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We evaluate the capacity and performance of a perceptron discriminator operating in a highly sparse
regime where classic perceptron results do not apply. The perceptron is constructed to respond to a
specified set of q stimuli, with only statistical information provided about other stimuli to which it is not
supposed to respond. We compute the probability of both false-positive and false-negative errors and
determine the capacity of the system for not responding to nonselected stimuli and for responding to
selected stimuli in the presence of noise. If q is a sublinear function of N, the number of inputs to the
perceptron, these capacities are exponential in N=q.
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Sparse coding is a useful and widespread strategy for
representing complex data [1]. Biological systems often
generate a high-dimensional representation of sensory data
at the initial receptor level but modify this to a sparse
representation at later processing stages. For example, in
the olfactory system of insects, Kenyon cells show odorant
selectivity to a much higher degree than do the projection
neurons providing their input or the olfactory receptor
neurons that generate the initial olfactory response [2,3].
Here we analyze, in a general context, the capacity and
discrimination properties of a simple and surprisingly ro-
bust mechanism for generating sparse, highly selective
responses from high-dimentional, nonsparse inputs.

A simple model of neural selectivity is the single-layer
perceptron [4]. It is based on an idealized neuron that re-
ceives N inputs, characterized by an N-dimensional activ-
ity vector u, via N synapses represented by a weight vector
w. The total input to the neuron is approximated as w � u,
and the neuron fires when w � u � � for a positive thresh-
old �.

We explore the capacity of this model neuron for gen-
erating sparse responses. Ideally, we would like the neuron
to respond to a small number q of specified inputs corre-
sponding to ‘‘selected’’ stimuli and to no others. All of the
input vectors, whether selected or not, are chosen from the
same probability distribution, which represents the distri-
bution of natural stimuli. We compute the probability of
false-positive responses to nonselected input vectors
chosen randomly from this distribution, and we compute
the false-negative probability that the q selected stimuli
fail to generate a response upon repeated presentation due
to noise associated with their input vectors. From these
results, we determine the capacities of the model for gen-
erating correct responses in the situation of sparse coding
defined as q� N�, with �< 1.

It is important to appreciate that the situation that we are
considering is different from the classic perceptron prob-
lem. In the classic case, we are provided with a set of M
input vectors divided into two groups (each such division is
called a dichotomy). One group contains q inputs that are

supposed to generate responses, and the other M� q in-
puts that should not. If M< 2N, the probability that a
weight vector can be found for almost all dichotomies ap-
proaches 1 in the limit N ! 1 [5–7]. The problem that we
consider differs in two important ways. First, we do not
assume that all of the inputs to be discriminated are known
prior to specifying the weight vector. Instead, we construct
the optimal weight vector solely on the basis of knowledge
of the q selected stimuli, with some knowledge of general
statistical properties of other stimuli but without a com-
plete list of what they are. We feel that this is more relevant
to biological applications than the problem solved in the
traditional approach. For example, an animal cannot be ex-
pected to have knowledge of all of the odorants that it will
encounter during its lifetime prior to setting up its olfactory
selectivity. The second difference is that we consider ex-
tremely sparse representations for which q� N�, with
�< 1. In the traditional approach, all of the dichotomies
of M points are counted equally, and, when M� N ! 1,
almost all of them are concentrated around an almost even
split into two groups of q ’ M=2 elements each. The
classical results thus apply only when q is of order N.

In the general framework for discrimination that we con-
sider, each stimulus is associated with an N-dimensional
input vector with components drawn independently from a
Gaussian distribution with zero mean and unit variance.
This applies to both selected and nonselected stimuli, that
is, to stimuli that should evoke a response and to those that
should not. We first construct a perceptron that guarantees
that w � u � � for all q of the selected stimuli, designated
by u � �1; �2; . . . ; �q for q < N, and that minimizes the
probability that this condition is satisfied for any other
stimulus. For a perceptron designed to respond to a set of
selected stimuli �, we define the false-positive proba-
bility P�r�fpj� as the probability that at least one of r non-

selected, randomly chosen stimuli generates a response.
Although the perceptron is guaranteed to respond to the
selected inputs �, it may fail to respond to repeated pre-
sentations of the same stimulus if the corresponding input
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is corrupted by noise. We introduce noise by assuming that,
when one of the q selected stimuli with original input �i is
presented again, it generates an input vector �i � �, where
the components of the noise vector � are drawn indepen-
dently from a Gaussian distribution with zero mean and
variance �2. The false-negative response probability P�s�fnj�
is the probability that any one of the noisy selected input
vectors fails to evoke a response on any one of s trials.

The false-positive and false-negative response probabil-
ities discussed in the previous paragraph refer to a particu-
lar set of selected input vectors �1; . . . ; �q. What we are
really interested in, however, are the false-positive and
false-negative probabilities when the �i are randomly se-
lected. Because the selected and nonselected stimuli
are drawn independently, these probabilities are simply the
expectation values hP�r�fpj�i and hP�s�fnj�i over the distribution
of possible selected input vectors �1; . . . ; �q. Correspond-
ing to these two response probabilities, we define two ca-
pacities for the perceptron: (i) the largest value of r such
that hP�r�fpj�i ! 0 and (ii) the largest value of s such that
hP�s�fnj�i ! 0, where the rightward arrows refer to the limit
N ! 1. We show that in the sparse case, which we define
as q� N�, with �< 1, these capacities grow exponen-
tially in N1��.

The basic response condition for the model neuron that
we consider can be given a simple geometric interpretation
by rewriting the condition w � u � � as �u� w0� � w0 � 0,
with w0 � �jwj�2w. This inequality implies that the point
specified by any response-generating input vector u is
separated from the origin by a hyperplane that passes
through the point w0 and is tangent to the sphere of radius
d�

def
jw0j around the origin. We wish to construct a hyper-

plane (or, equivalently, a vector w0) that separates, as much
as possible, the q input vectors corresponding to selected
stimuli from all others.

To begin, we construct a hyperplane that passes through
all of the selected stimuli �1; �2; . . . ; �q. For q < N, this is
always possible but it does not completely specify the
hyperplane. However, we can determine the unique hyper-
plane that separates random nonselected stimuli from the
selected stimuli with maximum probability. Because the
components of random input vectors are normally distrib-
uted with zero mean and unit variance, their dot products
with a fixed vector w0 are normally distributed with zero
mean and variance d2 � jw0j

2. The probability that any
randomly selected input vector satisfies the threshold con-
dition (which can be written as w0 � u � d2) and generates
a response is thus given by 1

2 erfc
����������
d2=2

p
. This is a decreas-

ing function of d, so, to minimize the probability of a false-
positive error, we should choose the plane furthest from the
origin—i.e., with the longest possible vector w0. Finding
the maximum of jw0j

2 with the constraints ��i�w0� �w0�
0 for i � 1; . . . ; q defines a unique hyperplane given by

 w0 �

�Xq
i;j�1

�C�1�ij

�
�1 Xq

i;j�1

�C�1�ij�j; (1)

where C is the matrix with elements Cij � �i � �j.
Equation (1) defines a hyperplane that results in no false
negatives (in the absence of noise) and minimizes the
probability of a false-positive error in discriminating the
selected stimuli.

Note that, if the �i are linearly dependent, the matrix C is
not invertible, and the hyperplane furthest from the origin
containing the �i is not defined by this formula. Moreover,
in this situation the hyperplane may pass through the origin
and thus produce a very poor discriminator. This is analo-
gous to the failure of the single-layer perceptron for line-
arly inseparable problems, such as XOR. However, the
probability of choosing linearly dependent �i is zero given
the Gaussian statistics that we consider.

If the input vectors are noisy, the perceptron given by
Eq. (1) can generate false negatives. If the noise in the
selected stimuli is Gaussian, the false-negative response
probability on a single trial with a selected stimulus for the
perceptron defined by Eq. (1) is equal to 1

2 . However, we
will show that the false-negative probability can be greatly
reduced by choosing a parallel hyperplane slightly closer
to the origin. This is done by shifting � � �1� ���, or,
equivalently, w0 � w� � �1� ��w0, for 0 	 � < 1. We
define our perceptron for sparse discrimination as the
perceptron obtained by this shift, with � a free parameter.

For the shifted hyperplane, the dot product of any of the
selected input vectors with w� is w� � �i � �1� ��d2,
where d is the distance of the unshifted (� � 0) hyperplane
from the origin. If noise is added to a selected vector, so
that u � �i � �, where � is Gaussian-distributed with
zero mean and variance �2, the dot product w� � u � �1�
��d2 � �1� ��w0 � � is Gaussian-distributed with mean
�1� ��d2 and variance �1� ��2d2�2. To make the neuron
fire, this dot product must be greater than �1� ��2d2,
which means that the false-negative response probability
is P�1�fnj��

1
2erfc

������������������������
�2d2=�2�2�

p
�
def
pfn�d

2�. Similarly, the
probability of a false-positive response to a randomly se-
lected stimulus for the shifted plane is P�1�fpj� �

1
2 erfc

����������������������������
�1� ��2d2=2

p
�
def
pfp�d2�.

For independently drawn stimuli and noise, the false-
positive response probability for r trials and the false-
negative probability for s trials can be computed in terms
of the single-trial probabilities as P�r�fpj��1�
1�pfp�d

2��r

and P�s�fnj� � 1� 
1� pfn�d2��s, respectively. These equa-
tions apply to specific choices of selected input vectors, but
the dependence is solely through the value of d, the maxi-
mum distance from the origin to a hyperplane passing
through these points. To determine the probabilities
hP�r�fpj�i and hP�s�fnj�i, we must average over the distribution

of d2 obtained from random selected stimuli �1; . . . ; �q.
From Eq. (1), we find that d2 � jw0j

2 is given by
d2 � 


Pq
i;j�1�C

�1�ij�
�1. The distribution of the matrix C

with elements Cij � �i � �j for Gaussian-distributed vec-
tors �i is known as the Wishart distribution. Theorem 3.4.7
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of Ref. [8] (p. 72) states that, for q < N and a Wishart-
distributed matrix C, the random variable jaj2=�aTC�1a�,
for any vector a, follows a �2 distribution with N � q� 1
degrees of freedom. If we set a � �1; . . . ; 1�T , this random
variable becomes qd2, so qd2 is distributed as �2

N�q�1, and
it follows that the mean and the variance of d2 are hd2i �
�N � q� 1�=q and Var�d2� � 2�N � q� 1�=q2.

To compute the full false-positive and false-negative
probabilities, we must average the expressions for P�r�fpj�

and P�s�fnj� over values of d2 that are distributed as �2 with
the appropriate number of degrees of freedom. These in-
tegrals cannot be computed explicitly in terms of known
functions; moreover, their asymptotic behavior (as N !
1) is difficult to evaluate unless an additional condition is
satisfied. To make these integrals tractable, we restrict our
attention to cases where self-averaging applies, meaning
that we can approximate

 hP�r�fpj�i � 1� 
1� pfp�hd
2i��r;

hP�s�fnj�i � 1� 
1� pfn�hd
2i��s:

(2)

We require that this approximation becomes exact in the
limit N ! 1.

For the approximations of Eq. (2) to be valid in the
single-trial case (i.e., r � s � 1), the functions pfp�d

2�

and pfp�d2� must be relatively constant across the width
of the peak of the �2 distribution for d2. By assuming that
N is large, q < N, and that � and � are independent ofN, it
can be shown, in the limit of largeN, that the product of the
derivative of either of these two functions evaluated at the

point hd2i is much smaller than the width
����������������
Var�d2�

p
of the

�2 distribution. Below, we prove the validity of (2) rigor-
ously in the more general context of multiple trials.

Under the approximations (2), the average single-
trial false-positive and false-negative response proba-
bilities are given, in the limit of large N, by

hP�1�fpj�i �
1
2 erfc

����������������������������������������������
�1� ��2�N � q�=�2q�

p
and hP�1�fnj�i �

1
2 erfc

���������������������������������������
�2�N � q�=�2q�2�

p
. If q� N, this indicates per-

formance that is independent of N. Because the probability
of an error can only increase with multiple trials and we
have defined the capacity of the discrimination perceptron
in terms of a zero-error limit as N ! 1, the capacity is
zero in this case, and we do not consider it further. Much
more impressive performance occurs if q� N� for �< 1.
Then, for large N, by using the asymptotic expansion
erfc�

���
x
p
� ! exp��x�=

�������
�x
p

as x! 1, we find
 

hP�1�fpj�i � pfp�hd2i� �

����������������������������
q

2��1� ��2N

s
exp

�
�
�1� ��2N

2q

�
;

hP�1�fnj�i � pfn�hd
2i� �

����������������
q�2

2��2N

s
exp

�
�
�2N

2q�2

�
: (3)

These probabilities go to zero exponentially in N1��.
If the approximations of (2) are valid, N is large, and

q� N�, with �< 1, the multitrial false-positive and false-

negative probabilities are obtained by substituting the re-
sults of (3) into Eqs. (2). It is then straightforward to derive
the maximum values of r and s that ensure that these
probabilities go to zero as N ! 1 (using the observation
that if functions g�N� and g�N�t�N� approach zero in the
limit N ! 1, then 
1� g�N��t�N� ! 1). The following
conditions are sufficient:

 ln�r�<
�1��2�N

2q
�N	 and ln�s�<

�2N

2q�2�N
	 (4)

for any small constant 	 > 0. These are not the sharpest
possible upper bounds, but, as we now show, they are the
best limits that we can derive before the approximation of
Eqs. (2) breaks down.

We now prove that the approximations (2) become exact
in the limit of large N as long as the bounds of Eqs. (4) are
satisfied with 	 >max�3=4� �; 0�. The magnitude of the
error in the approximations of Eqs. (2) can be written as

j��hd2i� � h��d2�ij, where ��d2��
def
�1� 1

2 erfc
�������������
bd2=2

p
�t,

with b � �1� ��2 and t � r for the first equation in (2)
and b � �2=�2 and t � s for the second equation. To
derive the maximum values of r and s for which these
approximations are valid, we must determine the largest
value of t for which this error approaches zero as N ! 1.
The function � satisfies 0<��x�< 1 for all x and also

�0�x� 	
������������������
b=�8�x�

p
exp
�bx=2� ln�t���

def
��x�. The func-

tion ��x�, which we use as a bound on the derivative of
��x�, is a monotonically decreasing function of x. Any
differentiable function, such as �, that satisfies the con-
ditions 0 	 ��x� 	 1 and j�0�x�j 	 ��x�, for some con-
tinuous monotonically decreasing function ��x�, obeys the
bound j�� �X� � h��X�ij 	 
�2Var�X� �
�� �X�
� for
any 
> 0 and any random variable X with mean �X � hXi
and variance Var�X�. We derive this bound via the se-
quence of inequalities
 

j�� �X��h��X�ij� jh
H�jX� �Xj�
�

�H�
�jX� �Xj��
�� �X����X��ij

	 hj�� �X����X�jH�jX� �Xj�
�i

�hj�� �X����X�jH�
�jX� �Xj�i

	 hH�jX� �Xj�
�i�hj�� �X�

���X�jH�
�jX� �Xj�i

	P�jX� �Xj�
�

�hj�X� �X��0
y�X��jH�
�jX� �Xj�i

	
�2Var�X��
 max
jy� �Xj	


j�0�y�j

	
�2Var�X��
�� �X�
�:

The initial equality above follows from the fact that
H�jX� �Xj �
� �H�
� jX� �Xj� � 1, where H�x� is
the Heaviside function. The first inequality is based on
the observation that the absolute value of an average is
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less than or equal to the average of the absolute value. The
second inequality relies on replacing j�� �X� ���X�j by 1,
because it is less than or equal to 1. The first term after the
third inequality of this sequence follows from the defini-
tion of the expectation value, and the second term is a result
of the intermediate value theorem ��X� ��� �X� � �X�
�X��0
y�X��, where y�X� satisfies jy�X� � �Xj 	 jX� �Xj.

Finally, for the final two inequalities, we recall that P�jX�
�Xj � 
� 	 
�2Var�X� for any random variable X and that

��x� is a decreasing function.
In our case, X � d2. Recalling that, for large N, hd2i ’

N=q� 1 and Var�d2� ’ 2q�2�N � q�, choosing 
 �
N3=4=q and keeping the leading terms in N gives
 

j��hd2i��h��d2�ij	
2����
N
p �

������������������������������������������������
bN1=2

8�q�1�q=N�N�1=4�

vuut


exp
�
�
b�N�q�N3=4�

2q
� ln�t�

�
:

(5)

If q� N and t� 1, the right side of this inequality goes to
zero in the limit of large N, thus proving the validity of
Eqs. (2) in the single-trial case. If q� N�, with �< 1, the
right side of this equation goes to 0 as N ! 1 provided
that, for some 	 >max�3=4� �; 0�, ln�t�< bN=�2q� �
N	. Substituting the appropriate values of b generates the
bounds (4). These are therefore our capacity bounds.
Recalling that N=q� N1��, we find that both capacities
are exponential in N1��.

Because we are used to thinking, working, and living in
spaces of small dimension, it seems remarkable that an
exponentially large number of random points can be sepa-
rated from a set of selected points, even when both sets are
drawn from the same distribution (for a similarly surprising
result in signal transmission, see [9]). Moreover, the dis-
crimination perceptron that we introduced is very robust to
noise even if the noise is drawn from the same distribution
as the selected stimuli (i.e., � � 1). The key to our results
is that stimuli are represented by high-dimensional input
vectors. This is true of most sensory systems, including
olfaction, which can involve up to thousands of different
receptor types. If we assume N � 400 (roughly the value
for olfactory receptors types in humans), � � � � 0:5,
and �2 � 1, this would allow for single-trial false-positive
and false-negative probabilities of 1.5%.

The results that we have reported were derived by as-
suming that input vectors were drawn from a spherically
symmetric Gaussian distribution. They can easily be ex-
tended to correlated Gaussian distributions simply by con-
structing the weight vector to compensate for the structure
of the correlation matrix, a process called decorrelation.
The extension to non-Gaussian distributions would, of
course, involve different capacity estimates, but similar

general properties should hold as long as those distribu-
tions are unimodal.

The calculation that we have performed involves an
average over sets of input vectors. This is similar to aver-
ages over interaction matrices in spin-glass calculations or
over memory patterns in analyses of associative memories
[10]. In our case, the validity of the approximations in
Eqs. (2) amounts to imposing strong self-averaging, which
makes the replica-symmetry-breaking methods used in
these other computations unnecessary.

Finally, the perceptron with a nonzero threshold might
seem prone to errors if the ‘‘intensity’’ of a stimulus is
increased. In other words, one might worry that a non-
selected stimulus u satisfying w � u < � for positive �
might get pushed above the threshold if u is multiplied
by a constant � greater than 1. Actually, this constant has to
be surprisingly large before selectivity fails. The probabil-
ity of misclassifying a nonselected stimulus drawn from
the stimulus distribution that we have been using and then
multiplied by a constant � can be computed in a manner
similar to Eq. (3) yielding

 hP�1�fpj�i �

����������������������������
q�2

2��1� ��2N

s
exp

�
�
�1� ��2N

2q�2

�
:

This indicates that, for a stimulus to be misclassified with a
significant probability, it needs to be multiplied by a � of
order N�1���=2. This suggests that, for large N, a form of
intensity-invariant selectivity can be realized by the sparse
perceptron that we have considered.
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