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Abshct. We shldy the propagation of waves of excitation in neural network models. 
Thmugh analytic calculation and computer simulation, we determine how the pmpagation 
velocity depends w the range and strength of synaptic interadions, the firing threshold and 
on transmission delays. For the models considered, the prapapatim velocity depends on either 
the first or the second mment of the distribution hmction Chmderiziog the length af synaptic 
interaCtiCms. 

1. Introduction 

Under certain circumstances. stimulation of cortical or hippocampal tissue can produce a 
propagating wave of excitation [1]-[5]. Propagation velocities for such waves are of order 
0.06 m s-' in cortical slices [Z] and 0.14 m s-l in hipwcampal slices 111. This is much 
slower than the typical speed of action potential propagation along axons, which is more 
l i e  0.5 m s-l 111. The wave velocity is determined largely by population effects and it 
can be used to probe the nature of the connections between neurous [11-[51. However, to 
extract this information we must understand how the propagation velocity depends on the 
underlying synaptic connectivity. Propagation of waves of excitation was studied in [l] 
using a large network of conductance-based model neurons. Computer simulation of this 
network revealed hat the propagation velocity was indeed sensitive to the spatial extent of 
network connections [l]. Here, we study the propagation of waves of excitation in much 
simpler neural network models. Although these models are not as realiitic as that of [l], 
they have the advantage that we can derive analytic expressions for the wave velocity. This 
allows us to see what combination of parameters is actually being determined when the wave 
propagation velocity is measured. We calculate how the propagation velocity depends on 
the range of the synaptic connections, on threshold and maximal activities and on the axonal 
propagation velocity in these models and verify our results through computer simulation. 

We consider neural network, or firing-rate, models of large neuronal populations [61-[91. 
In models of this sort, the activity at time f of neurons located at position x within the 
tissue is characterized by a variable F(x, t). This function obeys a nonlinear diffemtial 
equation relating the activity of neurons at point x to that of neurons located elsewhere, 
through synaptic interactions, s (1.1) 

dF(x, f )  

df 
t- = - F ( z ,  0 + dy J ( y ) G [ F ( z  + Y. f - I~l/c)l 

where t is a time constant. The function J(y) characterizes the strength of the synaptic 
coupling between neurons located at the point x and those located at z -t y. We have 
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assumed translation invariance of the synaptic connections so that I does not depend on x. 
The function G is a nonlinear function of F that incorporates the dependence of synaptic 
transmission on the level of activity of the presynaptic neuron. In our preliminary analysis, 
we will keep the functions J and G fairly general. We normalize the synaptic weight 
function so that 
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J(Y) = 1, (1.2) 

In (1.1) we have included a propagation delay. If the signal from neurons located at 
s + y  travels to the point I with velocity c, it will take a time Iyl/c to haverse this distance. 
This explains the factor f -  Iyl/c in the function F in equation (1,l). The signal propagation 
speed c should not be confused with the speed of the waves of exciWon we study, which 
we will denote by U. As mentioned above, U is normally considerably less than c. 

In order to support a wave of excitation, equation (1.1) should have two spatially 
uniform, static s o l u t i ~ ~ ~ s  corresponding to a silent state, F = 0, and a 6ring or excited state, 
F = Fe. In order to support the F = 0 state, we must require that G(0) = 0. In fact, we 
will assume that G has a threshold so that G(F) = 0 for F < K, where K is the activity 
threshold for synaptic Bansmission. L&ewise, we must have G(FJ = F, to support the 
excited solution. 

The waves we study involve transitions between these two states. Starting from the 
state F = 0, a region is stimulated raising F in that area to the excited, firing state. The 
excitation then spreads, increasing the size of the excited region. We are interested in 
determining how the velocity of this spreading wave of excitation depends on properties of 
the synaptic connection function J(y) and the response function G. 

2. General analysis 

Our strategy for computing the propagation velocity U will be to impose a self-consistency 
condition on the activity function F. Suppose at some time fo,  and at some point I, there 
is no activity so that F(I, to) = 0. With this as an initial condition, we can integrate (1.1) 
over time to obtain 

F(I. f )  = l: e('")'' I d a ,  J&)G[F(I + y, s - lyl/c)l. (2.1) 

We assume that F(z, f )  corresponds to a moving wave of activity. In equation (2.1), we 
will take f to be the time when the activity at point x first reaches the threshold value K ,  
so that F(I, f )  = K. Neurons at the point I were originally silent with F(I, fg) = 0. The 
activity of other neurons already excited above the threshold increased F until it reached 
the threshold value K at time f. This condition can be expressed in a form convenient 
for our calculations by substituting K for the left side of equation (2.1) and integrating the 
right-hand side of the same equation by pans 

J(Y)GIF(I+Y,~-IYI/~)I 

Equation (2.2) is a self-consistency condition for the wave propagation velocity U. The 
wave must arrive at any given point just as that point rises above the threshold. This is 
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the basic equation we will use to compute the propagation velocity for waves of excitation. 
Note that in deriving equation (2.2) we only integated the basic equation of the model (1.1) 
over the range 0 5 F 5 K .  This means that P only has to be described by equation (1.1) 
below the Gring threshold. Once F crosses the threshold it could be described by a more 
complicated model and this would have no effect on our calculations. This is a very likely 
situation because many additional nonlinear processes become =levant once a neuron has 
crossed its firing threshold. 

3. Analytical results for one dimension 

The cortical and hippocampal slices used to measure propagation velocities [1]-[5] are very 
thin and are much smaller in the tranverse than in the longitudinal direction. For this 
geometry, the wave propagation is approximately one-dimensional. We look for solutions 
of equation (2.2) which are one-dimensional travelling waves moving in the positive x 
direction with velocity U 

F ( z ,  t )  = f ( I  - x / u ) .  (3.1) 

The function f has the general form shown in figure 1 with the asymptotic characteristics 
f(-co) = 0 and f (m)  = Fe. By timeIranslation invariimce we can specify f at any 
single time and position without loss of generality. We will make this choice so that at time 
I = 0, the point x = 0 is just reaching the threshold, that is f(0) = K. We assume that f 
is monotonic so that f ( t )  e K for I < 0 and f ( t )  > K for I > 0. 

To compute the propagation velocity, we substitute (3.1) into equation (2.2) and set 
to = -a, t = 0 and'x = 0. For s e 0, only negative y will conhibute to the integral 
in equation (22). because for negative times the active part of the wave is in the negative 
spatial region. Thus, we can write 

h 

b 
c) 
.3 

.3 
c) 

0 
t-rdv 

Figure 1. Typical shape of a onedimensional travelling wave. The wave f(t - x / v )  crosses 
the threshold x at I - x/u = 0 and sdsfies f(-m] = 0 and f(m) = F.. 
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where 
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(3.3) 

or equivalently 

(3.4) 
C v 

1 +ac  
All of the effects of the finite signal velociw are contained in U. Note that since U c e, a 
is always bigger than zero. With these observations, equation (2.2) becomes 

We will begin by calculating the propagation velocity when G is a simple step function, 
G(F) = 0 for F i U and G(F) = Fc for F > K .  The wave arrives at the point x = 0 at 
t = 0, andat this time F > K with G = F, forx < 0 and F < U with G = Oforx > 0. 
Since G jumps discontinuously at F = K and is otherwise constant, we have 
d d 
-G[f (S  -ay)]  = FCS(f(s -ay)  - K ) - ~ ( s  - ay) = FeB(S -ay) (3.6) ds ds 
where 6 is the Dirac delta function. This makes the time integral in equation (3.5) hivial 
and we obtain 

(3.7) KIF. = (1 - exp(-alyl/r)) 

for any function H. 
The result (3.7) can be simplified if KIF= is small, that is, if the threshold level is much 

less than the maximum activity as it will be in our simulations. Then, we can expand the 
exponential in (3.7) to find 

or 

In the limit c + CO this gives 

(3.9) 

(3.10) 

(3.11) 

Thus, for a step function response with a big separation between the threshold and the 
maximal activity level, the propagation velocity depends on the first moment (lyl) of the 
synaptic dismbution function J. 

Now suppose that G is not a step function, but rises with some slope g at the threshold 
where 

(3.12) 
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Similarly, we d e h e  

(3.13) 

In some networks (see the simulations in the next section) neurons are excited to the 
threshold predominantly by other neurons that are near the threshold value. This occurs if 
the characteristic range of the synaptic interactions is much less than the distance that the 
wave moves while the activity rises from the threshold to its maximal value. In this case, 
f is near the threshold value over the range of y for which J(y) is appreciably different 
from zero. For f near, but greater than the threshold, we can use the approximation (taking 
Y < 0) 

G[~(-CC')I m ghalyl (3.14) 

and fo r s  - a y  > 0 

Substituting these results into equation (3.5) gives 
K - a ( ' y ' )  + (exp(-olyl/r) - 1). 

g h r  z 
(3.16) 

To simplify this expression, we can assume once again that the threshold K is small, in this 
case compared to ghs. Then, the exponential can be expanded to give the approximate 
equation for 01, 

so that 

In the l i i i t  c 4 OCI this gives 

(3.18) 

(3.19) 

Note that the velocity now depends on the second moment of J ,  (y2).  

4. Numerical simulations 

To perform computer simulations of the waves we are studying, we use a model with 
discrete spatial elements and write (1.1) as 

We do not include any transmission delay in our simulations so c ca. We consider a 
one-dimensional open chain of N neurons. The 6rst model we investigate uses a synaptic 
response function given by [9] 

G[Fj(t)I = tanhIg(Fj(t) - K)]@(Fj(t) - K )  (4.2) 



290 M A  P Idiart and L F Abbott 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0' ' 
0.0 0.5 1 .o 1.5 

Figure 2. Ibe ratio of the wave velocity to t i e  velccity with nearest neighbour cwpling far 
the modcl of 191 plotted as a function of the inverse of the synaptic range p for different values 
of the synaptic cutoff length R.  The threshold was Y = 0.001 and g = 1.3. Distances me 
measured in vnits of the intemeumn spacing. 
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Figure 3. The isme data as in figure 2 ploued~ar 
fuaclions of either the fim moment (Iyl) (solid dots) 
or the square mot of the second moment ( (yz)) 'p 
(open squares) of the synaptic distribution fuodion J .  
D.stanaes are in units of the intentemeum spacing. 

Figure 4. The same plot as in figure 3, but with 
g = 100 and Y = 0.05. The velocity ratio is plotted 
as fu" of the. first moment [lyl) (solid dots) 
and the quart root of the second moment ((p))*n 
(open squares) of I and diptan- an in unik of the 
intemcum spacing. 

where 0 is the unit step function. The synaptic connections we consider have a maximum 
range R and an exponential fa-off with a length constant p so that 

(4.3) J.. - J -P-jI/pqR - li - j l ) .  ., - oe 

JO is determined by the condition xi Jii = 1. 
Our simulation procedure consists of injecting a constant current (added to the right- 

hand side of equation (4.1)) for a certain time interval into the first neuron of the chain. 
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t -x lv  Moment 

Figure 5. Shape of the travelling wave for the more 
canplen model simulated [SI. Jnhibition causes the 
pulse of excitarim to terminafe in a finite time. 

Figure 6. Similar to figures 3 and 4 but data are f m  
the model with inhibition [81. ?he velocity ratio is 
plotted as a function of the first manent ([?I) (solid 
dos) or Ule square root of the semnd mmeni ((y'))''' 
(OF squares) of J and distances are in units of the 
intemeurm spacing. 

If the intensity and the duration of this pulse are sufficient, the next neuron starts to ljre. and 
a wave of activity navels along the chain until all the neurons are active. We determine the 
velocity of this wave by measuring the difference in time between the arrival of the activity 
at two distant neurons. We hold N = 100 and t = 1 fixed and investigate the behaviour 
of U by modifying the length constant p and the cut off R for several choices of the gain 
g and threshold K. 

Figure 2 shows a typical example, a plot of the propagation velocity against the inverse 
of the synaptic length constant p for different length cutoffs R. For convenience, we have 
divided the velocity U in the Egures by UO, the velocity for nearest neighbour coupling, that 
is, the monosynaptic velocity [l]. This is convenient because, in the limit we consider, this 
ratio primarily depends on properties of the synaptic coupling function J. Figure 2 shows 
that a more distributed JL, gives a higher velocity. 

Using what we leamed from the previous section, we can display this data in a clearer 
way. For the parameters we have chosen (the same as those used in [9]), the conditions of 
the second computation of the previous section are satisfied and we expect the wave velocity 
to be proportional to the square root of the second moment of J, ((y2))'/'. The ratio u/ua 
should, in fact, be equal to ((y2))'P because the constant of proportionality cancels out. 
Figure 3 shows the results for g = 1.3 and for R = 2, 3, 4 and 5 plotted against both 

equal to ( ( Y ~ ) ) " ~  in accordance with equation (3.19). In particular, ujuo does not depend 
on P and R separately but only through their combined effect on the second moment of .I. 
m e n  these data are plotted against the 6rst moment of J ,  ( ly l ) ,  the data do not fall along 
the diagonal and we get more scatter on the plot (figure 3). The scatter indicates that the 
velocity ratio cannot be expressed as a function solely of (lyl). We get similar results for 
a variety of parameters as long as g is not too large, 

For large values of g, the hyperbolic tangent approaches a step function and we expect 
to find the 6rst moment dependence discussed in the last section. This is seen in figure 4, 
where, with g = 100, the fit of the velocity to (lyl) is excellent while the plot of u/ug 

((y 2 )) lP and ( I y l ) .  We observe that, to a very high degree of accuracy, u/uo is indeed 
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against ((y2))l’’ is scattered and off the diagonal. 
We also simulated a more complex model with explicit inhibition [81. This model 

includes the effects of both fast (GABA-A) and slow-(GABA-B) inhibition. The fast 
inhibition regulates the firing rate during excitation while the slow inhibition brings the 
system back to the silent state after a period of excitation [8]. As a result, the wave now 
has the profile shown in figure 5. In figure 6 we present the results of a series of simulations 
similar to what we described for the previous model. The fit to the square root of the second 
moment of the synaptic distribution is not as good as it was in figure 3, but it still provides 
an adequate description of the data The fit to the 6rst moment dependence is not as good. 
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5. Two-dimensional propagation 

For wave propagation in a portion of intact cortex, a two-dimensional model is more 
appropriate than the one-dimensional analysis we used for slices. (We assume we can 
still ignore variations aaoss the thickness of the cortex. Otherwise, of course, a full 
three-dimensional model must be used.) If the stimulus is independent of one of the two 
dimensions, the previous results can be raken over with J replaced by its onedimensional 
analogue 

(5.1) 

However, this is an unlikely situation since the diameter of the electrode that injects current 
into the tissue is typically quite small. Instead of seeing a plane wave, we would expect a 
circular wave to originate at the site of the electrode and to spread outward. 

For simplicity, we consider only circular waves and assume that the synaptic interaction 
function J is isotropic, J = J((y(). The circular mve, once initiated, expands with an 
ever increasing velocity that ultimately approaches the velocity of a plane wave. We choose 
coordinates with the origin at the centre of the circular wave and define the wave radius 
r to be the radius where the activity is equal to the threshold, F = K .  The propagation 
velocity u(r) is the velocity of this wave front when it has radius r.  As we saw in the 
one-dimensional model, the velocity of a wave of excitation is govemed by the time it 
takes the advancing wave to raise neurons in its path to the firing threshold. Let R be 
the maximum radius of s y ~ p t i c  interactions as in the previous section. The region of the 
two-dimensional space that contributes to raising neurons at the point I above the threshold 
is the intersection of the circular region of radius r = Irl where F K and another circle 
of radius R around the point x (see figure 7). It is clear that as the circular wave grows 
this overlap region will grow, increasing the velocity of the wave. 

Our next step is to exuact analytical results for the velocity of a circular wave in two- 
dimensions. We have not solved this pmblem exactly, but we can derive some interesting 
bounds on this velocity. The first bund has already been discussed. If we define v(c0 )  as 
the velocity of a plane wave or, equivalently, of a circular wave with infinite radius, then 
for a circular wave of finite radius we have u(r)  < u(o3). To derive a lower bound, we 
begin by considering a step function response, G = 0 for F < K and G = Fe for F z K. 
In this case, we can derive a result similar to (3.6) 
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where T(z +y) is dehned as the time when the region at point z+ y reaches the threshold, 
that is. F ( z  + y, T(z + y)) = K .  Putting this into equation (2.2) we find 

(5.3) 

Here A(r )  is the area shown in figure 7, where the range of synaptic interactions from the 
point z overlaps with the region of firing ( F  > K )  at time t when the wave has radius r .  

Unfortunately, to evaluate the integral in (5.3) we need to know the function T which 
is, of course, the answer we seek. However. note that f - T(z + y) is the time it takes for 
the wave to expand from a radius 1z + yI to the radius r = I l l .  This time is always greater 
than the time it would take the wave to expand this much if it had a constant velocity U @ ) ,  
(r - 11 + y [ ) / u ( r ) ,  because the velocity of the circular wave for times less than t is always 
less than u(r).  Since the integrand in (5.3) is an increasing function of f  - T(z + 9). we 
can write 

(5.4) 

In evaluating the right-hand side of equation (5.4), we find it best to express the answer 
in terms of the asymptotic velocity u(03). If we take the limit r >> R we find that 

The same arguments can be applied when G is not a step function if we take advantage 
of the approximations we used in the onedimensional analysis. If F stays near the threshold 
in the region of interest, we can write (for 11 + yI < r )  

G [ F ( [ z  + yl, t ) ]  = gh(t - T(z + y)) > gh(r - Iz + yl)/v(r) (5.6) 
and use equation (3.15). Making the same approximations as before we find 

Again taking r >> R we obtain the bunds 

Note that, in this case, the correction for 6nite radius falls off more rapidly than for a 
stepfunction response. 

Figure 7. Area of overlap for the two-dimensional 
calculatirm. 'The v&r z marks the paint in question and 
also thc radius of the circular wave at h e  L. The drde  of 
radius R is the range of synaptic inbdons. 'The overlap 
of the two circles with area A(r) is the ngion used in the 
cmplltatim of the wave velocity. AW 
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6. Conclusions 

We have shown that, with a few general assumptions about the differential equations that 
determine the neuronal dynamics in a network, it is possible to derive relatively simple 
relations between the propagation velocity of a excitatory wave and the spatial dismbution 
of synaptic connections. Two Limiting cases give quite different behaviour. If the range of 
synaptic interactions is much greater than the distance that the wave travels in the time it 
takes to rise to its maximal aetivity, the synaptic response acts effectively like a step function 
and the wave velocity is given by equation (3.7). When the ratio of the threshold activity to 
the maximal activity is small, this gives a velocity that depends on the first moment of the 
synaptic distribution function, U m (lyl). If instead, neurous are excited primarily by other 
neurons that are still near the threshold value during the rising phase of their activity, the 
velocity is given by equation (3.16) an4 in the limit of small tlueshold, U 0: ((y2))1/2. The 
two different dependences were clearly revealed in the computer simulations. Our bounds 
for the velocity of two-dimensional propagation provide a first step toward a solution of 
this more difficult problem. 
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