providing their geometric

position in 3Dalong the dendritic tree. In the

final step, neuron trace fragments from se-

rial tissue sections containing information

about the position and size of each synapse

are stitched together into a final input map

with the Vaa3D Neuron Stitcher program

(Chenetal., 2017) (FiguresS3–S5). This final

synaptic input map can be used to analyze

the morphology of all synapses as a func-

tion of their continuous distance from the

soma along the dendritic arborization.

We used this new Vaa3D reconstruction

pipeline to map E and I synapses across

the dendritic arbor of ten PNs from L2/3

primary somatosensory cortex (as well as
excitatory synapses from two additional PNs; Figure 2). These

neurons contained on average 6,800 ± 212 dendritic spines

(range: 5,575–8,187) and 979 ± 101 inhibitory synapses (range:

632–1,597; Figure 2C). On average, the total length of the den-

dritic trees we reconstructed was 4,579 ± 103 mm. These neu-

rons displayed overall E and I synaptic densities consistent

with previous reports of synaptic distribution from L2/3 PNs

within the somatosensory cortex (1.48 ± 0.04 spines/mm and

0.20 ± 0.02 inhibitory synapses/mm, respectively) (Charrier

et al., 2012; Chen et al., 2012; Fossati et al., 2016) (Figure 2C).

We also found that 26% ± 2% of inhibitory synapses targeted

dendritic spines in L2/3 PNs (Figure 2C). This fraction of spines

dually innervated by an E and I synapse is comparable with pre-

viously observed values in these neurons (Chen et al., 2012; Fos-

sati et al., 2016; Kubota et al., 2007). L2/3 PN spines have an

average length of 1.121 ± 0.002 mm and an average volume of

0.267 ± 0.001 mm3, while Gephyrin puncta have an average vol-

ume of 0.0493 ± 0.0005 mm3 (Figures S3A–S3C). The distribution

of all measured E synapse volumes (n = 81,604) conforms to a



Figure 3. Domain Organization of Synaptic Distribution and Morphology

(A) A schematic diagram of a L2/3 PN depicting the domains (black boxes) and branch types (black, primary; green, intermediate; purple, terminal).

(B) The density of E (orange line) and I (blue line) synapses across dendritic branch types of L2/3 PNs.

(C) Heatmaps of E (left) and I (right) synaptic distribution indicating regions of low density (cyan) and high density (red).

(D) A heatmap of inhibitory synaptic distribution in which yellow puncta represent inhibitory synapses targeted to dendritic spines. Note the increased density of

these dually innervated spines toward the distal apical tufts.

(E) The proportion of inhibitory synapses made onto dendritic spines across dendritic branch types.

(F) A heatmap of inhibitory synaptic distribution in which yellow puncta represent the 20th percentile of inhibitory synapses by volume for each domain type. Note

the increased density of these large inhibitory synapses in apical intermediate segments.

(G) The proportion of large excitatory (orange) and inhibitory (blue) synapses across dendritic branch types.

For all plots, *p < 0.05, **p < 0.005, ***p < 0.001, and ****p < 0.0001. See STAR Methods for details. All data are presented as mean ± SEM.
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log-normal distribution (Figure S3D). However, the distribution of

all measured inhibitory synapse volumes (n = 9,798) shows a

more complex distribution pattern, with a log-normal distribution

formost inhibitory synaptic volumes (Figure S3G, right-hand side

of graph) and another distribution of small inhibitory synaptic vol-

umes (Figure S3G, left-hand side of graph) corresponding to

inhibitory synapses made directly on spine heads. Compared

with recent results (Santuy et al., 2018a), it may also be possible

that we are slightly overestimating the volume of the 3%–5%

smallest inhibitory synapses. It is unlikely that fixation could

cause aggregation of cytosolic Gephyrin as our observations

of inhibitory synaptic density are extremely similar to what has

been observed in vivo in living mice (Chen et al., 2012). Interest-

ingly, the distributions of E and I synaptic volumes are remark-

ably similar among individual neurons (total of twelve neurons

for excitatory synapses and ten neurons for inhibitory synapses;

Figures S3E, S3F, S3H, and S3I).

An important consideration for studies utilizing fluorescence

microscopy to resolve fine structures such as synaptic

morphology is the effect of light diffraction, whose limit is equal

to the emission wavelength of the fluorophore divided by twice
the numerical aperture of the objective lens (Conchello and Licht-

man, 2005; Helmstaedter et al., 2008). For our reconstructions,

this corresponds to a lateral diffraction limit of�200 nm, allowing

us to resolve >98% of excitatory synapses observed in somato-

sensory L3 by electron microscopy (Santuy et al., 2018a).

Furthermore, to separate closely adjacent structures that might

be incorrectly categorized as a single synapse, we used an

adapted watershed algorithm that estimates boundary locations

by measuring volume outward iteratively from the brightest vox-

els in the center of each identified structure (Barnes et al., 2014)

(Figure S2G; see STAR Methods). We found that for L2/3 PNs

within the somatosensory cortex, we are able to observe E and

I synaptic densities that closelymatch estimates from studies uti-

lizing serial scanning electron microscopy (Alonso-Nanclares

et al., 2004; de Vivo et al., 2017; Knott et al., 2006) (Figures 2C

and 3B). Additionally, after accounting for tissue shrinkage result-

ing from dehydration and fixation for electron microscopy, the

distributions of E and I synaptic morphology we observed were

well within the ranges reported using serial scanning electron mi-

croscopy (DeFelipe et al., 2002; Mollenhauer, 1993; Santuy et al.,

2018a; Spacek and Hartmann, 1983) (Figure S3).
Neuron 106, 566–578, May 20, 2020 569
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Features of E and I Synaptic Organization across the
Entire Dendritic Tree of L2/3 PNs
To analyze synaptic distribution across the fully reconstructed

L2/3 PNs, we subdivided their dendritic arbors into four domains

based on their morphology and distinct E and I input patterns:

apical tuft, apical oblique, apical trunk, and basal dendrites

(Spruston, 2008) (Figure 3A). L2/3 PNs receive perisomatic inhib-

itory inputs from parvalbumin-expressing basket interneurons

and dendritically targeted inhibitory inputs from both somato-

statin-expressing Martinotti interneurons and non-VIP interneu-

rons expressing the serotonin receptor 5HT3a (Jiang et al.,

2015; Tremblay et al., 2016). L2/3 PNs receive excitatory inputs

predominantly from other L2/3 PNs and L4 spiny stellate neurons

almost exclusively onto basal and apical oblique dendrites, while

their apical tuft dendrites branching in L1 receive thalamic input

from the posterior medial nucleus (POm) (DeNardo et al., 2015;

Feldmeyer, 2012; Feldmeyer et al., 2002; Frangeul et al., 2016;

L€ubke et al., 2000). Within these dendritic domains, we distin-

guished among segment types by their relative branch order: pri-

mary, intermediate, and terminal (Spruston, 2008) (Figure 3A).

This categorization is functionally relevant as different branch or-

ders have distinct passive conductance properties resulting

from their relative size and distance to the soma (Spruston,

2008; Vetter et al., 2001). Primary dendrites have relatively low

input impedance due to their large size, while terminal dendrites

have higher input impedance due to their smaller diameter and

sealed end.

In addition to the domain classification used here, we devel-

oped a Subtree Labeling program as part of the Spine Detector

toolkit, which enables user-directed annotation of regions of in-

terest throughout the neuron trace to assess experiment-spe-

cific questions about domain-level synaptic organization (Fig-

ure S1E; see STAR Methods).

This division of the dendritic tree into specific domains and

branch types allowed us to characterize the profile of synaptic

distribution across L2/3 PNs. Similar to previous observations

in CA1 PNs, E and I synaptic distribution appear to be inversely

correlated at the domain level with relatively low spine density

proximal to the soma, suggesting that this may be a general

feature of synaptic organization across PN subtypes (Bloss

et al., 2016; Megı́as et al., 2001) (Figure 3B). In contrast to previ-

ous studies, however, our complete reconstructions enable

whole-neuron mapping of relative E and I synaptic distribution

(Figures 2C, S4, and S5). Maps of E and I synaptic distribution

in individual neurons demonstrated an almost complete absence

of spines along primary dendrites accompanied by the highest

density of inhibitory synapses (Figure 3C).

L2/3 PNs receive direct thalamic inputs from both the ventral

posteromedial nucleus (VPM) and the POm terminating mainly

onto their apical tufts (L1) and basal dendrites (L3), respectively

(DeNardo et al., 2015; Petreanu et al., 2009). The vast majority of

neocortical spines that are dually innervated by an inhibitory syn-

apse receive excitatory inputs from thalamocortical axons, sug-

gesting that distal tuft and basal dendrites should have a rela-

tively high proportion of dually innervated spines (Kubota et al.,

2007). Our unbiased mapping of the location of IS located on

spine heads demonstrates that apical tuft and basal terminal

dendrites of L2/3 PNs display a significantly higher proportion
570 Neuron 106, 566–578, May 20, 2020
of dually innervated spines than primary and intermediate den-

drites (Figures 3D and 3E), validating the spatial resolution of

our labeling, imaging, and reconstruction approaches.

Because spine head volume is linearly proportional to excit-

atory synaptic strength (e.g., size of the post-synaptic density

and density of glutamatergic a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) receptors), it is also possible

to use Synapse Detector to map the distribution of relative syn-

aptic strengths (Katz et al., 2009; Pennacchietti et al., 2017; Schi-

korski and Stevens, 2001). We classified ‘‘large’’ synapses as

greater than the highest 20th percentile of synaptic volume for

each neuron, closely corresponding to the persistent 60% in-

crease in volume reported for synapses following structural

forms of long-term potentiation (Harvey and Svoboda, 2007;

Matsuzaki et al., 2004; Petrini et al., 2014). Interestingly, while

there is no specific trend for the distribution of large spines

across dendritic domains, large inhibitory synapses appeared

to be clustered around the apical intermediate dendritic seg-

ments (Figures 3F and 3G), a feature never detected before.

E and I Synaptic Distribution Is Structured and Locally
Balanced within Dendritic Segments
Active dendritic conductances evoked by clustered synaptic in-

puts can produce nonlinear depolarization and change the prob-

ability of somatic firing (Losonczy et al., 2008). Local increases in

excitatory synaptic density in a subset of segments within the

same dendritic domain could reflect clustered spine stabilization

following branch-specific synaptic potentiation (Harvey and

Svoboda, 2007; Losonczy et al., 2008). Therefore, we tested if

L2/3 PNs exhibit local changes in the relative distribution of E

and I synapses across segments within each dendritic domain

(Figure 4). To assess the extent of this potential weighted synap-

tic distribution, we compared the experimentally observed vari-

ation in synaptic density among segments within each dendritic

domain to randomly shuffled synaptic densities for each neuron

reconstructed. This was done by randomly redistributing synap-

ses across segments within the same domain (see STAR

Methods). Neurons in which synaptic distribution is significantly

weighted toward a subset of dendritic segments would therefore

display greater domain-specific variation in synaptic density

than a randomized distribution of the same synapses across

those segments. Excitatory synaptic (spine) distribution is signif-

icantly weighted toward a subpopulation of dendritic segments

across almost the entire dendritic tree (Figures 4A and 4D). Inter-

estingly, I synapses displayed significantly clustered distribution

in only apical and basal terminal domains, raising the intriguing

possibility that E and I synapses are weighted toward the same

dendritic segments (Figures 4B and 4D).

Co-regulation of E and I synaptic inputs, generally referred to

as E/I balance, is a critical mechanism for calibrating both

global and fine-scale levels of neuronal activity (Haider and Mc-

Cormick, 2009; Isaacson and Scanziani, 2011; Xue et al., 2014).

While several studies have demonstrated mechanistic links be-

tween E and I synaptic potentiation, whether it results in local

fine-scale balance between E and I synaptic distribution within

dendritic segments remains an open question (Bourne and Har-

ris, 2011; Chiu et al., 2018; Petrini et al., 2014). Interestingly, we

found that E and I synaptic density strongly co-varied in



Figure 4. Structured Synaptic Distribution within Branch Types
(A) Variation in excitatory synaptic density (orange) across dendritic branch types of L2/3 PNs compared to 10,000 randomizations of each synaptic distribution

within the same domains (5th to 95th percentiles, gray).

(B) Variation in inhibitory synaptic density (blue) across dendritic branch types of L2/3 PNs compared to randomized synaptic distributions (gray).

(C) Example trace of apical tuft dendrites depicting the breakdown of the arbor into branch types (trunk, black; intermediate, green; terminal, purple).

(D) Excitatory (top) and inhibitory (bottom) synapses from segments isolated from the dendritic arbor in (C). Terminal tuft segments (left) display significant

variation in E and I synaptic density while intermediate tuft segments (right) do not. Scale bar: 1 mm. For all plots, *p < 0.05, **p < 0.005, and ***p < 0.001. See STAR

Methods for details. All data are presented as mean ± SEM.
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terminal segments throughout the dendritic tree of L2/3 PNs

(Figure 5). This structural E/I balance appears to increase as

a function of distance from the soma, with segments distal to

the soma showing a significant correlation between E and I

synaptic density (Figure 5A). This local balance between E

and I synaptic density on terminal segments remains significant

even after dually innervated spines are removed from the anal-

ysis (Figures S3J and S3K). Taken together, these results

demonstrate that, in L2/3 PNs: (1) both E and I synaptic density

vary more than predicted by chance among dendritic segments

within dendritic domains and (2) despite this weighted distribu-

tion of E and I synapses, the ratio between E and I synaptic

density is tightly controlled locally within these segments.

Functional Implications of Global and Domain-Specific
E/I Balance
To better understand the functional implications of the local E/I

balance found experimentally (Figure 5), we modeled in detail

the ten L2/3 PNs reconstructed with E and I synapses shown in

Figures S4 and S5. Passive and active membrane properties of

these neurons were based on previously published biological

values (see STAR Methods). E and I synapses were placed at

the experimentally measured dendritic location and activated as

described in STAR Methods, such that the firing rate of the

modeled neurons matched the rates measured in vivo (O’Connor

et al., 2010). These models, of which two are shown in Figures 6A

and 6B, also replicated several active and passive dendritic prop-

erties observed in L2/3PNs, including somatic spiking activity (red

andblue traces in Figures 6A and 6B), backpropagating actionpo-
tentials, the somatic input resistance, and membrane time con-

stants (Figures 6C–6F). To mimic in vivo observed input distribu-

tions to L2/3 PNs, we incorporated oscillatory excitatory

‘‘sensory’’ inputs as well as background excitatory inputs. We

also incorporated background inhibition as well as feedforward

and feedback inhibition, each targeting specific dendritic domains

corresponding to parvalbumin-expressing basket interneurons

and somatostatin-expressing dendritic-targeting Martinotti inter-

neurons, respectively (see STAR Methods).

As found experimentally (O’Connor et al., 2010), our L2/3 PN

models produced a range of firing rates ranging from 0 Hz to

10 Hz, with example neurons firing 3 Hz (blue circles in Figures

6G–6J) and 10 Hz (red circles in Figures 6G–6J). This variance in

somatic firing rate persisted despite the fact that all models have

the same specific passive and active properties and the same E

and I input frequencies. We found that the global E/I balance per

PN (Figure 6G) was a strong indicator of the output firing rate (Fig-

ure 7F). Additionally, the somatic firing ratewas correlatedwith the

size of the neuron: the larger the surface area of the neuron, the

lower is its firing rate (Figure 6H). Although the larger surface

areameans lower input resistance that raises the threshold for ac-

tion potentials, this higher threshold does not explain the inverse

relationship between size and firing rate, as larger neurons also

have more synapses that compensate for the lower input resis-

tance (Figure 6I). The inverse relationship between size and firing

rate might be due to the fact that neurons with larger surface

area also tend to have a lower global E/I ratio (Figure 6J).

To test the significance of the local branch-specific E-to-

I correlation found experimentally (Figure 5), we changed the
Neuron 106, 566–578, May 20, 2020 571



Figure 5. Local E/I Balance within Branch Types

(A) Heatmap of local E/I balance. Densities of E and I synapses were normalized to 1, and the absolute value of their difference ismappedwithin an adaptive range

of each point across the dendritic tree (see STAR Methods). Values close to 0 therefore represent points on the dendritic tree at which the relative densities of E

and I synapses were close to equivalent (Max), and values close to 1 represent points at which the relative densities of E and I synapses were much different from

one another (Min).

(B) Relation between E and I synaptic density for intermediate (green; R2 = 0.002; p > 0.05) and terminal (purple; R2 = 0.20; p < 6.6e�13) apical dendritic segments.

(C) Relation between E and I synaptic density for primary (black), intermediate (green; R2 = 0.08; p < 0.0007) and terminal (purple; R2 = 0.24; p < 5.3e�19) basal

dendritic segments.

STAR Methods
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variance of the E/I ratio over all branches belonging to a spe-

cific domain while keeping the total number of synapses

within each domain constant (thus keeping the global E/I ratio

fixed for the modeled neuron, see STAR Methods). This

created a distribution of standard deviation (SD) values for

the E/I ratios, ranging from very low SD value, in which each

segment within a given domain had very similar E/I ratio (Fig-

ure 7A, the balanced case, left), to the extreme case of large

SD value, in which each branch in a given domain had either

only excitatory or only inhibitory synapses (Figure 7B, the un-

balanced case, left). Manipulation of the variance of the

segment-specific E/I ratio had a strong effect on dendritic

voltage dynamics (Figures 7A and 7B, right). In balanced den-

drites, the variability in dendritic voltage (including active den-

dritic spiking and backpropagating action potentials (STAR

Methods; Figures 7A and 7B) is dampened and overall more

hyperpolarized (Figure 7A, right) compared to the unbalanced

case (Figure 7B, right). In the case of minimal SD in the E/I ra-

tio, the voltage distribution was narrower and very similar to

that predicted from the biologically observed E/I ratio

(compare blue to green curves in Figure 7C). Notice that this

effect, shown here in in vivo-like input conditions with shared

oscillatory input, was even stronger in the case of random

input with a constant rate (Figure S7A). Additionally, this effect

remained present whether we assigned a constant conduc-

tance to each synaptic input or varied the conductance of

each synaptic input to linearly correlate with its volume (Fig-

ures S7B and S7C). We found that terminal domains, which

experimentally had a near-balanced E/I ratio (Figure 5), were

highly sensitive to the increase in the SD of the E/I ratio.

Increasing SD gradually among dendritic segments resulted

in a gradual increase of the mean dendritic voltage time-inte-

gral (Figure 7D). This was not the case for intermediate do-
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mains with a biologically unbalanced E/I ratio, where the

change in the SD of the E/I ratio between segments had a

minimal effect on the dendritic voltage time-integral (Fig-

ure 7G; see STAR Methods). This is likely due to the small

contribution of intermediate synapses to the voltage perturba-

tions in those domains, possibly as a result of their small rela-

tive number. Indeed, when performing the simulations after

removing the synapses in intermediate domains, the voltage

integral was reduced by less than 1% compared to 10%–

30% when removing the synapses in the terminal domains

(Figure S7A).

The somatic firing rate in the ten modeled neurons was also

strongly affected by the domain-specific E/I SD value (keeping

the global E/I balance fixed per neuron). Indeed, when testing

the combined effect of differences in the global E/I ratio for

different modeled neurons together with the effect of the

domain-specific E/I SD, we found a high correlation (R2 = 0.74

dashed line) between the somatic firing rate and the global E/I ra-

tio (Figure 7F). As expected, neurons with a larger relative num-

ber of excitatory synapses fired at higher rates. Surprisingly, in all

modeled neurons, the output firing rate increased as much as 2-

fold per neuron when the domain-specific SD of the E/I ratio was

increased, suggesting that the local E/I ratio (on top of the global

E/I ratio) must be considered for understanding how synaptic ac-

tivity shapes the neuron’s output. Indeed, our simulations show

that a neuron with a relatively small global E/I ratio may increase

its firing rate to be as high as a neuron with twice the global E/I

ratio, solely by increasing the variance of local E/I ratios among

basal terminal branches (Figure 7F). Our experimentally based

modeling demonstrates that, in L2/3 PNs, domain-specific local

E/I balance at the level of dendritic segments constrains den-

dritic voltage fluctuations and controls the firing rate of these

neurons to a significant extent (Figures 7F and S6).



Figure 6. Models Predict Large Variability in the Firing Rate of L2/3 PNs

(A) The reconstructed morphology of neuron #7. Excitatory synapses were placed on the experimentally measured locations of the respective dendritic spines

(5,604 E synapses in total); inhibitory synapses (619 in total) were placed at their experimentally measured location. The E and I synapses were activated as

described in STAR Methods. Simulated membrane voltage was recorded from modeled soma (trace at bottom right).

(B) As in (A), with the morphology and traces belonging to neuron #4 (5,661 excitatory synapses and 785 inhibitory synapses).

(C) Backpropagating action potentials (BPAPs) in L2/3 PNs attenuate along the apical trunk (taken from the experiments in Waters et al., 2003). The y axis shows

the amplitude of the BPAPs as a function of distances from the soma along the apical trunk: both in vivo (empty dots) and in vitro (solid dots) cases are shown.

(D) Same as in (C), in the simulated model of neuron #2.

(E) Action potential amplitude recorded 80 mm from the soma in the apical trunk with and without TTX (from Waters et al., 2003).

(F) Same as in (E), in model neuron #2.

(legend continued on next page)
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DISCUSSION

Mapping the spatial features of synaptic organization across

whole neurons is crucial for bridging the gap between our under-

standing of the molecular determinants of synaptic development

and the principles of circuit connectivity and function. Here, we

developed an adaptable open-source toolkit for mapping the

morphology and spatial distribution of all E and I synapses

across complete neurons. This method has several key benefits

for mapping subcellular synaptic morphology and distribution.

As part of the Vaa3D image annotation platform, Synapse Detec-

tor is fully integrated into the Vaa3D automatic pipeline for image

segmentation, 3D image stitching, and surface reconstruction

(Chen et al., 2017; Peng et al., 2014, 2010). Synapse Detector

is compatible with any fluorescent imaging method, including

high resolution confocal microscopy. Synapse Detector pro-

vides a generalizable toolkit for quantifying and mapping fea-

tures of subcellular fluorescent marker distribution. This flexi-

bility allows these tools to probe the incredible diversity of

synaptic compartments targeted to both dendritic spines and

branches through structural mapping and computational

modeling.

The synaptic mapping pipeline developed here enabled the

reconstruction of twelve L2/3 PNs, including the location and

morphology of over 90,000 E and I synapses. Previous anatom-

ical studies of the synaptic morphology and connectivity of this

neuron type allowed validation of our platform and observed re-

sults (Ballesteros-Yáñez et al., 2006; DeNardo et al., 2015; Fran-

geul et al., 2016; Kubota et al., 2007; Lefort et al., 2009; O’Con-

nor et al., 2010). Our 3D reconstruction method for dendritic

spines closely matched estimates from manual reconstructions

of L2/3 PN spine density and morphology generated by tracing

synapses from serial focal planes (Ballesteros-Yáñez et al.,

2006). The fact that both E and I synaptic volumes appear to

conform to log-normal distributions suggests that the cellular

and molecular mechanisms underlying E and I synaptic size

(most likely structural forms of synaptic plasticity) are multiplica-

tive in nature rather than additive.

We also observed inhibitory synaptic distributions consistent

with previous observations as well as a common proportion of

inhibitory synapses targeted to spines in these mouse L2/3

PNs (Chen et al., 2012; Fossati et al., 2016; van Versendaal

et al., 2012). Strikingly, the distribution of specific synaptic fea-

tures characterizing these neurons recapitulates known motifs

of circuit connectivity: in L2/3 PNs, dually innervated spines

almost exclusively correspond to dendritic spines receiving

thalamic inputs, and these synapses were significantly enriched

in the L1 apical tufts and deep L3 basal dendrites, the two layers

targeted by thalamic afferents fromPOmand VPM that innervate

S1 (DeNardo et al., 2015; Kubota et al., 2007).

One limitation of our approach to label inhibitory synapses us-

ing expression of Gephyrin-EGFP expression is that, although it
(G) Correlation between somatic firing rate and the global E/I ratio for all 10 mode

Red and blue dots correspond to neurons #7 and #4 shown in (A) and (B), respe

(H) Same as in (G), with the x axis showing the neuron’s surface area.

(I) Total number of synapses as a function of the total dendritic surface area.

(J) Global E/I ratio measured experimentally as a function of the total dendritic su
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faithfully labels postsynaptic inhibitory synapses throughout the

dendritic arbor of L2/3 PNs (Chen et al., 2012), this reporter tends

to aggregate within the somas of these neurons, precluding

labeling of peri-somatic inhibitory boutons made primarily by

parvalbumin (PV)+ interneurons (large basket cells). This is the

main reason why, in the present study, we focused our attention

on the role of dendrite-targeting inhibitory synapses and their

organization relative to excitatory synapses throughout the

dendritic arbor of L2/3 PNs.

Analyzing the distribution of E and I synapses across complete

dendritic arbors has revealed several scales of structured orga-

nization within L2/3 PNs. E and I synaptic distribution also varies

significantly across dendritic domains, with fewer spines

located in proximal than along distal dendritic segments.This

organization, which is similar to patterns of synaptic distribution

observed in CA1 PNs, potentially suggesting a shared principle

for synaptic organization between these PN subtypes (Bloss

et al., 2016; Megı́as et al., 2001).

Crucially, within-neuron comparisons of observed and

randomized synaptic locations enabled the identification of

structured distribution of E and I synapses to a restricted sub-

set of dendritic segments within each domain. The formation of

hotspots of synaptic density is consistent with known cellular

mechanisms promoting spatially clustered synaptic stabiliza-

tion and potentiation at the scale of single dendritic segments

(Govindarajan et al., 2011; Losonczy et al., 2008). Active prop-

erties of dendrites critical for initiating clustered potentiation

are engaged in somatosensory and visual cortical PNs during

sensory processing, raising the tantalizing possibility that these

hotspots of synaptic density might represent a structural signa-

ture of salient feature storage within neuronal dendrites (Frank

et al., 2018; Smith et al., 2013; Takahashi et al., 2016; Xu

et al., 2012).

A novel feature of structured synaptic distribution that

emerged from our study is the strong, branch-specific, and local

balance between E and I synaptic density across terminal den-

dritic segments. This suggests a far stronger association

between E and I synaptic distribution than previous observations

in vitro (Liu, 2004). Indeed, our data strongly suggest that

molecular mechanisms co-regulating the balance between E

and I synaptic density must be acting locally, at the scale of short

dendritic segments. This spatial pattern closely matches the

dendritic targeting of somatostatin-expressing interneurons,

whose synapses onto L2/3 PNs were recently demonstrated to

undergo NMDA receptor-dependent long-term potentiation

(Chiu et al., 2018; Somogyi et al., 1998; Wang et al., 2004). While

the study of E/I balance at the level of single neurons has largely

been restricted to feedforward inhibition mediated by periso-

matic-targeting basket interneurons, our whole-neuron synaptic

input maps suggest that a precise balance between excitation

and inhibition is critical for dendritic integration as well (Froemke,

2015; Xue et al., 2014).
led neurons (filled circles). The Pearson coefficient is shown above the graph.

ctively.

rface area.



Figure 7. Domain-Specific E/I Balance within L2/3 PNs Dampens Local Dendritic Voltage Fluctuations, Strongly Affecting the Global Output

Firing Rate

(A) Left: modeled L2/3 neuron (#2) in the case in which the E/I ratio is constant for all branches belonging to the distal apical domain (zero E/I SD, the balanced

case). Right: voltage traces in all distal apical branches for the modeled neuron shown at left following synaptic activation (green traces). In this simulation, the E

synapses (6,274 in total) and I synapses (1,111 in total) were distributed in a balanced fashion (schematically shown at left). Backpropagating action potentials are

marked by an asterisk.

(B) Same as in (A) for the case of maximal E/I SD (the unbalanced case). In both (A) and (B), the total number of E and I synapses in the distal apical domain is fixed

as found experimentally (same global balance for the two cases). Note that backpropagating action potentials (large depolarizing transient) exhibit higher fre-

quencies in the unbalanced case.

(C) The probability of voltage integral for all branches in the basal terminal domain of the modeled neuron. The distribution of the dendritic voltage time-integral

expected for the experimentally measured case (blue line) closely fits that expected in the balanced case (green line): both are narrower and less depolarized

compared to that obtained in the unbalanced case (purple line).

(D) The average voltage time-integral for all segments in the basal terminal domain as a function of E/I SD in this domain (see STAR Methods). The open circles

represent the biologically measured E/I SD values for each neuron. Numbers correspond to neuron numbers in Figure S4.

(E) As in (D) for the basal intermediate segments.

(F) Correlation between the somatic firing rate and the global E/I ratio for the 10modeled neurons. In each neuron (numbered vertical lines), the domain-specific E/

I SD was varied from the fully balanced case (blue) to the maximally unbalanced case (red). Numbers at each vertical line correspond to the modeled neuron

identity. In all cases, the numbers of E and I synapses were taken from the experimental counts. Details of synaptic activation are described in STAR Methods.
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The novel principle of synaptic organization uncovered in our

study, whereby E and I synapses are locally balancedwithin den-

dritic branches, has significant implications for our understand-

ing of the rules governing dendritic integration. Indeed, our

modeling approach reveals that disrupting the biologically

observed local dendritic E/I balance in terminal dendrites

dramatically enhances local dendritic voltage fluctuations and
the initiation of local dendritic non-linearities, resulting in

increased firing at the soma. Importantly, our computational

modeling of the spatially variable E/I ratio recapitulates both

the subcellular targeting patterns and microcircuit properties of

defined presynaptic neuronal subtypes, creating crucial context

for the activation of synaptic inputs in their biologically observed

dendritic distribution. Our first-ever complete mapping of E and I
Neuron 106, 566–578, May 20, 2020 575
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synapses over thewhole dendritic tree of a subtype of PNs, com-

bined with detailed computational simulations, reveals that the

spatially precise balance of E and I synapses we observed

strongly impacts local dendritic computation as well as the

global input-output dynamics of cortical neurons receiving syn-

aptic inputs from the respective network. Finally, we provide

here the open-source synaptic reconstruction tools we have

developed as well as our complete dataset of 12 PN input

maps containing information about the size, shape, and place-

ment of over 90,000 E and I synapses.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

In-Fusion HD cloning kit Clontech 639649

Deposited Data

P42 CD-1 IGS mouse L2/3 S1 neuron 1 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 2 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 3 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 4 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 5 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 6 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 7 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 8 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 9 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 10 (E and I) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 11 (E only) This Paper N/A

P42 CD-1 IGS mouse L2/3 S1 neuron 12 (E only) This Paper N/A

Experimental Models: Organisms/Strains

Mouse: CD-1 IGS Charles River Cat# 022

Recombinant DNA

Plasmid: pCAG NLS-Cre This Paper N/A

Plasmid: pCAG EGFP-GPHN This Paper N/A

Plasmid: pEf1a FLEX-tdTomato This Paper N/A

Software and Algorithms

Vaa3D Peng et al., 2010 http://home.penglab.com/proj/vaa3d/

Spine Detector This Paper http://home.penglab.com/proj/vaa3d/

IS Detector This Paper http://home.penglab.com/proj/vaa3d/

Subtree Labeling This Paper http://home.penglab.com/proj/vaa3d/

Neuron Stitcher Chen et al., 2017 http://home.penglab.com/proj/vaa3d/

NEURON Carnevale and Hines, 2006 https://www.neuron.yale.edu/

MATLAB The MathWorks Inc. https://ch.mathworks.com/products/matlab/

GraphPad PRISM GraphPad Software Inc. https://www.graphpad.com/scientific-

software/prism/

Other

A1R confocal microscope Nikon https://www.microscope.healthcare.nikon.com/

products/confocal-microscopes/a1hd25-a1rhd25
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Franck Pol-

leux (fp2304@columbia.edu). All unique/stable reagents generated in this study are available from the Lead Contact without restriction.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All animals were handled according to protocols approved by the Institutional Animal Care and Use Committee at Columbia Univer-

sity, New York. Postnatal day 42 CD-1 IGS mice (strain code: 022; Charles River) were used for all experiments. Timed-pregnant fe-
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malemice weremaintained in a 12 hour light/dark cycle and obtained by overnight breeding with males of the same strain. For timed-

pregnant mating, noon after mating is considered E0.5.

METHOD DETAILS

Constructs
The tdTomato reporter insert was subcloned into the pAAV-Ef1a-DIO eNpHR 3.0-EYFP plasmid (Addgene plasmid # 26966) between

the AscI and NheI cloning sites. EGFP-GPHN (clone P1) was obtained from H. Cline (TSRI, La Jolla, USA) and subcloned into pCAG

downstream of a CMV-enhancer/chicken-b-actin (CAG) promoter, by replacing EGFP between the XmaI and NotI cloning sites.

In utero electroporation
In utero cortical electroporation was performed at E15.5 on timed pregnant CD1 females. The previously described protocol for in

utero cortical electroporation (Hand and Polleux, 2011) was modified as follows. Endotoxin-free DNA was injected using a glass

pipette into one ventricle of the mouse embryos. The volume of injected DNA was adjusted depending on the experiments. Electro-

poration was performed at E15.5 using a square wave electroporator (ECM 830, BTX) and gold paddles. The electroporation settings

were: 5 pulses of 45V for 50 ms with 500 ms intervals. Plasmids were used at the following concentrations: Flex-tdTomato reporter

plasmid: 1 mg/ml; EGFP-GPHN 0.5 mg/ml; NLS-Cre recombinase: 200 pg/ml.

Tissue preparation
Animals at the indicated age were anaesthetized with isofluorane before intracardiac perfusion with PBS and 4% PFA (Electron Mi-

croscopy Sciences). 130 mm coronal brain sections were obtained using a vibrating microtome (Leica VT1200S). Sections were

mounted on slides and briefly dehydrated at room temperature to reduce section thickness before being coverslipped in Fluoro-

mount-G (SouthernBiotech).

Confocal imaging
Confocal images of electroporated neurons in slices were acquired in 1024x1024 mode using an A1R laser scanning confocal mi-

croscope controlled by the Nikon software NIS-Elements (Nikon Corporation, Melville, NY). We used a 100X H-TIRF, NA 1.49 (Nikon)

objective lens to acquire image volumes of neuron fragments. Z stacks of images were acquired with spacing of 100 nm. To coun-

teract possible interference from light diffraction through the tissue, laser power was linearly increased as a function of depth within

each tissue section to normalize the mean fluorescent intensity of pixels from image planes throughout the stack (Figures S2A and

S2B). Dendritic spines and inhibitory synapses were quantified based on tdTomato fluorescence and EGFP-GPHN puncta fluores-

cence respectively. All quantifications were performed in L2/3 somatosensory cortex in sections of comparable rostro-caudal

position.

QUANTIFICATION AND STATISTICAL ANALYSIS

Software development
Computational pipeline overview

Information for dendritic spine placement and morphology was acquired from large-volume high-resolution image stacks of thick

brain tissue. There are two possible strategies for quantifying the spatial distribution of excitatory and inhibitory (E and I) synapses

of an entire neuron:

1. Stitch image volumes together prior to analysis.

2. Analyze each image volume independently and align the spatial information recorded from each image to create a complete

neuron representation.

The first strategy, which involves all the image stacks into a terabyte volume and then perform neuron tracing, synapse segmen-

tation and spatial analysis globally on the combined volume. The downside of the approach is a big data problem of manipulating,

storing and analyzing the giant volume. Additionally, this approach is computationally wasteful because only a fraction of the stitched

volume contains relevant structure. To avoid this big data problem, we pursued the alternative strategy of performing dendrite tracing

and synapse segmentation on each image stack individually and associatingmorphological information of each synapse to a specific

node of the trace (thereby encoding the location of every synapse within the spatial context of the neuron). To create representations

of complete neurons across serial vibratome sections, dendrite traces containing synaptic information were aligned and stitched

together. In comparison with the terabyte combined volume generated by the first reconstruction strategy, the resulting reconstruc-

tions are 4-6 megabytes in size.

Our pipeline for whole-neuron synaptic reconstruction consists of two parts. In the first part, we extract E and I synaptic information

for an individual image across a tissue section (Figure S1A). For each image stack, we trace the dendritic arbor of the neuron fragment

using automatic tracingmethods followed bymanual corrections. Then both Spine Detector and IS Detector take the neuron skeleton
e2 Neuron 106, 566–578.e1–e8, May 20, 2020



ll
NeuroResource
and the image stack as input to automatically isolate spines and inhibitory synapses within a user-defined radius of each dendrite.

Spine Detector generates a table that records the local information of dendritic spines including the distance between each synapse

and the dendrite, volume, and the nearest tree node. IS Detector generates a table that records the local information of inhibitory

synapses including volume, whether the inhibitory synapse is located on a spine or the dendrite, and the nearest tree node. These

morphological characteristics of synapses impact their neurotransmitter content and integration properties (Chiu et al., 2013; Kasu-

gai et al., 2010; Majewska et al., 2000; Schikorski and Stevens, 2001).

In the second part of our reconstruction pipeline, we map E and I synaptic morphology across multiple images for whole-neuron

spatial distribution analysis (Figure S1B). First, the dendritic spine information and inhibitory synaptic information from each image

aremapped to the closest tree node of their corresponding dendrite trace. Next, the traces containing local synaptic information from

each image stack are aligned and stitched together to generate a whole-neuron synaptic reconstruction. Notably, the association

between synapses and their respective tree nodes remains unchanged during the assembly. After obtaining the single reconstruction

trace of the whole neuron, we subtype the dendritic arbor in terms of identity and morphology so that we can analyze the synaptic

features within domain and segment levels.

Neuron reconstruction
Digital reconstructions, or traces, are an effective representation of neuronal topology and geometry. The traces are usually described

using a tree graph and consist of 3-D point coordinates, diameters, and connectivity between points. This succinct representation en-

ables an extensive quantitative analyses of the geometrical organization of the neurons they represent including total length, branching

angles, distribution statistics and cumulative distance from the soma (Ascoli, 2006). Numerous automated tracing methods have been

developed (Acciai et al., 2016; Halavi et al., 2012; Meijering, 2010). In this paper, the initial reconstructions are obtained using the auto-

matic tracing methods built in the open source 3D visualization and analysis tool Vaa3D (Peng et al., 2014). Then, experts manually

proofread the traces and make adjustments with the built-in proof-editing tools. Notably our synapse analysis pipeline works for traces

generated by all tracing methods. Accurate reconstructions are important to improve the performance of automatic synapse detection.

Automatic spine detection
To automatically identify potential spines, Spine Detector segments candidate spine-associated voxels whose fluorescence is

greater than a linearly interpolated local threshold between nodes along the closest dendritic segment (Rodriguez et al., 2008). Spine

detection is performed within a user-defined region around the dendrite and intensity threshold such that all voxels within the user-

defined region and above the threshold are identified possible spine voxels. Spine Detector takes both the image and the dendritic

trace as input and clusters adjacent voxels in the cell-fill channel based on their distance from the dendrite surface. Touching spines

are separated based on voxel intensities. Because the dendrite traces represent the dendrites with a series of overlapping nodes

(Peng et al., 2011), information about the volume and distance from the dendrite of each spine can be associated with its nearest

node to assign a location within the spatial context of the dendritic arbor.

Voxel clustering for enhanced detection
In contrast to previous approaches that estimate spine volume from the spine tip backward toward the dendrite (Rodriguez et al.,

2008), Spine Detector identifies potential spine voxels at the dendrite shaft and estimates their volume by iteratively adding layers

of connected voxels toward the spine tips. To quickly estimate the minimum distance between each voxel and the nearest dendrite

surface, Spine Detector uses the radius of each node across the neuron trace as a representation of the dendrite surface and per-

forms a distance transform on the image (Figure S2F). The initial seeds of potential spines are the voxels the shortest distance from

the dendrite surface. In each iteration, potential spines are identified and grown by adding new layers of connected neighbor-voxels

until a spine edge is detected. This is achieved by establishing a floor value to the distance between the initial seeds and the dendrite

surface and repeatedly adding layers of connected neighbor-voxels equal to the floor value of the previous layer. At the end of each

iteration, Spine Detector determines whether the number of voxels have exceeded the user-defined spine size and whether the

maximum layer width has exceeded the user-defined layer width. If the most recently added layer did not meet these criteria, all pre-

vious layers are discarded and the voxels in that layer serve as the seed for the next layer. The iteration stops when all qualified voxels

are assessed. Spine candidates are rejected based on user-supplied parameters for minimum voxel count and minimum spine

length, allowing users to reconstruct images acquired at different magnifications. Notably, spines can be detected with this meth-

odology regardless of the resolution of the spine neck.

Intensity-based segmentation of adjacent spines
Limited image resolution, inaccurate thresholding, and physical proximity can all give rise to adjacent spines incorrectly categorized

as a single synapse. Based on the observation that spine voxel intensities are naturally brighter at the center than the edges, we adop-

ted an adapted watershed algorithm to separate spines within close spatial proximity (Barnes et al., 2014). First an initial threshold is

set at a relatively high fluorescence intensity so that only the center-voxels of spines are identified (Figure S2G).With the successively

decreasing fluorescence toward the spine border, the spine boundary grows in size. When two potential spine boundaries meet they

each become defined to separate adjacent spines. The merger of two spine volumes is only considered when both spines are rela-

tively small (lower than 1% of the average volume).
Neuron 106, 566–578.e1–e8, May 20, 2020 e3
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Inhibitory synapse detection
We labeled inhibitory synapses using the scaffolding protein Gephyrin tagged with a fluorescent protein as a marker (Chen et al.,

2012). Because these synapses can only occur on the dendrites or the spines of neurons of interest, we use the image from the

cell-fill channel containing the dendrites and the spines as a mask image to extract the relevant region for the inhibitory synaptic

marker. Then, signal beyond user-input parameters for minimum/maximum voxel count and distance from the trace is excluded

and potential inhibitory synapses from the resulting image are identified based on a user-input intensity threshold. Users have the

ability to accept or reject potential inhibitory synapses, adjust their volume, and assign them as dendrite-targeting or spine-

targeting.

Stitching neuron traces across serial 3D image sections
To assemble the neuron reconstructions traced acrossmultiple image stacks we used Neuron Stitcher (Chen et al., 2017), a software

suite for stitching non-overlapping neuron fragments in serial 3D image sections. The software identifies severed neurite traces at the

section planes, known as ‘border tips’, and then uses a triangle matching algorithm to align traces created from neurons spanning

serial tissue sections. Once the initial border tip matches are identified, the alignment is estimated in the form of an affine transfor-

mation and the border tips are connected to form a complete neuron trace.

Neurite subtyping
To better understand the synaptic distribution within domain and segment levels, we developed the Subtree Labeling program as a

plug-in of Vaa3D to subtype neurites for further analysis. Using this program it is possible to assign a neurite segment into multiple

categories: axon, soma, apical trunk, apical tufts, apical oblique dendrites, and basal dendrites. The user interface allows the user to

select the starting vertex for each branch and to assign neurite type. The program first finds the tree node for soma and sorts the tree

with the soma node as the tree root. Then, all the child vertices of the starting vertex are assigned the same branch type as each

manually annotated starting vertex.

User’s guide
Synapse Detector Interactive User Interface

To broaden the utility of SynapseDetector to work with a variety of different data acquisition processes, we designed an interactive

interface to (1) allow visual evaluation of detection results and accept or reject putative synapses; and (2) enable manual correction of

synaptic volume through addition or subtraction of associated pixels. The software was implemented in C/C++ as a plugin of Vaa3D,

which is a publicly available open source platform with a user-friendly interface for 3D+ image analysis and visualization. In the

following sections, we will introduce how to use the tools. For detailed directions how to create neuron traces using Vaa3D, see

the recently published protocol (Peng et al., 2014).

Main website: http://home.penglab.com/proj/vaa3d/

Documentation: https://github.com/Vaa3D

Help/Discussion Forum: https://www.nitrc.org/forum/forum.php?forum_id&equals;1553

Bug tracking and requesting new features: https://www.nitrc.org/tracker/?group_id&equals;379

Sorting dendrite traces for reconstruction

A dendrite trace (swc file) is composed of a series of connected nodes with varying radii. This plugin connects nodes that were not

linked during manual trace editing, which is critical for proper segment classification. This plugin allows the user to designate the

soma as the ‘‘root node,’’ the first node in the tree from which the distance to all daughter nodes can be determined to analyze syn-

aptic distribution.

1. In Vaa3D, drag a neuron trace into the 3D viewer.

2. Use ‘Cmd/Ctrl+L’ to toggle between the line (skeleton) display mode and the surface mesh display mode of the neuron. In line

display mode it is possible to visualize root nodes contained within the trace.

3. If the trace contains a soma, hover cursor over soma to identify the node number that will be designated as the root node.

4. In Vaa3D, go to the ‘Plug-in’ main windowmenu and click ‘neuron_utilities’, then click on ‘sort_neuron_swc’, and finally click on

‘sort_swc’.

5. Select the trace in the ‘Open from 3D Viewer’ tab.

6. If the trace contains a soma, specify the root node number as the soma node number. If the trace does not contain a soma, click

‘cancel’.

7. Specify a voxel threshold for adjacent segments to be connected. To connect all segments click ‘cancel’. Save the sorted

neuron trace.

Resampling dendrite traces for reconstruction

To maximize the spatial resolution of synaptic distribution analysis, it is recommended to resample the associated neuron trace to

contain the highest possible number of tree nodes.
e4 Neuron 106, 566–578.e1–e8, May 20, 2020

http://home.penglab.com/proj/vaa3d/
https://github.com/Vaa3D
https://www.nitrc.org/forum/forum.php?forum_id=1553
https://www.nitrc.org/tracker/?group_id=379


ll
NeuroResource
1. In Vaa3D, go to the ‘Plug-in’ main window menu and click ‘neuron_utilities’, then click on ‘resample_swc’, and finally click on

‘resample’.

2. Select the trace and specify a step length of 1. Click ‘ok’ and save the resampled neuron trace.

Using Crop Image Trace to analyze large image volumes

This new tool allows the user to analyze image volumes with Synapse Detector that would normally be too large by cropping a region

of interest based on XYZ pixel coordinates and aligning an associated neuron trace to the resulting image volume. In practice, image

volumes greater than 2000 3 2000 pixels in X and Y and 500 pixels in Z are difficult to reconstruct without cropping.

1. In Vaa3D, use ‘Cmd/Ctrl+O’ to open the appropriate image file.

2. In the tri-view window, click ‘see in 3D’ and then click ‘entire image’ to visualize the image file.

3. Drag and drop the neuron trace corresponding to the image file into the 3D view window.

4. Go to the ‘Plug-in’ main window menu and click ‘image_geometry’, and then ‘crop_image_tace’, and finally click on ‘crop’.

5. Select an appropriate output directory, and specify the XYZ coordinates to crop the image (the number of pixels in X, Y, and Z

that compose each image can be viewed in the tri-viewwindow and 3D viewer), and specify the color channels to include in the

new image. Click on ‘run and save’.

Synapse annotation with Synapse Detector

This new tool semi-automatedly identifies dendritic spines (Spine Detector) or inhibitory synapses (IS Detector) and quantifies their

morphology and spatial distribution. Synapses can be manually accepted or rejected, as well as edited by dilating or eroding pixels.

IS Detector also allows the user to designate inhibitory synapse location on either a spine or the dendritic shaft.

Spine Detector user interface

1. In Vaa3D, go to the ‘Plug-in’ main window menu, click ‘synapse_detector’, and click on ‘SpineDetector_NewProject’. Users

can also continue an existing project by clicking ‘SpineDetector_ExisitingProject’.

2. Load the image volume (v3dpbd or v3draw), associated trace file (swc), and designate an output destination for the sorted

reconstruction. Select the color channel of the cell-fill.

3. Specify the threshold for background signal in the image and volume parameters for potential spines. Pixel to micron conver-

sion can be calculated from the imaging magnification and is usually stored within the image properties. Click ‘Run’.

4. Click ‘Proofread by segment’ to edit spines along a dendrite segment (recommended) or ‘Proofread by spine’ to edit each

spine individually.

5. Accept/reject potential spines and proofread spine morphology by dilating/eroding volume. The highlighted regions indicate

the potential spines (Figure S1C). It is recommended to look at the segment at different angles and toggle between views with

the spine annotation channel on and off in the 3D viewer.

6. Click ‘Save current result’ to save intermediate results during proofreading. Spine Detector will generate 4 files in the output

folder: a text file ‘project.txt’ (includes all info needed to reload the last saved reconstruction project), amarker file indicating the

positions of accepted/rejected spines, a csv file (table of accepted spine information), and an image file of accepted spines.

7. Click ‘Finish proofreading’ to save final results after proofreading. After proofreading is completed, Spine Detector generates 2

image files (edited spine reconstruction and isolated spine annotations), a marker file of spine positions, and a csv file contain-

ing spine morphology data (all data measured in pixels).

IS Detector user interface

1. In Vaa3D, go to the ‘Plug-in’ main window menu, click ‘synapse_detector’, and click on ‘IS_Detector_NewProject’. Users can

also click on ‘IS_Detector_ExisitingProject’ to reload a previously saved project.

2. Load the image volume (v3dpbd or v3draw), associated trace file (swc), and designate an output destination for the sorted

reconstruction. Select the color channel of the cell-fill and the color channel of the inhibitory synaptic marker (or other punctate

intracellular marker).

3. Specify the threshold for background signal in both image channels and volume parameters for potential inhibitory synapses.

Pixel to micron conversion can be calculated from the imaging magnification and is usually stored within the image properties.

Click ‘Run’, and then click ‘Proofread by segment’.

4. Accept/reject potential inhibitory synapses and proofread morphology by dilating/eroding volume and specifying synapse

location on spine/dendrite. The highlighted regions indicate the potential inhibitory synapses (Figure S1D). It is recommended

to adjust the lookup table thresholds for synaptic visualization by clicking the ‘Vol Colormap’ button on the right-side control

pane of the 3D viewer.

5. Click ‘Save current result’ to save intermediate results during proofreading. Spine Detector will generate 2 files in the output

folder: a text file (includes all info needed to reload the last saved reconstruction project) and a csv file (table of accepted spine

information).

6. Click ‘Finish proofreading’ to save final results after proofreading. After proofreading is completed, Spine Detector generates 2

image files (unedited and edited inhibitory synapses), a marker file of synaptic positions, and a csv file containing synaptic

morphology data (all data measured in pixels).
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Embedding synaptic data within the neuron trace

After spines and inhibitory synapses have been annotated throughout the image volume, synaptic information stored in tables can be

associated with their corresponding nodes throughout the neuron trace using the Synapse Detector Combiner.

1. In Vaa3D, go to the ‘Plug-in’ main window menu click ‘synapse_detector’, and click on ‘Combiner’.

2. Load the spine and inhibitory synapse tables that correspond to the neuron trace. If the image volumewas cropped before recon-

struction the trace will be associated with tables from each cropped region. Click ‘Run’, and save the neuron reconstruction.

Assembling reconstruction fragments with Neuron Stitcher

For directions how to stitch neuron traces using Neuron Stitcher, see the recently published protocol (Chen et al., 2017). To store

synaptic information in the final reconstruction, assemble eswc traces.

Annotating reconstruction traces with Subtree Labeling

This new tool creates an enhanced neuron skeleton that contains information about dendrite identity, branch order, and cumulative

dendritic distance from the soma. The user interface allows the user to select the starting vertex for each branch and to assign neurite

type. Child vertices of each starting vertex are assigned the same branch type as each manually annotated starting vertex. To label

neuron reconstructions stitched from multiple fragments throughout the entire dendritic arbor, these traces must first be sorted with

the Neuron Connector plugin to preserve the eswc file type.

1. In Vaa3D, go to the ‘Plug-in’ main window menu, click ‘neuron_utilities’ and ‘neuron_connector’, and select ‘connect_

neuron_swc’.

2. Load the input trace file and designate an output destination for the sorted reconstruction.

3. Set the ‘connection configuration’ to ‘connect all, shortest distance and click ‘Connect’.

4. After sorting the reconstruction, drag it into the 3D viewer.

5. Use ‘Cmd/Ctrl+L’ to toggle between the line (skeleton) display mode and the surface mesh display mode of the neuron. In line

display mode it is possible to visualize root nodes contained within the trace.

6. Right-click at the soma to and click ‘create marker from the nearest neuron-node’ to create a marker at the root node. Create

markers between the root node and dendrite terminals according to experiment-specific labeling schemes (Figure S1E).

7. In Vaa3D, go to the ‘Plug-in’ main window menu, click ‘neuron_utilities’, and then ‘subtree_labeling’.

8. Select ‘Refresh markers’ to ensure all markers were selected. Assign dendrite labels to each marker. It is possible to add new

markers and click ‘Refresh markers’ to add them to the list of labeled markers. Markers will be labeled in descending order

starting with marker 1, so it is recommended to place makers from the root node outward according to the labeling scheme.

9. Click ‘run labeling’. Review the neuron trace in the 3D viewer to verify segments were properly labeled and click ‘save’ within

the Subtree Labeling interface window.
Synaptic map visualization
Heatmap generation

We query the synaptic annotations for individual neurons to return a subset of the synapses satisfying the query. Some examples are

‘‘all inhibitory synapses,’’ ‘‘large spines,’’ and ‘‘all inhibitory synapses on spines.’’ We classified ‘‘large’’ synapses as greater than the

20th percentile of synaptic volume for each neuron, closely corresponding to the persistent 160% increase in volume reported for

synapses following structural forms of long-term potentiation (Harvey and Svoboda, 2007; Matsuzaki et al., 2004; Petrini et al.,

2014). We calculate the path distances between these nodes and the soma, which is the 3D distance on the dendritic arbor from

the soma to the node of interest. We calculate the distances between consecutive nodes that are in ‘‘ancestor-descendent’’ relation-

ships on the neuronal arbor by obtaining the absolute value of the difference between their path distances.

To calculate the density of the synapses of interest at any given point on the dendritic arbor (the heatmap), we count the synapses

of interest that are within W mm of that point in terms of the path distance on the dendritic arbor, and convert these counts into color

codes. SmallerW values increase the resolution of the heatmap. On the other hand, whenW is too small, the heatmapwill display high

frequency noise. Therefore, we set the W values adaptively for each dendritic arbor as

W = minð8 = l;100Þ
l = jSj=L
where |S| denotes the number of synapses of interest, and L denotes the total dendritic length of the arbor so that the unit of l is mm-1.

Whenmapping local counts to colors in the heatmaps, we typically saturate the range of counts between the 2nd and 98th percentiles

of the values to utilize the dynamic range of the colors more effectively.

E/I balance heatmap generation

The excitatory and inhibitory heatmap values for individual neurons are scaled and shifted to lie in the [0, 1] interval. The absolute

value of the difference, which again lies in the [0, 1] interval, is displayed.
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Synaptic distribution analysis
Within-domain randomization for structural organization analysis

For each neuron, we first find all the nodes of the arbor trace in the domain of interest. The nodes that carry synapses on them have

extra annotations reflecting the size and type of the synapses. Then, we reassign the size-and-type annotations to those nodes uni-

formly at random, thus leaving the structure of the arbor unchanged.

Branch-level synaptic rate correlation analysis

For each relevant branch (i.e., primary, intermediate, terminal) in each neuron, we count the synapses of interest and divide by the

path length of that branch to obtain the density estimate. We calculate the correlation coefficient and the p-value pair for each plot

using the corrcoef command in MATLAB. For E/I synaptic density correlation plots, segments without either E or I synapses were

excluded.

Quantification and statistical analysis of synaptic distribution data

Dendritic domain data are shown as the mean ± SEM of reconstructed neurons, unless otherwise stated. D’Agostino and Pearson

normality tests were used to confirm that datasets fit Gaussian distributions. t tests were used to compare the mean of two groups

with corrections for multiple comparisons: discovery determined using the Two-stage linear step-up procedure of Benjamini, Krieger

and Yekutieli, with Q = 1%. A one-way repeated-measures ANOVA with Tukey’s test for multiple comparisons was used when more

than two groups existed. Significance for all experiments was placed at p < 0.05. Statistical tests were carried out with Graph-

Pad Prism.

Modeling
Passive neuron model with synaptic input

Reconstructed morphological data, synaptic attributes and spatial distribution of E and I synapses were taken from Vaa3D recon-

structions. Specificmembrane resistance and capacitance, and axial resistancewere 12,000Ucm2, 1 mF/cm2, 150Ucm respectively.

These values were chosen such that the somatic input resistance and time constant will be within known biological ranges for these

neurons 92 ± 15MU and 12ms, respectively (Sarid et al., 2007)). The activation of excitatory and inhibitory synapses was aimed to

replicate in vivo-like input to cortical neurons (Tremblay et al., 2016). Toward this end the synapses were activated in a temporally-

and spatially- structured fashion. 90% of the E synapses were served as the background activity; they were randomly selected over

the dendritic surface and activated following homogeneous Poisson process with an average rate of l = 1.75 Hz. The other 10% of

the E synapses represent the ‘‘sensory’’ excitation, activated following an inhomogeneous Poisson process that is modulated at

10 Hz, with a time-dependent rate, l(t), ranging between 0 and 3.5 Hz, leading to an average input rate of 1.75 Hz. In Figure S7A,

the activations of all excitatory and inhibitory synapses were sampled from homogeneous Poisson processes with an average

rate of 1.75 Hz and 10 Hz respectively. For the comparison of constant conductance and synapse volume informed conductance

in Figures S7B and SC, we have modified the conductances of excitatory synaptic conductance to be (spine head volume *

0.4nS / spine head volume mean), and the inhibitory synaptic conductance to be (bouton volume * 1.0nS / bouton volume mean),

where the mean is the mean over the entire population of synapses. This allowed us to keep the average synaptic conductance

the same, while varying the specific conductance based on the synaptic volume.

Inhibitory synapses targeting the soma and the primary basal branches represent ‘‘feedforward’’ inhibition. These synapses were

activated following an inhomogeneous Poisson process that is modulated at 10 Hz and phase-locked to the ‘‘sensory’’ input oscil-

lations with l(t), ranging between 0 and 20 Hz, leading to an average input rate of 10 Hz. Inhibitory synapses targeting the terminal

basal and apical branches represent the ‘‘feedback’’ inhibition; these synapses were activated following an inhomogeneous Poisson

process that is modulated at 10 Hz with 15 ms delay with respect to the ‘‘sensory’’ input oscillations, with l(t), ranging between 0 and

20 Hz, leading to an average input rate of 10 Hz. The rest of the inhibitory synapses served as the background inhibition they were

activated following homogeneous Poisson process with an average rate of l = 10 Hz. This combined synaptic input generated a

mean somatic firing rate for the 10 modeled neurons of 4:6 ± 3:6 Hz, similar to that found experimentally (O’Connor et al., 2010).

The synaptic peak conductance for the E synapses was 0.4 nS (for a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA) component as well as for the N-methyl-D-aspartate (NMDA) components) and 1 nS for the g-Aminobutyric acid (GABAA) syn-

apses. The rise time constants for the conductances of these synapses was 0.2 ms, 2.04 ms and 0.18 ms, respectively and the

respective decay time was 1.7 ms, 75.2 ms and 1.7 ms. The reversal potential values are 0 mV, 0 mV, and �80 mV, respectively.

Dendritic voltage traces were recorded from the center of the respective dendritic branch. Modeling and simulation was performed

using NEURON simulator, accessed using a python script (Carnevale and Hines, 2006).

Active neuron model

Active membrane ion channels were taken from the Blue Brain Project models of L2/3 PNs (Markram et al., 2015) and tuned to pro-

duce similar results to that found in vivo for L2/3 PNs (Waters et al., 2003). To ensure that our model captures important aspects of

dendritic nonlinearities and voltage attenuation, we tuned theNa+ and Ihmembrane conductances to replicate two experiments as in

Waters et al., 2003. In order to replicate the attenuation of the back-propagating action potential along the apical trunk in L2/3 PN as

in Figure 6C, a step depolarization current of 200 pA for 200 ms was injected to the modeled soma, invoking a somatic action

potential, and recorded the amplitude at 10 microns intervals along the apical trunk (Figure 6D). To replicate the contribution of

Na+ channels to the backpropagation of action potentials (Figure 6E), we have injected 200 pA for 200 ms to the soma, invoking

an action potential, and recorded the voltage both at the soma and 80microns from the soma on the apical trunk. Then, we simulated
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the application of TTX by removing the Na+ channels from the model, voltage clamping the soma to the voltage trace created by the

action potential, and recording the amplitude of the passively propagated action potential 80 mm from the soma on the apical trunk

(Figure 6F). The model (Figures 6D and 6F) was able to replicate the experimental results (Figures 6C and 6E) of both the attenuation

and the dependency on Na+ channels of the back-propagating action potential.

Changing E/I ratio variance across dendritic domains

To study the influence of the ratio of excitatory and inhibitory synapses in a given dendritic branch, we iteratively increased or

decreased the variance of E/I ratios over all branches belonging to a given domain. To change the E/I ratio variance, we randomly

distributed the location of synapses between branches, while keeping the total number of synapses in the domain fixed (as found

experimentally for the respective modeled neuron). This process was repeated ten times, each time with a different initial distribution

of the synapses. In Figures 7D and 7E and Figure S6 the voltage time integral (in a timewindow of 3000 s) was computed at the center

of each branch in a particular domain, for different E/I SD, averaged over all branches in that domain. The samewas performed for the

somatic firing rates (Figure 7F) for different E/I SD in the basal terminal domain.

Contribution of domain-specific synapses to the voltage in that domain

To measure the contribution of synapses located in a specific domain to the depolarization in that domain, we simulated each of the

modeled neuron with excitatory and inhibitory synapses as described above, and calculated the mean voltage time-integral in each

domain. We then calculated the respective mean voltage time-integral when all synapses in that domain were not active and

compared the two cases (Figure S7D).

DATA AND CODE AVAILABILITY

The Synapse Detector tools we present here are available as part of the free and open source morphology reconstruction platform

Vaa3D (vaa3d.org). The 12 synaptic maps of L2/3 pyramidal neurons from primary somatosensory cortex analyzed in this study are

available in the supplementarymaterials. The software used to generate the heatmaps, the rate plots, and thewithin-domain random-

ization results is available at https://github.com/uygarsumbul/spines. The computational firing models generated in this paper are

available at https://senselab.med.yale.edu/modeldb/enterCode?model&equals;261460.
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