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We have constructed a neural network circuit of four clipped, high-gain, integrating operational amplifiers coupled to 
each other through an array of digitally programmable resistor ladders (MDACs). In addition to fixed-point and cyclic 
behavior, the circuit exhibits chaotic behavior with complex strange attractors which are approached through period 
doubling, intermittent attractor expansion and /o r  quasiperiodic pathways. Couplings between the nonlinear circuit elements 
are controlled by a computer which can automatically search through the space of couplings for interesting phenomena. We 
report some initial statistical results relating the behavior of the network to properties of its coupling matrix. Through these 
results and further research the circuit should help resolve fundamental issues concerning chaos in neural networks. 

I. Introduction 

A neural network, whether biological or elec- 
tronic, is a highly coupled system of nonlinear 
elements. Neural network research focuses on 
designing networks to perform tasks of practical 
or biological importance. Much attention has been 
given to the fixed-point behavior of networks #1, 
that is, to networks which ultimately reach a 
static final state. Less attention has been paid to 
cyclic phenomena and less still to chaotic behav- 
ior. One reason for this is that chaotic behavior is 
more difficult to treat analytically and, as we will 
discuss, is very problematic for computer simula- 
tions. To remedy this situation we have con- 
structed a small analog neural network circuit 
capable of exhibiting all three types of behavior 
but designed specifically for the analysis of chaos 
in networks. In this report  we will describe the 
circuit and demonstrate its chaotic behavior and 
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the approaches to chaos which it exhibits. We 
also present some initial statistical analysis relat- 
ing the behavior of the network to properties of 
its coupling matrix. Further quantitative analysis 
of this type will be reported in a future publica- 
tion. 

Chaotic behavior is an interesting property of 
nonlinear dynamical systems and thus is worth 
studying in neural networks for its own sake. In 
addition, there are indications that chaotic behav- 
ior could be extremely useful in neural network 
parallel processors. One of the most difficult tasks 
which a neural network processor must face is 
distinguishing between two very similar inputs 
which are to be mapped to different outputs. It is 
well known that a defining characteristic of 
chaotic dynamics is its extreme sensitivity to nearly 
identical inputs and it may be that chaotic behav- 
ior can be incorporated in a controlled way to 
achieve the needed sensitivity for input discrimi- 
nation. Before this potential can be realized, 
however, we must have a clear understanding of 
what sort of chaotic behavior is possible in net- 
works, what produces this behavior and how it 
might be controlled and used. Chaotic behavior 
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has been studied theoretically in large neural 
networks [2] but because we will consider a very 
small network these results will not be applicable 
to our circuit. Chaotic behavior has been induced 
in a small network circuit by introducing time 
delays [3]. We will not consider any time delays in 
our work. 

The key to constructing a truly general neural 
network circuit is to allow for all possible cou- 
plings and coupling strengths between the nonlin- 
ear elements. Previously, circuits have been built 
which allow all elements to be coupled to each 
other but only with a highly restricted set of 
strengths. Most existing circuits provide three 
choices, devices may be decoupled, coupled with 
positive coupling or negative coupling. Some cir- 
cuits allow for the introduction of time delays [3] 
or of noise [4] but none to our knowledge have 
couplings which can easily be varied over a wide 
range of values. In the circuit described here, 
multiplying digital to analog converters (MDACs) 
provide the f reedom to assign any one of 4096 
strengths to each of the couplings which may in 
addition be either positive or negative. This gives 
us the necessary degrees of f reedom to find sets 
of couplings which produce interesting chaotic 
behavior in the network. 

From a research standpoint there is little point 
in constructing an analog circuit which can just as 
easily be simulated on a computer.  At the same 
time, it is dangerous to put too much faith in 
results obtained from a circuit which cannot be 
understood well enough to be simulated. As we 
will show on the basis of idealized circuit equa- 
tions, we are able to simulate the circuit we have 
constructed on a computer  and match observed 
behavior extremely well. However, chaotic behav- 
ior cannot be systematically studied by computer  
alone without an enormous cost in computer  time 
and resources. It is highly nontrivial in a com- 
puter  simulation to find sets of couplings which 
exhibit chaotic behavior and to verify that chaos 
is really present. However, using the analog cir- 
cuit this process is straightforward and can even 
be automated.  Thus, we believe that the analog 

network circuit is an essential tool for studying 
chaotic behavior in neural networks. 

Before describing the network circuit it may be 
useful to summarize what is known about neural 
network behavior especially with regard to fixed 
points, oscillation and chaos. It is well known that 
networks with symmetric couplings only exhibit 
fixed-point behavior with either discrete or con- 
tinuous nodes and discrete [5] or continuous [6] 
updating. With parallel updating such networks 
may in addition exhibit simple cyclic behavior [7, 
8]. When time delay is included conditions for 
fixed-point and oscillatory behavior have been 
given [9] and chaotic behavior has been observed 
[3]. When the network couplings are not symmet- 
ric much less is known [10]. However, it is clear 
from theory that asymmetric networks with high 
gain will exhibit chaos [2]. This is precisely the 
regime we intend to study, asymmetry and high 
gain, and it is surely the area where network 
behavior is least understood. 

2. The circuit 

The neural network circuit which we have built 
consists of four nonlinear amplifiers coupled to 
each other in all possible ways through pro- 
grammable MDAC resistor ladders. We originally 
decided upon a four-node network because initial 
simulation had lead us to believe that this was the 
smallest number  of nodes which could exhibit 
chaos without time delay. After  building the cir- 
cuit we found that in fact three nodes can pro- 
duce chaos. This raises the interesting possibility 
of performing an analytic analysis on our circuit 
equations since, when certain approximations are 
made, they are tractable in the three-node case. 
We are also now in the process of determining 

the difference between chaotic behavior in three- 
and four-node networks, but in this paper  we will 
concentrate on the behavior of the four-node 
circuit. The four nonlinear circuit elements we 
use are clipped, high-gain, integrating operational 
amplifiers arranged as shown in fig. 1. Feedback 
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Fig. 1. Circuit diagram for one node of the network. 12, 13 
and 14 refer to inputs coming from other network nodes 
through the MDAC array. The direct or the inverted output is 
coupled through analog switches and the MDAC array to the 
other nodes. 

diodes provide the nonlinearity by clipping the 
gain. The output of each of these nonlinear inte- 
grators is inverted by an additional unity gain 
op-amp so that both an inverted and noninverted 
output is available at each node. The input to any 
node is the sum of currents obtained from the 
outputs of all other nodes. Thus, in fig. 1, 12 , 13 
and I 4 are currents coming from the outputs or 
the inverted outputs of the other three nodes 
through analog switches and MDACs. The cou- 
pling of node j to node i is determined by a 
coupling matrix Ji~ which is stored in a computer 
controlling the operation of the circuit and is 
down-loaded into latches in the programmable 
MDACs and into latches controlling the analog 
switches. The sign of Jij determines whether node 
i receives its input from the noninverted (Jij > 0) 
or inverted (Jij < 0) output of node j. The in- 
verted or noninverted output goes through an 
MDAC before connecting with one of the node 
inputs. The idealized MDAC represents a fixed 
resistive load but has a feed-through conductance 
which is variable between 0 and 10 - 4  mho in 
4096 equal steps. The specific value of the feed- 
through conductance for the MDAC connecting 
node j to node i is determined by the magnitude 
of the matrix element Jij. The only other circuit 
elements are analog switches which allow us to 
feed large positive or negative currents directly 

into the node inputs for fixing initial conditions 
on the network, and an analog to digital con- 
verter used in computer evaluation of circuit out- 
put. 

The components chosen for this circuit design 
were intended to keep the behavior of the circuit 
close to an idealized model. The op-amps are 
FET input devices with negligible input current 
and maximum input offset voltage in the millivolt 
range. The MDACs are analog devices AD7548 
which have a fixed input impedance of about 11 
k12, and function by dividing input current be- 
tween two resistive paths, one to ground and the 
other to the virtual ground input of an op-amp. 
The current division is approximately linear and 
monotonic to 12 bits accuracy if the virtual ground 
offset voltage is small enough. We calibrated the 
MDACs and found at most about 10% variation 
in their input impedance and l 1-bit accuracy in 
our circuit. We could have t r immed the 
impedance with a series resistor, and selected 
better  op-amps, but as discussed below this did 
not seem necessary for understanding circuit be- 
havior. By selecting R = 10 ° gl and C = 0.1 ~xF 
we assured that the oscillatory frequency of the 
circuit was in the range of a few Hz to a few kHz, 
well below the range in which nonideal behavior 
of the op-amps or diodes could be important. For 
each diode element we actually used four IN4148 
diodes in series to raise output voltages and make 
input offset voltages less significant. For compari- 
son, we also used a single IN4148 for the diode, 
thus lowering voltages by a factor of 4, reduced 
the value of the feedback capacitor by a factor of 
10, thereby raising frequencies by a similar factor, 
and removed the feedback resistors, setting J i s  = 

0, with no important changes in the nature of the 
circuit behavior for a given coupling matrix. This 
made us confident that our circuit element choices 
were not crucial for circuit behavior. As another 
check on the circuit, we tried exchanging connec- 
tion elements between nodes, and permuting the 
coupling matrix elements to effectively inter- 

change nodes. Again no significant change in 
circuit behavior was observed, indicating that 
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small differences among the op-amps and MDACs 
are not important. 

3. Circuit equations 

We can model the circuit described above by 
considering the node op-amp to be a perfect 
device having exactly zero input current and zero 
off-set voltage between its inputs. We use the 
simple current voltage relation 

1 i ~ - b V  I =  5a tc  - 1) (3.1) 

for the diode element where a = 5.5 × 10 - 9  A 
and b = 2 1 / n  V -  t with n the number of diodes 
linked in series. Then, the output voltages Vii for 
the four nodes i = 1, 2, 3, 4 are determined by the 
following four, coupled, first-order differential 
equations: 

d ~  4 
- C - d -  i- = ~,  JijVj + a s inh(bV) ,  (3.2) 

i = l  

where C is the value of the feedback capacitor 
(see fig. 1), 

J.  = 1 / R  (3.3) 

and for i 4= j 

J,j = _+~,~ (3.4) 

with R the value of the feedback resistor (see fig. 
1), o-ij the feed-through conductance of the 
MDAC through which the signal from node j to 
node i passes and the plus or minus depends on 
whether the inverted or direct output of node j is 
used. Simulation work has shown that the sinh 
function in the circuit equations may be replaced 
by any function having the same general form 
without appreciably modify circuit behavior. 

The above equations are somewhat different 
than those of standard, analog, continuous-time 
networks. Denker [11] has discussed the use of 

a neural network circuit 

this neural model which he calls a virtual ground 
neuron. From a biological standpoint, both mod- 
els assume that the fundamental nonlinearity in a 
biological neuron is action potential firing. How- 
ever, in the usual model this nonlinearity enters 
because synapses are only modelled to transmit a 
signal in the presence of action potential spikes. 
In the model we have used, the synapses are 
linear, transmitting a signal which depends on the 
average membrane potential of the presynaptic 
cell even in the absence of spiking. The funda- 
mental nonlinear role of action potential firing is 
instead to limit the average cell potential from 
rising far beyond the action potential threshold. 

We have simulated these circuit equations on a 
computer. With random choices of the matrix Jij 
we typically find simple fixed-point (all ~ static) 
behavior or simple periodic behavior (V, periodic 
functions of time). However, after extensive trials 
we were able to find chaotic behavior as is shown 
in figs. 2b and 2d. Here we have plotted the 
output of node 1, Vl, against that of node 2, V2, 
(a and b) and also against V 3 (c and d). When the 

t 
V2 

V3 

Fig. 2. A comparison of chaotic results obtained from a com- 
puter  simulation (b and d) with those coming from the circuit 
(a and c) using the same coupling matrix. 
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same matrix which produced figs. 2b and 2d on 
the computer  is programmed into the actual cir- 
cuit and the same voltages are plotted against 
each other the result is figs. 2a and 2c. The 
similarity between these two sets of figures con- 
vinces us that the above idealized equations do 
an excellent job of approximating the real behav- 
ior of the circuit and that the interesting chaotic 
behavior in the real circuit is not the result of 
other effects which we have taken into considera- 
tion. 

The success of our computer  simulation might 
suggest that chaotic behavior could be analyzed 
using only computer  simulations. However, this 
would be prohibitively time consuming. Each 
computer  simulation must run for a long time to 
insure that transient behavior has been elimi- 
nated. Minor adjustments in the values of the 
couplings Jii require re-running the simulation. 
These two facts make performing repeated simu- 
lations quite tedious and since, as we have found, 
chaotic coupling matrices are quite rare it is 
extremely time consuming to find them by com- 
puter  simulation. In fact, during extensive com- 
puter  simulation we found only two examples of 
chaos one of which is shown in fig. 2. With the 
circuit we have found numerous examples in a 
fraction of the time. 

4. Circuit behavior 

As in the computer  simulation, most random 
coupling matrices programmed into our circuit 
produce either fixed-point or cyclic behavior. 
However, approximately one in a few hundred 
matrices results in chaotic behavior on highly 
structured strange attractors. We have verified 
that chaotic behavior is present by performing a 
spectral analysis of a given node's  output voltage 
using a high-resolution audio spectrum analyzer. 
We can approach these attractors by varying one 
of the matrix elements slowly. Here  the fact that 
we have 4096 possible values for each matrix 
element is very important since the onset of chaos 
is highly sensitive to changes in the matrix. 

As the matrix elements are adjusted in various 
ways near  or in a chaotic region, the circuit 
exhibits period-doubling and quasiperiodic routes 
to chaos, as well as sudden, perhaps crisis in- 
duced, intermittent expansions of strange attrac- 
tors [12]. We have even found an attractor which 
shows all three transitions depending on which 
matrix element is varied on the approach. Fig. 3 
shows a simple cycle (a) becoming a quasiperiodic 
torus (b, c) and then becoming chaotic (d). In fig. 
4, a period-doubling route ( a -d )  leads to chaotic 
behavior and then an intermittent expansion of 
the strange attractor is seen (e, f). These sudden 
expansions are associated with a restoration of 
the Vii ~ -V~. (for all i) symmetry of the circuit 
equations. Although the circuit equations (3.2) 
are invariant under such a symmetry, many solu- 
tions to them (for example, fixed points) are not. 
When a strange attractor lacks this symmetry, we 
observe that at first it grows steadily as some 
matrix element is varied. At some point in this 
growth, it jumps across to its mirror image (which 
is, of course, also a stable attractor) for several 
cycles and then back again (fig. 4e). We have seen 
this intermittency occurring as slowly as 1 Hz in a 
circuit operating at a fundamental  frequency of 
about 1000 Hz. As the matrix element is varied 
still further, the mirror image attractors merge 
and the symmetry is restored (fig. 4f). All of these 
behaviors were found and explored using the 
analog circuit, but for clarity figs. 3 and 4 are 
computer  generated through numerical integra- 
tion of eqs. (3.2). The existence of period-dou- 
bling and quasiperiodic and chaotic behaviors has 
been verified by examining Fourier transforms of 
the circuit output using an audio spectrum ana- 
lyzer. 

5. Analysis of circuit couplings 

A natural question arises in studying the dif- 
ferent behaviors which this network circuit can 
exhibit: Is there some property or set of proper-  
ties of the coupling matrix which can be used to 
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Fig. 3. A quasiperiodic approach to chaos. 
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Fig. 4, A period-doubling approach to chaos with intermittent expansion of the attractor. 
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characterize and predict the behavior of a net- 
work interacting through that matrix? As a first 
step in answering this question we have per- 
formed a statistical analysis of the matrices we 
have found giving fixed-point, cyclic or chaotic 
behavior. Our analysis is based on the study of 33 
matrices producing fixed-point behavior, 30 ma- 
trices giving cycles and 25 chaotic matrices. The 
quantities we have chosen to characterize these 
matrices are products of matrix values around ~ 
closed loops. Such quantities have proven useful 
in many analyses of complex systems [13] because 
they show, among other things, the presence or 
absence of frustration, the negative products of 
couplings around loops. We computed expecta- 
tion values of these quantities by averaging over 
all possible closed loops for a given matrix and 
averaging over all of the matrices we have which 
produce a given type of behavior. Thus we define 

and 

(JJjk Jk,,J,,,) (5.3) x(4) : i j ]4  , 

where 

tJI = ( 5 . 4 )  

and the angular brackets indicate an average over 
all index values and over all matrices which we 
have. 

Another  useful set of quantities which give the 
magnitude rather than the signs of products 
around loops are defined similarly as 

y(2) - t j i 4  , (5.5) 

((JijJjkJki) 2) 
y ( 3 )  = , ( 5 . 6 )  

t J r "  

( Ji i J.  ) 
x(2)-  i j i 2  , (5.1) 

( JijJjk Jki ) 
x ( 3 )  - I J I -  ~ , (5.2) 

x(i) 

0 , 4  ' 

0.2 

0.0 

-0.2" 

-0.4 

• FIXED POINT 
• CYCLE 
• CHAOS 

i i ! 

2 3 4 

i 
Fig. 5. x(i) as defined in the text fl)r matrices producing 
fixed-point, cyclic and chaotic behavior. Note the distinctly 
different patterns for these three cases. 

and 

j 2 
( ( i j J j k J k m J m i )  ) 

y(4)  = ijl~ (5.7) 

We leave out y(1) because it is identically equal 
to one. In addition, for all types of matrices x(1) 
is consistent with zero so we will not include it in 
our discussion. These quantities do not of course 
provide a complete description of a matrix or 
even of its potential for producing chaotic behav- 
ior. However, they do seem to provide an inter- 
esting indicator of what behavior a matrix might 
produce. 

The results for these quantities averaged over 
sets of matrices giving either fixed-point, cyclic or 
chaotic behavior are shown in figs. 5 and 6. Ma- 
trices producing the three types of behavior show 
markedly different results, In fig. 5, matrices giv- 
ing fixed point behavior have positive x values 
indicating a lack of frustration. Matrices leading 
to cyclic behavior have consistently negative x 
values indicating large amounts of frustration in 
all loops. Matrices producing chaos have a com- 
pletely different pattern: negative x(2), an essen- 
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Fig. 6. y(i) as defined in the text for matrices producing 
fixed-point, cyclic and chaotic behavior. 

tially zero value for x(3) and positive x(4). This 
indicates frustration only in two-site loops. More 
is learned about chaotic matrices in fig. 6, al- 
though the results arc somewhat less dramatic. 
Matrices exhibiting fixed-point and cyclic behav- 
ior have all y essentially equal to one. However 
for matrices exhibiting chaotic behavior, y(4) and 
especially y(2) are significantly smaller than one. 
We believe that there is a good reason for this. 
The chaos-producing matrices have frustration in 
two-member  loops which if too strong would pro- 
duce cyclic behavior. Therefore  it is quite weak. 
Likewise the lack of frustration in four-site loops 
might lead to fixed-point behavior if it was too 
strong. Only y(3) is equal to one since it corre- 
sponds to an x(3) of zero, which would not 
strongly lead to either fixed-point or cyclic behav- 
ior. More matrices need to be accumulated to 
strengthen the statistics of what we have seen, 
but it is remarkable that the signature of the 
matrices producing chaos is so clearly seen. 

6. Future research 

In this report, we have introduced a network 
circuit with completely programmable  couplings, 
qualitatively described its behavior and given 

some initial statistical analysis of that behavior. 
Although our results are a beginning, much more 
will have to be done before we can begin to 
completely characterize matrices which produce 
chaos. For example, at present we have no pre- 
cise idea how numerous such matrices are. To 
attack and hopefully to answer some of these 
questions we have automated the search for in- 
terest ing couplings, getting the controlling 
computer  to generate matrices and analyze the 
resulting circuit output. This allows for the trial 
of hundreds of thousands of random matrices and 
the analysis of hundreds of matrices which pro- 
duce chaos. From these data we hope to arrive at 
a greater  understanding of the couplings which 
produce chaos and how chaotic behavior depends 
on initial conditions with the intention of using 
this information in the construction of neural 
network parallel processors. 

Going beyond the simplest four-node circuit, 
we note that larger analog networks can be con- 
structed using mixed analog and digital tech- 
niques with a multiplexed coupling scheme using 
one MDAC (or one MDAC per node) and a 
switched array of integrators and holding ampli- 
fiers feeding the inputs. With this technique cir- 
cuit complexity scales linearly rather  than 
quadratically with node number. Such a network 
circuit will be able to simulate feed-forward or 
recursive, single- or multi-layered networks by 
appropriate  choice of the form of the coupling 
matrix, 

Going further still, it is possible to investigate 
fully digital networks incorporating very fast digi- 
tal CMOS mul t ip ly /add  signal processing chips 
rather than MDACs and integrating op-amps. A 
16-node circuit of this design will operate at a 
minimum of 160 million instructions per second, 
and will be as fully programmable as our analog 
circuit. This will provide an inexpensive research 
tool for studying the dynamics of fully general 
networks that will rival supercomputer  simula- 
tions. 

With a bet ter  understanding of chaos in net- 
works we may ultimately be able to control chaotic 
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b e h a v i o r  as  wel l  as  w e  n o w  c a n  c o n t r o l  f i x e d - p o i n t  

b e h a v i o r .  I f  so, t h e r e  is n o  d o u b t  t h a t  c h a o s  will  

b e c o m e  a n  i m p o r t a n t  p a r t  o f  n e t w o r k  d e s i g n  a n d  

c o n s t r u c t i o n .  
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