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Domains of attraction in neural networks
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Résumé. 2014 Nous calculons le domaine d’attraction du point fixe d’une mémoire à réseau de neurones comme
fonction des champs magnétiques locaux. Ce résultat, combiné à des algorithmes d’apprentissage standard,
rend possible la construction de mémoires associatives saturées avec des propriétés de souvenir précisément
spécifiées.
Abstract. 2014 The domain of attraction of a neural network memory fixed point is computed as a function of its
local magnetic fields. When combined with standard learning algorithms, the result makes it possible to
construct saturated associative networks memories with precisely specified recall properties.
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Introduction.

A neural network consists of a large number of
simple degrees of freedom which exhibit complex
and interesting dynamics due to the highly intercon-
nected nature of their couplings. Typically, N Ising
variables Si = ± 1 are coupled through an arbitrary
matrix Jij. The state of the Si at time step t + 1 is

given in terms of the state at time t by the simple
updating rule,

Rule (1.1) corresponds to the parallel dynamics we
will consider here (although we will address serial
dynamics briefly at the end). A key issue in neural
network research is whether by cleverly choosing the
matrix Jij we can make the map (1.1) do something
interesting and useful.

Associative memory is a task ideally suited to
network dynamics. In an associative network we
demand that inputs Si (0) be mapped to outputs
ç i to which they are sufficiently closely associated.
That is, if the input Si (0) has a large enough overlap

with the memory state g then the dynamics should
produce the final state, for large t, Si (t) = g i. This is
done by making §i i a fixed point of the transform-
ation (1.1) with a large enough domain of attraction
to insure that all input states with sufficiently large
mo will be drawn to the fixed point by the network
dynamics. Of course to make a memory device there
must be many different fixed points corresponding
to different memory states. In order to construct a
useful network associative memory we must be able
to find a matrix having fixed points at the desired
memory state locations with domains of attraction

appropriately adjusted to include all input states we
wish to have mapped to a given fixed point. How can
we construct such a matrix ?
A major step towards answering this question has

been provided by the Edinburgh group [1, 2]. For a
given memory fixed point 6i i let us define

In order to specify our normalization we will assume
throughout that Jij satisfies the normalization con-
straint

and in addition we take
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for all i. In order for the configuration §i i to be a
fixed point of the transformation (1.1) it is necessary
and sufficient that all the yi be positive. The

Edinburgh group has provided a simple algorithm
which will construct a matrix with a set of fixed

points at any desired locations satisfying the con-
dition

for positive K. The algorithm consists of repeatedly
adding a term proportional to §1 § to elements of
the matrix Jij for any y « K until no such terms
remain. The algorithm is known to converge if such
a matrix exists and furthermore, Gardner [2] has
determined under what conditions the matrix does in
fact exist. Therefore, it is possible to construct a
network with fixed points at desired locations and
with a specified distribution of values yi.

Unfortunately, the above outlined program does
not completely answer the questions raised in con-
structing an associative memory. We still must

address the issue of adjusting the domains of attrac-
tion of the fixed points. How is the domain of
attraction of a fixed point related to the distribution
of its yi values ? More precisely, if we know the
distribution of yi for a fixed-point ç can we predict
whether or not a given input with initial overlap
mo as defined in (1.2) will be mapped to the fixed
point by the network dynamics ? Our purpose here
is to answer this question.

Calculation of domain of attraction.

A solution for the time evolution of a state under the

map (1.1) has been given for a Hebb type matrix [3]
but the analysis is too involved and cumbersome to
be of practical value here and we need to allow for a
general matrix Jij. Our ability to arrive at an answer
to the question of domains of attraction rests instead
on an empirical observation. Numerical simulation
of trained networks near saturation has convinced us
that the first step of a parallel dynamics is a very
sensitive indicator of the final outcome of that

dynamics. Consider a state Si (0) with initial overlap
mo with a given memory fixed point 03BEi and suppose
that after one parallel update (1.1) it reaches a new
state Si (1 ) with overlap

The quantity ml - mo is a measure of the distance
the state has travelled in one update of the network.
The distance from the initial state Si (0) to the

memory state ç is 1- mo. What we have observed is
that if the state travels half the distance to the fixed

point or more on its first update then it will

ultimately reach the fixed point. On the other hand

if it travels less than halfway to the fixed point it will
not reach that memory state. In other words, the
probability that an input having initial overlap
mo with a given memory fixed point gets mapped to
that fixed point is given by

The evidence for this surprising result is given in
figures 1-4. Figire 1 is a typical histogram showing
the fractional number of states mapped to a given
memory fixed point as a function of (ml - mo)/
(1 - mo). This figure is based on a 200 node network
trained using the Edinburgh algorithm and on 1 000
initial inputs with widely varying initial overlaps.
Clearly the theta function is a good approximation of
the distribution shown in this figure although the
actual curve is somewhat rounded over. Figure 2
shows evidence that this rounding diminishes as a
function of N. In figure 2 we plot the thickness of

Fig. 1. - A histogram showing the probability that an
initial state with overlap mo is mapped to the fixed point as
a function of (ml - mo)/ (1 - mo). The graph is based on
a 200 node network and on 1 000 initial points.

Fig. 2. - The width of the sharp rise in the probability
distribution between 0 and 1 plotted as a function of

N, the size of the network. The shrinking width suggests
an approach to a true theta function for large N.
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the rising part of the distribution as a function of
N. The points seem to indicate an approach to a real
theta function for sufficiently large N. The simplicity
and universality of this result is remarkable. Figure 3
shows that the point at which the probability reaches
one is independent of the value of K associated with
the fixed point and figure 4 shows that it is relatively
independent of N. The large N extrapolation of

Fig. 3. - The value of (ml - mo )/ (1- mo) at which all
initial inputs get mapped to the memory fixed point
plotted against the value of rc associated with the fixed

point. This shows that the probability distribution Ps--&#x3E;03BE
expressed as a function of (ml - mo)/(1- mo) is insensi-
tive to the size of the domain of attraction of the memory
state. These data correspond to a 100 node network.

Fig. 4. - The value of (m, - mo)/(1- mo) at which all
initial inputs are mapped to the memory fixed point for
various values of N.

figure 4 supports the value of 1/2 we have assumed
although we do not have a particularly accurate
value for the exact location of the step in the theta
function and furthermore this may depend on details
of the learning algorithm.
The size of the domain of attraction for a memory

fixed point clearly depends on the value of K used in
the training algorithm, a relation first analysed by
Forrest [4]. Equation (2.2) indicates that, quite
surprisingly, for the saturated networks we have

investigated this K dependence enters solely through
the value of ml. In a recent preprint Krauth, Nadal
and Mezard [5] have shown that in general the size
of the domain of attraction also depends on the
symmetry properties of the matrix Jij. It should be
stressed that the result (2.2) has been obtained by
studying networks near saturation, that is, networks
with nearly the maximum number of memories for a
given K value and that simulations were done for
K always greater than 3/4 and most often greater
than one. In our training procedure we started with a
symmetric matrix and then applied the Edinburgh
algorithm. As a result the final trained matrices were
very close to being symmetric. Thus, our simulations
have not probed networks far from saturation or
studied the effects of asymmetry. The result (2.2)
exhibits no dependence on the symmetry properties
of the matrix Jij because ml is independent of
asymmetry. Krauth, Nadal and Mezard have studied
networks very far from saturation, in particular,
networks with a single memory state. Since for these
networks asymmetry does have an important impact
on domains of attraction it is clear that (2.2) cannot
be correct for all values of K and over the entire

range of allowed numbers of memory states. It is

particularly suspect for networks far from saturation.
However, it is valid for networks near saturation and
K greater than 3/4 where we will use it here. We are
currently studying the possibility of extending this
rule to include asymmetry dependence.
Once we realize how good an indicator the first

step dynamics is for the final outcome of a network
map, we can compute the first step dynamics and
provide a prediction for the domain of attraction of a
fixed point characterized by a set of yi’s. The

probability distribution for first step overlaps m,
given an initial overlap mo is

It is convenient to introduce the fields
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and to write

We will assume that the rows of the matrix Jij are uncorrelated so that the hi act as independent variables.
This is true of matrices trained with the Edinburgh algorithm if the memory states are independent. Thus,

with

Introducing an integral representation for the delta functions and taking the trace over configurations
Si, the numerator of equation (2.7) is proportional to

The cosine term can be expanded in powers of 1/N to give

This expression can be further simplified by using the normalization condition (1.4) and the definition of
y, (1.3). The x integration in (2.7) can be done by saddle-point approximation at the stationary point

Finally the y integration is an ordinary Gaussian integral giving

We can now evaluate the desired quantity P (mIl mo) from equation (2.5). Using an exponential
representation of the delta function and performing the hi integrations we find

Expanding for large N we obtain the simple result

In other words, for every matrix satisfying (1.4) and
(1.6) we find that after one parallel iteration an
initial state with overlap mo has a definite overlap
m, determined solely by the distribution of yi’s at
the fixed point. If we know this normalized distri-

bution, p ( y ) then (this result was also obtained in
Ref. [4])

Note that this result is self-averaging. It is true for all
matrices satisfying (1.4) and (1.6) and was obtained
without averaging over matrices Jij.

Finally using our observations about the form of
the probability function (2.2) we can use the result
just obtained to give a prediction for the domain of
attraction of a fixed point memory state charac-
terized by a distribution p ( y ). The fixed point will
attract all states with initial overlap larger than a
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value me determined by the condition that

(ml (me) - me)/ (1 - mc) = 1/2 Thus, the domain of
attraction is given by the equation

Calculation of the distribution function.

Before we can use equation (2.15) we must know the
distribution function p (y ). This can of course be
determined in practice by using the definition (1.3)
but it is useful to see how it is related to the value of
K which characterizes the fixed point (Eq. (1.6)).
We are ultimately interested in p ( y ) for an arbitrary
matrix satisfying (1.4) and (1.6) for a set of
a N memory fixed points. However, in order to

compare our results with previous work we will first
calculate p (y ) for a Hebb type matrix.
Suppose Iij takes the Hebb form

and we wish to compute the y distribution for one of
the memory states, say 03BE1. We do this by averaging
over all possible states 6!’ and we find

When combine with equation (2.14) this gives the
prediction for first step dynamics

Gardner, Derrida and Mottishaw [3] have given the
expression

in their analysis of network dynamics for a Hebb
type matrix. Although the two expressions look
quite different they can be shown to be equivalent
first by noting that they agree for mo = 0 and then by
establishing the equality of their derivatives with
respect to mo for all mo.
The calculation of p ( y ) for a general matrix

Jij can also be done (see also Ref. [6]). Assuming
that the matrix Jij satisfies the stability condition
(1.6) for a set of aN independent memory states, we
choose arbitrarily to examine the y distribution
associated with the state §/ at the site i since all

states and all sites are equivalent.

We wish to average over all memory states and over all matrices Jij subject to the constraints (1.4)
and (1.6). The distribution function is defined by

where

Here the angle brackets denote an average over
memory configurations 03BEi03BC. In order to perform the
average over the quantity 1 /JY’ we introduce replicas
Ji’j with a =1, 2, ..., n and write

The calculation from this point on is very similar to
the one performed in reference [2] so we will not
supply the details here. A mean field variable

representing the overlap between replicas

is introduced and plays a crucial role. We assume

that the replica symmetric solution

is appropriate. Then the result for the averaged
generating function is

When we saturate the memory by going to the
maximum value of a allowed for a given K then
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q - 1 [2]. In this limit the distribution function

simplifies to

In figures 5 and 6 we have used such a saturated
distribution to show our results. Figure 5 compares
our prediction (2.14) with computer generated data
for several values of K. The final result of our work
is show in figure 6 where we plot mc as a function of
K for saturated networks. The computer data agree
well with our predictions.

Conclusions.

The results shown in figure 6 determine the value of
K needed in a saturated network to produce a

desired domain of attraction mc. The work of
Gardner [2] determines whether or not a matrix with
the desired properties exists and finally the Edin-
burgh algorithm [1] and a sufficient amount of

computer time allow for the construction of a matrix
with precisely the properties desired. We can and
have also treated correlated memory states and
initial inputs that overlap with more than one of the
memory fixed points. This involves a straightforward
extension of the techniques applied here. Our results
seem to apply at least approximately to serial

dynamics as well. In addition, our prediction for the
size of the domain of attraction applies individually
to each independent fixed point so by appropriately
adjusting the y distribution for each memory state
we can individually adjust each domain.
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