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Model neural networks can perform dimensional reductions of input 
data sets using correlation-based learning rules to adjust their weights. 
Simple Hebbian learning rules lead to an optimal reduction at the sin- 
gle unit level but result in highly redundant network representations. 
More complex rules designed to reduce or remove this redundancy can 
develop optimal principal component representations, but they are not 
very compelling from a biological perspective. Neurons in biological 
networks have restricted receptive fields limiting their access to the 
input data space. We find that, within this restricted receptive field 
architecture, simple correlation-based learning rules can produce sur- 
prisingly efficient reduced representations. When noise is present, the 
size of the receptive fields can be optimally tuned to maximize the ac- 
curacy of reconstructions of input data from a reduced representation. 

1 Introduction 

Hebbian learning rules commonly used in model neural networks are 
closely related to principal component techniques for data reduction (Oja 
1982; Linsker 1988; Hertz et al .  1991). Principal component analysis is a 
standard method for reducing the dimension of data sets by projecting 
onto coordinate axes that are eigenvectors of the correlation matrix. In 
a linear network, weights that develop according to an appropriately 
constrained correlation-based Hebbian learning rule will project input 
data onto the principal component axis with the largest eigenvalue (Oja 
1982; Linsker 1988; Hertz et al. 1991; Miller and MacKay 1994). This 
suggests that networks of linear units with Hebbian learning rules might 
develop efficient reduced representations of high-dimensional data sets 
automatically, without supervision. However, when more than one unit 
is involved in developing such a representation, a problem arises. Act- 
ing independently, correlation-based learning on each unit will find the 
same maximal principal component axis and therefore each unit will pro- 
vide the same information. Although the representation for each unit by 
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itself is optimal, collectively the network produces a representation that 
is highly redundant and very far from optimal. 

Various solutions have been proposed for this dilemma. Using more 
complex learning schemes (Oja 1989; Sanger 1989; Foldiak 1989; Fyfe 
1993; Linsker 1993) it is possible to construct multidimensional principal 
component representations. However, none of these schemes is related 
convincingly to known mechanisms in biological networks. Instead, it 
appears that biological systems may prevent redundancy by providing 
different neurons with different views of the input space. This is the re- 
sult of restricted receptive fields, that is, not all inputs are connected to all 
network units or, equivalently, some weights are permanently set to zero. 
If different units have different nonzero weights, each will have access to 
a different subspace of the full input space. A simple correlation-based 
learning rule applied to these restricted weights will find the principal 
component of the input data set in a subspace that is different for each 
unit. Thus, the network units will not all develop the same representation 
of the input data and redundancy is reduced. However, the reduction of 
redundancy has a price. The directions along which the network units 
project the input vector will no longer be the optimal ones because the 
individual units do not have access to the full input correlation matrix. 
Nevertheless, as we will see, finite receptive fields provide an effective 
solution to the problem of building optimal nonredundant reduced rep- 
resentations using simple correlation-based learning rules. 

Minimizing the redundancy between units is an effective strategy for 
building efficient representations (Barlow et al. 1989; Atick and Redlich 
1990). However, redundancy can be useful in the presence of noise be- 
cause it allows averaging of the noisy signal. We will show that receptive 
field sizes can be adjusted to optimize the balance between averaging and 
redundancy for a particular noise level. 

2 Network Architecture and Data Reconstruction Method 

We consider a simple, single-layer feedforward network with D inputs 
fed into N units. We do not include horizontal interactions between 
units. The D inputs form the coordinates of points in the data set being 
represented by the network output. These D inputs are coupled to the 
N linear network elements through a matrix of weights. The weight 
coupling input coordinate xi to network unit a is W,i. If we use a vector 
notation for the i index, the couplings of unit a to all the inputs can be 
represented by W,. The response of unit a, denoted by ya, is given by 

D 

y, = c w,ixi + 7, = w, . x + q, 
i=l 

(2.1) 

where qa represents an uncorrelated noise term that has zero mean and 
standard deviation CT. 
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To admit a reduced representation, a data set must have certain char- 
acteristics that are best expressed in terms of its correlation matrix 

cjj = ( X i X j )  (2.2) 

We label the eigenvectors of the correlation matrix by X, and the corre- 
sponding eigenvalues by A,. We number the eigenvectors and eigenval- 
ues according to the size of the eigenvalue so that XI is the eigenvector 
with the largest eigenvalue, XI, X, has the next largest eigenvalue, and 
so forth. The eigenvectors are normalized to have unit length. For a data 
set to be reducible, a subset of the correlation matrix eigenvalues must 
be significantly larger than all the others. This allows the data points 
to be represented by and reconstructed from a reduced representation. 
Note that we are considering a rather specialized data set, one that lends 
itself particularly well to reduced representation because there is a gap 
between large and small eigenvalues. While restrictive, this case is ideal 
for illustrating the role of finite receptive fields. 

The output of the network consists of the values y, with u = 1,2, . . . , N 
of the N network elements. These outputs form the reduced representa- 
tion of the input data. To make use of this reduced representation, and 
to evaluate its accuracy, we must have a means of reconstructing the full 
D-dimensional data points from these N outputs. This reconstruction is 
not something done by the network itself but rather performed either by 
downstream networks or, in this case, by us to evaluate the quality of 
the representation. We do the reconstruction by computing an optimal 
linear estimate of the input vector x, 

N 
(2.3) 

with appropriately chosen D,. The accuracy of the reconstruction will be 
measured by defining the average normalized reconstruction error as 

(2.4) 

where the notation ( ) indicates an average over the input data set. This 
error is minimized by choosing (Salinas and Abbott 1994; Sanger 1994) 

(2.5) 

where Q o b  = (y,yb) and L, = (xy,). With this choice, the average error is 
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To illustrate the use of equation 2.6 we will examine the accuracy 
of two different networks. The most redundant representation results 
when all the network units are coupled to all the inputs and all use the 
same independent correlation-based learning rule to construct their input 
weights. In this case, each unit develops the same set of weights corre- 
sponding to the principal component axis with the largest eigenvalue 

w, = x, (2.7) 

so 

for all a. In this case, we find from 2.6, that the error is 

NX: E = l -  n (2.8) 
(NX~ + 2 X a  

a = l  

This approaches a finite limit as N + 03 due to the redundancy of the 
representation. For high levels of noise (large a), the factor of N in 
the numerator of the second term indicates increasing accuracy for large 
networks due to signal averaging. 

As a second example we consider the N-dimensional optimal reduced 
representation of a network that uses the N principal component eigen- 
vectors with the largest eigenvalues as weight vectors. In our notation 
this means that 

w, = x, (2.9) 

for a = 1,2. . . . , N. The corresponding average error is 

(2.10) 

a = l  

The error depends on the percentage of the trace of the correlation matrix 
represented by the N largest eigenvalues. This is the optimal reduced 
representation but note that for high noise levels it produces a larger 
error than the highly redundant network of equation 2.8. 

3 Restricted Receptive Fields 

Ideally, we would like to combine the best features of the two differ- 
ent reduced representations that we have discussed. In other words, 
we would like to construct a reduced representation that requires only a 
simple correlation-based learning rule but that provides a nonredundant 
reduced representation. Restricted receptive fields provide one way of 
doing this. If the receptive fields of the network units are restricted as in 
Figure 1, the weights constructed by a simple correlation-based learning 
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Figure 1: The architecture of the networks under study. In this example, D = 50 
inputs represented by small filled circles drive N = 5 network units denoted 
by large unfilled circles. Receptive fields are restricted to those inputs lying 
between the two straight lines diverging from each unit. In this case each unit 
is coupled to r = 26 inputs. At the edges of the input array we impose periodic 
boundary conditions as indicated by the dashed receptive field lines. 

rule will not be equal to the maximal eigenvector of the correlation ma- 
trix. Instead, they will be the eigenvectors with maximum eigenvalue of 
submatrices of the full correlation matrix. 

We construct the restricted receptive fields as shown in Figure 1. The 
D inputs are divided into N subgroups consisting of r elements. At 
the edges of the input array we impose periodic boundary conditions. 
Because they will be important in the discussion of our results, we will 
review here the definition of several symbols: 

D = the number of inputs to the network. 

N = the number of network units. 

d = the number of "large" eigenvalues of the input correlation matrix. 

Y = the number of inputs connected to each network unit. 
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A restricted receptive field means that some of the weights for each 
unit are forced to take the value zero. It is convenient to define a factor 
Z,; that is zero if W,; is forced to be zero and one if it is not. A simple 
correlation-based learning rule applied to these restricted weights will 
construct the maximal eigenvectors of a submatrix of the full correlation 
matrix that is different for each network unit. For unit a, this submatrix 
is 

G. = z,ic,z,j (3.1) 

The average representation error for a network with finite receptive 
fields can be computed from equation 2.6, although we must resort to 
numerical techniques to perform the calculation. We begin by construct- 
ing an appropriate correlation matrix corresponding to a reducible data 
set. We randomly choose orthonormal eigenvectors X, with eigenvalues 
A, and write 

c, = c x,x,,x,j 
a 

(3.2) 

We then partition the D inputs onto the N network units, Y at a time to 
define the elements Z,;. Submatrices are computed from equation 3.1 and 
the weight vector Wa for each unit is set equal to the eigenvector of the 
corresponding submatrix with the largest eigenvalue. This computation 
is done numerically. From the resulting weights W, we determine the 
vectors L, and D, and insert these into formula 2.6 to obtain the aver- 
age error. The entire procedure is repeated several times to get a good 
statistical sample. 

4 Results 

The accuracy of a reconstruction from a reduced representation depends 
most strongly on the percentage that the large set of eigenvalues con- 
tributes to the trace of the correlation matrix. We found that our results 
were not very sensitive to the values of D or d provided that this percent- 
age was held fixed. Therefore, we show a representative case, D = 50 
and d = 5, in the figures. Figure 2A shows our results for the average 
normalized error (2.6) as a function of the size of the receptive field. 
For small receptive fields, little information is extracted from the data 
by each unit so the reconstruction is inefficient and the reconstruction 
error is large. When we increase the size of the receptive field, the error 
decreases rapidly to a plateau. The beginning of the plateau represents 
a critical receptive field size beyond which, at least on average, network 
performance does not improve appreciably. The critical value is near the 
point where different network units begin to have common inputs and 
the receptive fields start to overlap. 

As the size of the receptive field grows, each individual unit can con- 
struct a better projection axis. However, this also causes the units to have 
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Figure 2: Results for the average reconstruction error for networks with re- 
stricted receptive fields. D = 50 and the five largest eigenvalues of the corre- 
lation matrix are A1 s 0.27, A2 = 0.22, A3 = 0.18, A4 = 0.13, and As = 0.1. The 
trace of the correlation matrix is normalized to one and the sum of the five 
principal eigenvalues totals 90% of the trace. The data points show the results 
for networks with restricted receptive fields while the solid lines indicate the 
performance of fully connected networks using multiple principal components 
with 1,2,. . . .5 units in decreasing order of error. (A) The reconstruction error 
as a function of receptive fields size in the absence of noise, u* = 0 with N = 5. 
(B) The reconstruction error as a function of receptive fields size with u2 = 0.01 
and N = 5. (C) The reconstruction error as a function of network size with 
r / D  = 0.5 and u2 = 0. (D) The reconstruction error as a function of network 
size with r / D  = 0.5 and u2 = 0.01. 

increasingly similar inputs and the increased redundancy cancels this im- 
provement. As a result the performance of the full system remains fairly 
constant. Ultimately, when the receptive field size goes to r = D, the sys- 
tem is equivalent to a fully coupled, maximally redundant network that 
uses a single eigenvector. This transition is, however, discontinuous as 
seen in Figure 2A. As long as there is any difference between the repre- 
sentations constructed by the different units, the optimal reconstruction 
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technique can provide a fairly accurate reconstruction. Figure 2A also 
shows the reconstruction errors for multiple principal component rep- 
resentations of various sizes. Although not as accurate as a principal 
component reduction of the same size, the network with finite receptive 
fields performs fairly well. 

The ability of the optimal reconstruction technique to exploit small 
differences in network unit outputs is limited if there is noise in the 
system. This is seen in Figure 2B. The impact of the noise is more pro- 
nounced for large receptive field sizes and the plateau is no longer as flat 
as it was without noise in Figure 2A. In the example shown, the optimal 
performance occurs near the point where the receptive fields just begin 
to overlap. 

How efficient is the restricted receptive field architecture compared 
to the optimal multiple principal component method? Figure 2C shows 
that, without noise, it takes about 10 units in a network with restricted re- 
ceptive fields ( r / D  = 0.5) to equal the performance of an optimal network 
with 5 units. When noise is present, the approach to the optimal perfor- 
mance is only asymptotic because adding more noisy units increases the 
total network noise level. This is shown in Figure 2D. 

In Figure 2B, the error rises for large receptive field sizes when the 
network configurations are highly redundant. This is because the small 
differences between network unit responses are swamped by the noise. 
However, when the noise level is high, redundancy can be advantageous. 
With high noise levels, the best strategy may be to project onto a small 
number of directions and to cover these directions with multiple units 
to average out the noise. Thus, for higher noise levels the receptive field 
size that produces the minimum error increases as seen in Figure 3. For 
low noise the optimal receptive field size is near the value where the 
fields just begin to overlap. However, as the noise increases, the optimal 
receptive field size grows and approaches the limit of full redundancy 
with all units receiving the same inputs. This indicates that the receptive 
field size can be tuned to a value that is optimal for a given level of noise. 

Figure 4 shows the reconstruction error for a network with finite re- 
ceptive fields as a function of two characteristics of the distribution of 
input data. In Figures 4A and B, the error is shown as a function of 
the eccentricity of the data set defined as the fraction of the trace of the 
correlation matrix carried by the d largest eigenvalues, 

The error for both a network using conventional principal components 
and one using finite receptive fields drops as the eccentricity increases to 
the maximum value of one. 
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Figure 3: The optimal receptive field size as a function of the noise level. For 
each value of crz the receptive field size r giving the minimum reconstruction 
error was determined. The results shown are for D = 50 and d = N = 5. The 
error bars indicate the standard deviations over different trials. For low noise 
levels, the optimal receptive field size is small, producing a modest amount of 
overlap between neighboring fields. For large noise levels, the optimal receptive 
field size grows. 

Figure 4C and D shows the same network reconstruction error as a 
function of a parameter that controls how close the d largest eigenvalues 
are to each other. Specifically, we have taken 

Xk 0; [loo - (k - 1)# (4.2) 

with p as a parameter and the constant of proportionality determined by 
the value of c. The particular expression used here is arbitrary and was 
chosen to illustrate the effect. Interestingly, the principal component net- 
works and the finite receptive field network show different dependencies. 
For the latter, the error is dominated by the ability of this architecture to 
find the largest eigenvalues and is not very sensitive to their distribution. 
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Figure 4 Network performance for different data structures. The correlation 
matrix is parameterized by two variables, E and F J ,  defined in the text, that 
characterize the eccentricity and variability of large eigenvalues for the in- 
put data set. (A,C) The reconstruction error in the absence of noise, u2 = 0; 
(B,D) o2 = 0.01. In (A) and (B), p = 0.5 and in (C) and (D) 6 = 0.9. The data 
points show the error for a network with D = 50, N = 5, and r/D = 0.5 and 
the solid lines indicate the performance for networks using a multiple principal 
component algorithm with 1,2.  . . . , 5  output units. 

5 Discussion 

Our results indicate that restricted receptive fields provide an effective 
way of building nonredundant reduced representations. The network 
shown in Figure 2A performs with N = 5 elements as well as an optimal 
N = 4 network. In Figure 2C, a restricted field network of 10 elements 
performs as well as an optimal network with 5 elements. When noise is 
present, the receptive field size should be tuned to the level of noise to 
minimize reconstruction errors. It would be interesting to see if recep- 
tive field sizes in biological systems are adjusted in this way to produce 
optimal results. 
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