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Abstract. We present a scheme for systematically re- 
ducing the number of differential equations required for 
biophysically realistic neuron models. The techniques 
are general, are designed to be applicable to a large set 
of such models and retain in the reduced system as high 
a degree of fidelity to the original system as possible. As 
examples, we provide reductions of the Hodgkin-Hux- 
ley system and the A-current model of Connor et al. 
(1977). 

1 Introduction 

Computational neuroscientists always face a difficult 
task in choosing the kind of model with which to 
approach a given problem. On the one hand are conduc- 
tance-based models such as those epitomized by the 
seminal work of Hodgkin and Huxley (1952) that seek 
to reproduce physiological data with mathematical rep- 
resentations that can provide insight into the underlying 
biophysical mechanisms. The difficulty of developing 
and analyzing this kind of model has increased, as we 
now know that many neurons contain a large number of 
different voltage-dependent conductances (e.g., Yamada 
et al. 1989; Buchholtz et al. 1992; Golowasch et al. 1992). 
On the other hand we have abstract models such as those 
used by McCulloch and Pitts (1943); Hopfield (1982); 
FitzHugh (1961); and Lapicque (1907), which are math- 
ematically and conceptually simple, although their 
parameters may bear no direct relationship to those of 
biological neurons. Indeed, despite the attractiveness of 
simple neuronal "caricatures" care must be exerted lest 
one is drawn to unwarranted conclusions based on the 
behavior of these abstract models. 

Our aim is to provide methods that allow us to start 
with data-derived conductance-based models of the 
Hodgkin-Huxley type, and reduce these to the simplic- 
ity of neuronal caricatures while preserving a direct 
relationship between the parameters measured experi- 
mentally and the parameters in the simpler neuronal 
caricature. This will allow the modeler to use the simpler 

form for analysis without losing the ability to relate the 
results of the analysis to the currents that produced the 
model. 

We present a change of variables and perturbation 
analysis that provide a power-series approximation of 
the original system whose leading term is a reduced 
system with fewer differential equations. There are basi- 
cally two techniques. One, based on singular perturba- 
tion theory, is the elimination of "fast" variables by 
combining them with the membrane potential to form a 
single variable. The second technique is the combina- 
tion of variables evolving on similar time scales and 
having similar effects. 

Previous reduction schemes for the Hodgkin-Hux- 
ley system (HH) have exploited the rapidity of sodium 
current activation to eliminate the sodium activation as 
a dynamic variable. Our analysis goes one step further 
by including higher-order effects of this reduction. The 
similar time scales of the sodium inactivation h and 
potassium activation n have been used to combine h 
and n into a single "recovery" variable. Our treatment 
of these techniques is intended to improve upon prior 
work (FitzHugh 1961; Krinskii and Kokoz 1973; Hind- 
marsh and Rose 1982; Rinzel 1985; Rose and Hind- 
marsh 1989) in two ways. First, we enhance the fidelity 
to the original system as much as possible, and second, 
we provide a systematic "recipe" which may be applied 
to any system with the appropriate characteristics. 

In order to provide concrete examples of our 
method we will use HH, and a modification of HH to 
which the A current has been added (Connor et al. 
1977). These reductions will be used to illustrate the 
advantages conferred by a visualizable configuration 
space in the analysis of several familiar phenomena. 

2 Equivalent potentials 

Dynamical systems that describe isopotential excitable 
neural membranes typically consist of two parts. The 
first is a differential equation expressing current conser- 
vation 
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Fig. 1. Behavior of  the Hodgkin-Huxley (HH) dynamical variables 
exhibiting repetitive spiking behavior during application of  a ramped 
depolarizing external current. For the sake of  comparison, the HH 
system used here is as modified by Connor et al. (1977). The models 
called " H H "  have gA = 0 and the leak reversal potential is adjusted to 
give a resting potential of  - 6 8  mV 

dt  + I(V,  {xi}) = Iext . . . .  l(t) 

where V is the membrane potential, C is the membrane 
capacitance and I (V,  {x;}) is the total ionic current 
expressed as a function of V and the gating variables x~. 
Each member of the system of equations describing the 
dynamics of these gating variables has the form 

dx; 
dt -- ki (V)[xi  (V )  -- x i ]. 

providing the balance of the system's description. In the 
HH system, for example, the gating variables are the 
sodium activation variable m, the sodium inactivation 
variable h, and the potassium activation variable n. ~ In 
this system, the current I(V,  m, h, n) is 

I(V,  m, h, n) = g N a m 3 h ( V  - ENa ) "b g K n 4 ( V  - -  EK) 

+ &eak(V -- Eleak) 

where gcarn~r is the maximum conductance for that 
carrier, and Eearri~r is its reversal potential. Figure 1 
shows repetitive firing of the HH system under ramped 
current injection. We have plotted V, m, h and n each 
against time. 

To combine different variables together for the pur- 
pose of reduction, it helps to make them dimensionally 

1 A more familiar form of  the equations governing the evolution of  
HH gating variables is, in the case of  m, 

dm/dt  = am(V)( 1 - -  m )  - f l , , , (V )m  

and is related to ours through k , , , ( V ) = % , ( V ) + ~ m ( V  ) and 
k,.(V),~(V) = ~m(v) 

equivalent. The membrane potential is ubiquitous in 
this system, entering the equations for each of the other 
variables, providing the sole link between these degrees 
of freedom and is, moreover, the sole mediator of 
external information to the system. This suggests that 
all the other variables might profitably be converted to 
equivalent potentials, defined for each of the gating 
variables as the potential v; which makes s = x/: 

V i : Xi- |  (X i) 

where the exponent - 1  refers to the functional inverse. 
In other words, the equivalent potential is the voltage 
which, in voltage clamp, would give the value x; to the 
ith gating variable after equilibrium is reached. Note 
that equivalent potentials provide as complete and valid 
a description of the system as the gating variables. The 
equilibrium (and hence static) relationship used to 
define them does not compromise their dynamic vari- 
ability in any way. The transformation requires that the 
functions ~ are invertible. The class of models that we 
are considering does not include those that contain 
calcium-dependent conductances, since in these, some 
of the ~ depend both on the membrane potential and 
on the calcium concentration. Further work may be 
required to reduce those variables that depend on the 
calcium concentration. 

The chain rule may be applied to give us new equa- 
tions of motion expressed in terms of the equivalent 
potentials: 

car 
dt  + F ( V '  {v;}) = Iext .... .(t) 

where 

F(V,  {vi}) = I(V,  {~i(v~)}), 

and 

dv, _ k , ( V )  _ (V)  - .x~(vi)] 
dt  s [xi 

~ f i ( V ,  vi) ( l )  

and the prime denotes differentiation. Note that for 
these variables, all of the surfaces on which the time 
derivatives of (1) vanish (its nullclines) are simply hy- 
persurfaces given by vi = V, so that at equilibrium all of 
the equivalent potentials equal the (true) membrane 
potential. The only non-trivial nullcline is that for the 
current conservation equation. No approximations 
have yet been made; the new system is entirely equiva- 
lent to the original. 

The evolution of the whole HH system expressed in 
equivalent potentials is shown in Fig. 2. The transfor- 
mation to equivalent potentials reveals that of the four 
available degrees of freedom, only two are effectively 
utilized: Vm is nearly indistinguishable from V, likewise 
with vh and v,. The motions of the system within the 
four-dimensional configuration space are largely 
confined to a two-dimensional submanifold. Moreover 
we have at hand a convenient way of locating this 
manifold and formulating the appropriate dynamics on 
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Fig. 2. Behavior of the same system as in Fig. 1 expressed in 
equivalent potentials. Note that the trajectories for V and v,, and for 
v h and v n are similar suggesting that a reduction to two variables is 
possible 

it: we will form averages and differences of equivalent 
potentials within the two sets. 

3 Perturbation series 

In the general case, the equivalent potentials will fall 
naturally into two or more groups. One group will 
contain the true membrane potential V. We will assume 
that there is only one other group, but this is merely a 
convenience, since operations on distinct groups do not 
interfere. Suppose that the first group contains N~ 
variables and the second contains N2. We will distin- 
guish members of the two groups by using Greek 
indices #, v, etc., which will take values 0 through 
N j -  1, for the first group, and for the second, Latin 
indices i, j, etc., taking values N~ through N~ + N2. We 
will refer to V as Vo when convenient. Within each 
group we make a change of variables to /) a new 
representative equivalent potential taken as a weighted 
average over all members of the group, and 2) differ- 
ences between each member and their average. The 
transformations are 

~a = E %v*  ̀ ~ = E ~,vi (2) 

and 

v*̀  = ~p + 6*̀  vi = ~ + 6i. (3) 

We constrain the u~ and the % (separately) to sum to 
one, and the sums of the products %6*` and ~6~ to 
vanish. In addition, we intend that the ~g and the % 
should be positive. This will impose a condition on the 
applicability of the reduction scheme. Our job is to pick 
the ~'s to optimize the agreement between the full and 
reduced models. Our strategy will be to operate locally, 

3 8 3  

in the vicinity of the equilibrium point, rather than 
globally, since global constraints do not readily yield 
closed solutions. The reduced system will then have 
exactly the right value of  the equilibrium potential at all 
values of external current and very nearly the correct 
stability and bifurcation characteristics. 

We can differentiate (2), use (3), and expand to first 
order in the 6's to get 

af, .-.o af, 

and 

--6 OF 
C ~---~-~t + %F(~~ IP) + % ~ '~vi 

+60 %-~Vo -C*`.oE %k~,/+,,,,oE 6*̀  % ~ +C%k*` 

+ 0(6 2) = ~0Iox,or..~(t). (5) 

Here and in the following we adopted the convention 
that functions without explicit arguments are to be 
evaluated at v*̀  = ~0 and v~ = ~O for all # and i. Note 
that in (5) a term CZ*`%f*`(~o, (p) has been omitted 
since f*`(q~,r for each #, and we have used 
-of*`/ev*`l , . ,~,  = Of*`/OVol~,,o = k* .̀ 

Recall that the 6's are not independent. We account 
for this by adding to (4) and (5) Lagrange multiplier 
terms to impose the constraints that the sums of the 
products %6*` and ~6; vanish. Specifically. we add 

,h Z ~;6, + & Z ~*`6.̀  

to (5) and similarly, to (4), 

i *` 

We shall optimize the expansion by making the 
coefficients of  the first-order corrections vanish so that 
the expansion is valid to second order, at least near the 
equilibrium point. This imposes two conditions for each 
potential, i.e., the coefficients of  the 6*̀  and 6; in (4) and 
(5) with the Lagrange multiplier terms added should 
vanish. However, this is twice as many conditions as 
there are free variables. We will determine the ~i by 
requiring that the coefficients of  6i vanish in (5) with the 
first line of Lagrange multiplier terms above added to 
it. We then determine the % by requiring the coefficient 
of 6,, in the same equation to vanish. This leaves the 
corrections proportional to 6*̀  and 6i in (4) with the 
second set of Lagrange multiplier terms added. These 
must be small in order for the reduction scheme to 
work and we impose the requirement that the co- 
efficients of these terms are small as a consistency 
condition of the method. 

Requiring the vanishing of the coefficient of 6,- in (5) 
with the additional Lagrange multiplier term gives us 

OF % ~ + 21o~ = O. 
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).~ may be eliminated by summing this equation on i to 
get 

cti = ~ Ovj ] " (6) 

As required, this expression obeys E,.a~-- 1. Requiring 
that the coefficient of  5, in the same equation vanishes, 
we find, after elimination of  the Lagrange multiplier, 

OF OF 
+ c  y. (7) 

~ u% vuo ##0  

and 

OF OF 
- % - -  - -  C ~ , k ~ ,  = 0 (/t ~ 0). (8)  

~ ~  Ov~, 

By summing (8) on/~ and adding it to (7) we see that 
Y~u~, = 1. Equation (8) can be solved for each ~j, in terms 
of  a0, and then using (7), a0 can be written as the root 
of  a polynomial of  order NI, the number of  equivalent 
potentials being averaged to form q~: 

c E k . - -  Ck . -  Uv~ =0. 
a~ ~v u OVo u ~ o Ov u 

(9) 

The appropriate root  of  this equation is determined by 
the requirement that % goes to one in the limit when all 
the rate constants k u go to infinity. 

We have thus far assumed that the o's are constant. 
The expressions we have derived for them, however, 
specify them as functions of  ~p and ~b. We have either to 
pick fixed values of  ~p and ~b at which to evaluate these 
functions, or allow them to have the voltage dependence 
given by (6) and (9). In either case, our goals will not 
strictly be met, but the latter choice has the advantage 
of  working equally well for all values of external current. 
Furthermore, one can see that the remnant first-order 
terms introduced through the time derivatives of  the ~'s 
vanish at the equilibrium point, so that while our 
expansion is not second-order exact everywhere, it is 
second-order exact in the neighborhood of  an equi- 
librium point. (Expand the derivatives as da/dt  = O~/Ocp 
d~p/dt + Oa/O~b d~b/dt. The terms d r  and d~/d t  van- 
ish at equilibrium.) We have found empirically that this 
choice yields very good results, even far from equi- 
librium. 

In order for this scheme to be consistent we must 
similarly require that the first-order correction terms in 
(4) (with Lagrange multiplier terms included) are small. 
There are two sets of  first-order terms, those multiplied 
by 8 /and those proportional to 8 u. Putting in the value 
of  the Lagrange multiplier, the coefficient of  the 8; 
correction is 

0f/ v oK 
01)i y O~j aUj" 

We are primarily interested in evaluating this at equi- 
librium, where Of//Ovi = - k i .  We normalize by dividing 
by Y.;ki to get the first condition required for the 
corrections to the reduction to be small, 

c t jk j -k i  kj < 1 (10) 

with ai given by (6). Note that the left side of  the 
inequality l0 vanishes identically if all the ki are equal. 
Similar k values within a reduced group is one of  the 
conditions mentioned in the introduction and may be 
viewed as one of  the presuppositions of  the reduction 
scheme. 

A second consistency condition comes from de- 
manding the smallness of  the coefficient of the 6 u in (4) 
with Lagrange multiplier terms added. This requires 
that all the au for # ~ 0 are small, which from the 
constraint that the ~'s sum to one means that % is close 
to one. From (8) this gives the condition 

I_LOF 
Cku 0vu < 1 (11) 

for each # ~ 0. This, too, is an expected precondition 
for the applicability of  the reduction procedure. The 
derivative in the above equation can be interpreted as 
the conductance associated with a given equivalent 
potential. Then C divided by this conductance is just an 
effective membrane time constant corresponding to the 
equivalent potential and the above condition states that 
rate constant k~ must be greater than one over this time 
constant. In the limit as k~ ~ o% we recover the ordi- 
nary singular perturbation solution. 

Note that (6) and (8) provide us with one further 
check on the soundness of  the reduction. We have not 
yet imposed the requirement that the o's are positive. In 
particular, if some of  the o's are negative, the denomi- 
nator in (6) could vanish. At such a singularity, the 
equilibrium point can switch from being attractive to 
being repulsive. This occurs when the equivalent poten- 
tials involved are antisynergistic, i.e., have opposite 
effect on the membrane current. For  example, in the 
Hodgkin-Huxley  reduction h and n can be combined 
not simply because the equivalent potentials of  h and n 
are very similar, but because sign (h'OI/On) = sign(h-'0I/ 
0h), that is, h increases ( ~ ' >  0) and h inactivates an 
inward current (OI/Oh < 0). Thus the clustering of  vari- 
ables into groups should be based on sharing both a 
common time scale and a common sign of  influence on 
the ionic current. These groups may then be replaced by 
representative equivalent potentials with the procedures 
spelled out above. 

Similarly, the weights a u should be positive. From 
(8) this means that we must require OF/Ov,, < 0 for all 
#. This in turn assures that the denominator in (9) will 
not vanish. The condition OF/Ova, < 0 means that the 
equivalent potential v, must correspond to the activa- 
tion of  an inward current (like the m variable of  HH)  
or the inactivation of an outward current. 

Note that if a gating process does not contribute to 
the ionic current, for example, if the maximum conduc- 
tance for the current that involves that process is set to 
zero, then the associated equivalent potential has 
weight zero toward the construction of  either ~k or ~p, as 
should be. 
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Fig. 4. The phase plane diagram of the same event as in Fig. 3 for the 
reduced model. The labels correspond to similar labels in Fig. 3: the 
V-t trajectory near the label "A" in Fig. 3 is represented by the 
phase-plane trajectory near the same label in this figure. The arrows 
give the direction of motion in the phase-plane 

4 Examples: Hodgkin-Huxley, HH + l A 

A direct comparison of  the full four equation Hodgk in -  
Huxley system with its two equation reduction is given 
in Fig. 3. In this figure the model neurons are hyperpo- 
larized by injected current, and fire on rebound when the 
current is removed. This phenomenon, called post-in- 
hibitory rebound (PIR), is seen in many neurons. A 
phase-portrait of  the events shown in Fig. 3 clearly reveals 
the etiology of  PIR. The nullclines of  the phase plane 
indicate where the time derivatives of  the dynamical 
variables vanish (the dotted line in Fig. 4 gives d~b/dt = 0, 
the dashed line gives dq~/dt = 0). The dtp/dt nullcline 
depends on the external current, but the other nullcline 
is always given simply by tp = ~. It is helpful to know 
that the rate of  change of  tp is almost everywhere 
significantly greater than that of  ~k and to recall that tp 
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. . . . . .  reduced 
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Fig. 5. Post-inhibitory latency to firing for the HH + IA system. 
Hyperpolarizing current was injected for 10 ms and then switched to 
depolarizing current. Shown are both the full model (solid line) and the 
reduction (dashed line) 

is the variable replacing the membrane potential V. The 
cell sits at rest, i.e., at the stable equilibrium point where 
the nullclines cross. When hyperpolarizing current is 
injected, the left-most lobe of  the nullcline is suddenly 
pulled down, and the phase point moves toward its new 
stable equilibrium. When the hyperpolarization is re- 
leased, the phase point begins to return to its original 
location. Before it can get there, however, it is swept into 
the circulatory vector field leading to the right-most arm 
of  the nullcline. It moves leftward along the nullcline until 
it finally "falls off"  and continues on to the left-most arm, 
slipping down it to finally settle back to the rest point. 

A similar treatment of  cells to which an IA has been 
added is shown in the next pair of  figures (5, 6). The 
full six equation system is that given by Connor  et al. 
(1977), and the system has been reduced to three equa- 
tions by combining the equilvalent potential for m and 
the membrane potential into our q~ as before, but now 
we mix the three equivalent potentials for h, n and a 
(the activation variable for IA), to form ~b. The third 
variable is the equivalent potential vb corresponding to 
the IA inactivation variable b. 

Figure 5 shows the voltage trace of  a H H  + IA cell 
that is first hyperpolarized and then suddenly depolar- 
ized above threshold. Traces from both the full and 

~P 
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-~ - 3 0  

- 9 0  Vb 
60 

Fig. 6. Phase space protrait of the event shown in Fig. 5. The surface 
shown is the nullsurface dq~/dt = 0. The heavy line shows the trajec- 
tory of the reduced system with the dashed line indicating a position 
hidden by the nullsurface. The lighter lines show the projections of 
this trajectory onto the coordinate planes 
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reduced systems are shown superimposed. The corre- 
sponding 3-dimensional phase portrait of this event is 
given in Fig. 6 showing the dtp/dt = 0 nullsurface (re- 
member, the other nullclines are simply the planes 
V b = ~0 and ~O = q~), the phase trajectory and the projec- 
tion of the phase trajectory onto a pair of coordinate 
planes. This example does not show PIR, since there is 
no PIR in this cell. The example instead focuses on the 
phenomenon of post inhibitory latency to firing. When 
a HH cell is depolarized sufficiently to produce firing, 
the onset of the first action potential is immediate and 
virtually independent of the degree of hyperpolarization 
imposed immediately beforehand. In contrast, the same 
cell with IA now shows a latency to firing which de- 
pends monotonically on the potential to which it had 
been hyperpolarized immediately prior to depolariza- 
tion. This is most clearly seen in Fig. 6: the system 
starts at a point "behind" the current conservation 
nullsurface and begins to move toward larger q~. Before 
long, however, it encounters the depression in the null- 
surface. It then rides along the nullsurface toward the 
new equilibrium point. Motion along this portion of the 

trajectory is relatively slow, since the motion is in the 
slow direction and motion in the fast direction is 
blocked. The farther down one starts, the farther one 
must travel along this slow path, hence the hyperpolar- 
ization-dependent delay. Before the phase point reaches 
its new equilibrium, it rolls off the edge of the bump in 
the nullsurface (where it becomes unstable) and then 
into the limit cycle of repetitive firing. 

Figure 7 shows the firing frequency as a function of 
the injected current, for the full HH and HH + IA 
systems (solid lines) and the reduced systems (dashed 
lines). The reductions match the full systems quite well 
in both cases. As expected, the bifurcation occurs at the 
same place in both cases and seems to have the proper 
character, i.e., Hopf  for HH and saddle for HH + IA, 
though this has not been rigorously investigated. 

A crucial feature of these reductions is that they 
preserve to a large extent the dynamic response charac- 
teristics of the original system. We have exploited the 
fact that all the gating variables are driven by the 
voltage and are otherwise uncoupled, so the reduced 
systems exhibit faithful behavior under dynamic as 
wellas static conditions. This is clearly important, since 
physiologically relevant stimuli are rarely static, but 
rather highly irregular and fluctuating. Figure 8 shows 
the response of the HH + I A system to such an irregular 
(in this case, quasiperiodic) stimulus, comparing the full 
and reduced models. The fidelity of the reduced model 
is apparent. 

6 Discussion 

Realistic, conductance-based models can be complex 
and confusing. In particular, they often require a large 
number of dynamical variables for their description. 
We have provided a systematic method of reducing the 
complexity of these models. 

The reduction scheme we have presented can be 
summarized by the following set of rules for reducing 
neuronal models: 
1) Convert all gating variables to equivalent potentials 
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F i g .  8. Behavior of  the HH + I A system un- 
der quasiperiodic current injection. The V-t 
trajectory of  the full system of  six differen- 
tial equations is given by the solid line 
while the reduction to three equations is 
shown dashed. All spikes in the full s y s t e m  

have corresponding spikes in the reduced 
system and there is just one spike in the 
reduced system that has no correlate in the 
full s y s t e m  



2) Combine the membrane potential and the equivalent 
potentials for all gating variables satisfying dF/Svj, < 0 
with rate constants satisfying (11) into the single poten- 
tial q~. In the reduced model this variable replaces the 
membrane potential. 
3) Combine the remaining equivalent potentials into 
one or more groups. Within a group all the rate con- 
stants kl should be roughly the same and the derivatives 
OF/~vi should all have the' same sign. 
4) Apply (6) and (9) to determine the weighting co- 
efficients ~ of  the averages. The values of  the ~,  for 
p # 0 are not needed. 
5) Check the consistency condition, (10). If this is 
satisfied the reduced model is described by the equa- 
tions of  motion 

dcp 
C ~ -  + ~0F(cp, ~b) = ~0Iext . . . .  1(t) 

and 

This method uses strictly local criteria which con- 
serve the bifurcation structure of  the model. There is a 
simple test for consistency, informing the user when the 
method is likely to fail. We have shown here that this 
method works well for the Hodgkin-Huxley  system, 
and the Connor et al. (1977) extension of  this system. 
We suggest that it will be similarly useful in simplifying 
numerous other complex conductance-based neuronal 
models. These techniques may be taken as one stage in 
a comprehensive program of  simplification in which it 
will be possible to generate a family of  models with 
varying degrees of  complexity from a single complex 
neuronal model, all related in a systematic way to each 
other (Abbott  and Kepler 1990). This will allow formal 
analysis of  simplified models that are derived in a 
coherent fashion from direct experimental results. 
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