
Article
Flexible filtering by neural
 inputs supports motion
computation across states and stimuli
Graphical abstract
Highlights
d Neural inputs to Drosophila motion detector T5 are state and

stimulus dependent

d Their temporal responses are more biphasic in certain

conditions

d T5 responses can be explained by linear summation of state/

stimulus-dependent input

d A biologically constrained model predicts T5 motion

responses across conditions
Kohn et al., 2021, Current Biology 31, 5249–5260
December 6, 2021 ª 2021 The Authors. Published by Elsevier Inc
https://doi.org/10.1016/j.cub.2021.09.061
Authors

Jessica R. Kohn, Jacob P. Portes,

Matthias P. Christenson, L.F. Abbott,

Rudy Behnia

Correspondence
rb3161@columbia.edu

In brief

Kohn, Portes et al. measure state and

stimulus dependent high temporal

resolution responses of neural inputs to

the Drosophila T5 motion detector. They

show that simple linear summation of

excitatory adaptive neural input signals is

sufficient to explain direction selective

responses across conditions.
.
ll

mailto:rb3161@columbia.edu
https://doi.org/10.1016/j.cub.2021.09.061
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2021.09.061&domain=pdf


OPEN ACCESS

ll
Article

Flexible filtering by neural inputs supports
motion computation across states and stimuli
Jessica R. Kohn,1,4 Jacob P. Portes,1,2,4 Matthias P. Christenson,1,2 L.F. Abbott,1,2 and Rudy Behnia1,3,5,*
1The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
2Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
3Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
4These authors contributed equally
5Lead contact

*Correspondence: rb3161@columbia.edu

https://doi.org/10.1016/j.cub.2021.09.061
SUMMARY
Sensory systems flexibly adapt their processing properties across a wide range of environmental and behav-
ioral conditions. Such variable processing complicates attempts to extract a mechanistic understanding of
sensory computations. This is evident in the highly constrained, canonical Drosophila motion detection cir-
cuit, where the core computation underlying direction selectivity is still debated despite extensive studies.
Here we measured the filtering properties of neural inputs to the OFF motion-detecting T5 cell in Drosophila.
We report state- and stimulus-dependent changes in the shape of these signals, which become more
biphasic under specific conditions. Summing these inputs within the framework of a connectomic-con-
strainedmodel of the circuit demonstrates that these shapes are sufficient to explain T5 responses to various
motion stimuli. Thus, our stimulus- and state-dependent measurements reconcile motion computation with
the anatomy of the circuit. These findings provide a clear example of how a basic circuit supports flexible sen-
sory computation.
INTRODUCTION

To operate in diverse environmental and behavioral conditions,

sensory neurons must encode signals across a broad range of

input statistics. This requires multiple forms of adaptation,

including stimulus- and state-dependent changes in gain and

tuning.1,2 Although sensory adaptation has been studied exten-

sively, it has generally been difficult to explore its implications for

computations performed across a full neural circuit. Here we

take advantage of the extensively characterized Drosophila vi-

sual motion detection circuity to investigate how adaptive

changes in the processing properties of sensory inputs affect

the output of a motion detector. Our results reveal howmodifica-

tions of temporal selectivity due to both behavioral state and

input statistics impact motion detection and clarify a funda-

mental computation underlying direction selectivity.

Some of the adaptive effects we report, in particular those

associated with state changes, likely involve modulation of

cellular and/or synaptic function. Others, such as those associ-

ated with stimulus statistics, could reflect dynamic changes in

cellular properties or could arise from nonlinearities without

requiring dynamic changes. Following convention,1,2 we use

the term ‘‘adaptation’’ in either case as a catch-all to describe

state- and stimulus-dependent changes in sensory processing.

Across taxa, neural circuits for motion detection are espe-

cially sensitive to both behavioral state and sensory statistics

in different natural environments.3,4 Motion detection circuits

in Drosophila provide an ideal model for understanding the

impact of adaptation on neural circuitry. The physiological
Current Biology 31, 5249–5260, Dece
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properties of both the neural inputs and the outputs of fly mo-

tion detecting ON and OFF pathways have been extensively

characterized.5–7 Moreover, unlike in most other model sys-

tems, the Drosophila motion circuit connectome has been

well defined by electron microscopy reconstruction.8,9 Despite

these detailed descriptions, the core computation underlying

direction selectivity is still uncertain, and recently proposed

models are in disagreement.10–13 A number of studies have

highlighted the fact that, as in vertebrate systems, circuit ele-

ments change their response properties in different behavioral

states10,14–16 and for different stimuli.17,18 However, the rela-

tionship between adaptive sensory encoding and motion

computation has not been explicitly investigated.

To address this question, we recorded the responses of the

primary neural inputs to T5 OFF motion-sensing neurons for

stimuli with different visual statistics and in the presence of a

behaviorally relevant neuromodulator. In addition to previously

described frequency tuning10 and contrast gain adaptation17,18

(Figure 1A, left and center), we found that these neural inputs

display state- and stimulus-dependent changes in the shapes

of their temporal filtering properties, including instances of

strong biphasic responses (Figure 1A, right). This previously un-

appreciated aspect of sensory dynamics can have profound

consequences on circuit function. For instance, linearly

combining two spatially separated inputs, when one is biphasic,

can enhance direction selective responses (Figure 1B). To inves-

tigate the consequences of this biphasic tuning on T5 responses,

we incorporated our measurements into a model based on the

Drosophila optic lobe connectome and the summation of the
mber 6, 2021 ª 2021 The Authors. Published by Elsevier Inc. 5249
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. Neural input adaptation and motion detection in the Drosophila OFF pathway

(A) The temporal processing properties of sensory neurons, here represented by idealized temporal filters, have been shown to be stimulus and/or state

dependent, varying in frequency, gain, and biphasic tuning (which can also affect frequency tuning).

(B) Filter shape can have a strong effect on the output of a motion detector. The linear combination of two excitatory inputs spatially offset by Dx�, one of which is

biphasic (bottom: input 1 is monophasic, while input 2 is biphasic), can effectively suppress ND responses, generating an output that is more direction selective

than the sum of two monophasic inputs (top).

(C) Schematic of the feed-forward Drosophila OFF motion pathway circuit (inset: T5 cells receive the majority of their input from columnar Tm1, Tm2, Tm4 and

Tm9). Using the spatial distribution of synaptic inputs to T5 dendrites in the lobula, Shinomiya et al.9 infer the spatial structure of inputs in the medulla. Tm1/Tm2/

Tm4 are postsynaptic to lamina monopolar cell L2 and look at the same point in space. They are spatially offset ðDx�Þ from Tm9, which is postsynaptic to L3.

Voltage responses in T5 are direction selective, depolarizing more strongly to motion in the preferred direction (PD) than to motion in the opposite, null direction

(ND). The mechanisms underlying the emergence of these signals in T5 are debated.
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measured responses of neural inputs. When adjusted to account

for the differences in shape of neural input filters in response to

different motion stimuli, our model resolves discrepancies be-

tween previously reported T5 responses across conditions.11,12

Our results highlight the flexible nature of this stereotyped circuit

and show that changes in the shape of neural input filters are

necessary and sufficient to explain direction selective responses

in the context of diverse stimuli and states. More generally, our

work illustrates how a neural circuit can optimize the computa-

tion it performs in response to statistical features of the sensory

environment and changes in behavior.

RESULTS

Octopamine changes both the frequency tuning and the
shape of temporal filters of neural inputs to T5
OFF motion-sensing T5 neurons compare changes in luminance

at neighboring points in space to generate direction selective

signals. Such spatial displacement of neural inputs to T5 was in-

ferred fromaveragedweighted visuospatial distribution of synap-

ses onto the dendrites of these neurons from connectomic data.9

This analysis concluded that T5 receiveswhat can be considered

as ‘‘columnar’’ inputs (i.e., corresponding to one pixel in the field

of view of the animal) from medulla cells Tm1, Tm2, and Tm4 in
5250 Current Biology 31, 5249–5260, December 6, 2021
one column and from Tm9 cells in an offset, neighboring column

(Figure 1C).9,10,19,20 These four neurons make up the majority of

the feed-forward, columnar inputs to T5. Their response proper-

ties are critical in shaping the direction selective properties of T5

cells. T5 also receives input from the inhibitory wide-field neuron

CT1. However, although CT1 exhibits compartmentalized re-

sponses compatible with it acting at the columnar level,21 it has

not been shown experimentally to affect motion detection. We

therefore focused our investigation on columnar feed-forward in-

puts, which have previously been shown to affect motion detec-

tion.20 Specifically, we asked to what extent the response prop-

erties of these neural inputs depend on stimulus and state and

measured the responses of Tm1/Tm2/Tm4/Tm9 in the

absence/presence of a neuromodulator known to affect motion

signals, as well as to different types of stimuli. We used whole-

cell patch clamp electrophysiology to obtain high-temporal reso-

lution measurements of these response properties, as important

aspects might be overlooked when using lower temporal resolu-

tion imaging techniques.10,11,22

We started our analysis by measuring the processing proper-

ties of each of these cell types in response to a Gaussian white

noise stimulus.10,23–25 This standard approach allowed us to

extract linear spatiotemporal filters and associated nonlinearities

via reverse correlation from cellular responses to a stimulus
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Figure 2. Octopamine changes both the frequency tuning and the shape of temporal filters of neural inputs to T5

(A) Normalized mean temporal filters extracted via white noise analysis in saline (darker colored lines) Tm1 (n = 8), Tm2 (n = 5), Tm4 (n = 6)), and Tm9 (n = 7) and in

the presence of OA (lighter colored lines) Tm1 (n = 4), Tm2 (n = 5), Tm4 (n = 4), and Tm9 ((n = 4). Filters extracted in OA are faster, with a narrower first lobe for all

four neurons and the emergence of a sharp second lobe in the case of Tm1/Tm2/Tm4. Shaded area represents standard deviation.

(B) Normalized mean frequency tuning of temporal filters from (A), when linearly convolved with sine waves of increasing temporal frequency. All four Tm neurons

are band-pass. Tm9 shows lower temporal frequency optimum than Tm1/Tm2/Tm4. Tm1/Tm2/Tm4 filters in the presence of OA shift their tuning to higher

frequencies, while Tm9 tuning changes only slightly.

(C) Mean spatial receptive fields extracted from spatiotemporal filters with full width at half maximum (FWHM) of 10:8� for Tm1, 8:2� for Tm2, 11:3� for Tm4, and

15:3� for Tm9 when fit with Gaussians (see STARMethods), with no significant differences in OA. Spatiotemporal filters were extracted in response to white noise

presented as 5� horizontal bars.
(D) Static nonlinearities show partial rectification, with no differences between saline and OA conditions.

See also Figures S1 and S2.
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consisting of 5� horizontal flickering bars, each showing inde-

pendently generated Gaussian white noise (Figure 2; Figure S1).

As expected, the linear temporal filters of OFF-pathway inputs

Tm1/Tm2/Tm4/Tm9 consist primarily of a negative lobe, indi-

cating a sign-inversion between contrast polarity and cellular

response (Figure 2A). In the frequency domain, Tm1/Tm2/Tm4

exhibit clear band-pass filtering properties10,20 (Figure 2B).

These band-pass properties correspond to the slight biphasic

character of their linear temporal filters, which have shallow sec-

ond positive lobes. In contrast to results obtained with calcium

imaging, which determined that Tm9 is low-pass,10,20,26 we

find that Tm9 also exhibits band-pass filtering properties, albeit

weaker than the other columnar inputs. This discrepancy is
most likely due to differences in the temporal resolution of cal-

cium imaging and electrophysiology techniques.

The spatial components of our linear spatiotemporal receptive

fields show that Tm1/Tm2/Tm4/Tm9 have narrow spatial recep-

tive fields, with only limited surround inhibition. An additional

subset of Tm9 cells respond across a much wider region of the

screen (Figure S1), as previously reported.13,26 Thus, Tm9 re-

sponses fall naturally into two distinct populations based on their

spatial receptive fields; however, with regards to their temporal

properties, the two types of Tm9 responses are not distinct

from each other (Figure S1). In terms of nonlinear processing

properties, the extracted static nonlinearities show partial recti-

fication.22,24 All four T5 inputs respond linearly for small
Current Biology 31, 5249–5260, December 6, 2021 5251
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Figure 3. High contrast flashes elicit biphasic responses in T5 inputs

(A)Mean Tm responses to 20/40/80/160ms high-contrast flashes in saline (colored lines) Tm1 (n = 5–6), Tm2 (n = 5), Tm4 (n = 6–7), and Tm9 (n = 4–6)) are biphasic.

Mean white noise filter predictions for the same 20/40/80/160 flashes (dashed black lines) do not match the corresponding flash responses. Shaded area

represents standard deviation.

(B) Responses to 20/40/80/160 ms high-contrast flashes return to baseline more quickly and, in most instances, are more biphasic in OA (lighter colored lines)

Tm1 (n = 4–5), Tm2 (n = 3), Tm4 (n = 5–6), and Tm9 (n = 3)) than in saline (darker colored lines, same as in [A]).

See also Figure S3.
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deflections in their membrane potential, but nonlinearly at the

upper and lower boundaries of their dynamic ranges, with

greater-than-linear depolarization amplitudes and less-than-

linear hyperpolarization amplitudes (Figure 2D).

We then performed the same analysis in the presence of the

neuromodulator octopamine (OA), which mediates a locomo-

tion-induced shift in the tuning of T4 and T5, as well as down-

stream partners, toward faster frequencies of motion.10,15,16

Bath application of OA or an OA agonist was previously shown

to increase the kinetics of the responses of inputs to motion

detectors.10,27 Thus, we specifically focused on its effect on

the waveforms of cellular responses of neural inputs to T5.

We found that the application of OA has strong effects on the

temporal filters of Tm1/Tm2/Tm4 (Figure 2A). In addition to

inducing faster temporal filter peaks, which manifests as a shift

toward higher frequencies (Figure 2B), OA induces a biphasic

character in the temporal filters of Tm1/Tm2/Tm4, with a sharp,

positive second lobe emerging (Figure 2A). Correspondingly,

responses are more band-pass in the frequency domain (Fig-

ure 2B). In the case of Tm9, the temporal filter becomes
5252 Current Biology 31, 5249–5260, December 6, 2021
narrower but does not display the biphasic character that the

other Tm neurons acquire in OA.

Stimulus dependence can elicit changes in response
shape similar to those produced by octopamine
Neuromodulator-mediated adaptive changes in the processing

properties of neurons, corresponding to different brain states,

have been described in all sensory systems.28,29 Furthermore,

neurons across sensory systems exhibit another form of adapta-

tion that depends on the statistics of a particular sensory stim-

ulus.1,30–34 This stimulus-dependent adaptation may arise from

nonlinearities inherent to the system rather than ‘‘true’’ dynam-

ical changes and is also widespread.1,2 Thus, we next asked

whether the shape changes seen in the presence of OA can

also be induced by probing cells with different visual stimuli.

To answer this question, we recorded the responses of Tm1/

Tm2/Tm4/Tm9 to another type of visual stimulus: full-field,

high-contrast brightness decrements of varying durations from

a mean of gray. These ‘‘flash’’ responses in Tm1/Tm2/Tm4 are

clearly biphasic (Figure 3A). We compared these responses to
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predictions made fromwhite noise filters extracted in saline con-

ditions. The responses of Tms to high contrast flashes of 20/40/

80/160 ms do not match the output of our LN spatiotemporal

white noise filters convolved with same stimuli (Figure 3A, see

STAR Methods). Discrepancies appear in both the shape and

amplitude of the responses. Tm1 and Tm4 flash responses are

more biphasic, and have higher amplitudes, than corresponding

white noise filter predictions across the four flash durations. Tm2

flash responses aremore similar to thewhite noise prediction but

also display amore biphasic response for 40 ms flashes. In addi-

tion, Tm1/Tm2/Tm4white noise filter predictions of 20 and 40ms

flashes underestimate actual amplitudes of responses to flash

stimuli, highlighting nonlinearities in gain at these shorter

timescales. While the gain of the excitatory lobes of all Tm cell

flash responses increases with flash duration, the amplitude of

the negative lobe remains constant across stimulus duration.

Tm9 flash responses are larger in amplitude than white noise

predictions for all flash durations, and repolarization kinetics

are slower.

These experiments demonstrate that linear white noise filters

combined with a static nonlinearity are poor approximators of

Tm cell responses to high-contrast flashes. This is consistent

with a formof adaptation that likely reflects the inherent nonlinear

properties of the system and for which statistical models, such

as linear-nonlinear models that depend on the stimulus

ensemble used to generate them, do not provide a complete

description. As such, we refer to these apparent changes in pro-

cessing properties, which are revealed by the use of multiple

types of stimuli and occur on the same timescale as the response

itself, as ‘‘stimulus dependent’’ in the rest of this paper.

We next asked how state-dependent changes interact with

stimulus-dependent changes in the temporal processing proper-

ties of columnar T5 inputs and assessed the effect of OA on re-

sponses to the same flash stimuli (Figure 3B). The addition of OA

only minimally increases the already biphasic nature of Tm1/

Tm2/Tm4 flash responses but does increase the kinetics of the

responses. OA exerts a minimal effect on Tm9, rendering its

monophasic flash responses to be slightly biphasic. Although

the filters extracted in response to white noise in OA have a

biphasic character, they are still not sufficient to predict flash re-

sponses in OA (Figure S3B).

Signal statistics affect the shape of T5 input responses
Across sensory systems, the shapes andgains of neural temporal

filters are sensitive to specific aspects of the statistical properties

of stimuli.1,30–34 In blowfly lamina monopolar cells (LMCs), which

are correlates of the main inputs to the transmedullary cells that

we focused on in this study, the biphasic character of responses

increases when the signal to noise ratio (SNR) of a stimulus is

increased.35,36 Our results so far fit this framework, since

Gaussian noise can be considered low SNR as compared to

high-contrast flashes. To further explore this question, we varied

our stimuli with this property in mind.

In a flash stimulus regime, lowering contrast should be

equivalent to lowering the SNR of the stimulus and therefore,

according to our hypothesis, decrease the biphasicness of

the responses. We found that Tm1/Tm2/Tm4 responses to

low-contrast flashes, starting at the same mean luminance

level, indeed lose their biphasic character. They also more
closely match white noise filter predictions, both in terms of

amplitude and waveform (Figure S3A). In the case of Tm9,

which is only minimally biphasic to white noise, response

shape does not change significantly at different contrasts.

Similar to saline conditions, low contrast flashes recorded in

the presence of OA produce less biphasic responses than

high contrast (Figure S3B); however, low-contrast flashes in

OA do maintain a slight biphasic character. These results

reveal a trend where high-contrast (high SNR) flash responses

are more biphasic than white noise predictions, while low-

contrast (low SNR) flash responses are more comparable to

white noise predictions.

These results do not preclude the possibility that contrast alone

drives shapechangesofTm responses. Toexplore thispossibility,

we altered the contrast step size of the noise stimulus. We used

high- and low-contrast ternary noise (Figure S3C, top) consisting

of random transitions between the mean luminance of the projec-

tor and fixedcontrast increments/decrements of either highor low

contrast,with thesame temporalpropertiesas thewhitenoise.We

found that Tm1 filters extracted from both low and high contrast

ternary noise have similar shapes to each other (Figures S3D

and S3E, top), as well as to the Tm1 filter extracted from white

noise. While we did not see a change in the shapes of filters, we

found that the amplitude of the temporal filter increased with

decreasing contrast. This gain change corresponds to an amplifi-

cation of smaller signals, allowing the cell to produce the same

amplitude responses in different contrast regimes.17,18 Similar to

Tm1, filters extracted from Tm2 and Tm4 responses to the high-

contrast ternary stimulus (Figures S3C–S3E, middle, bottom) do

not differ significantly in shape fromfilters extracted from thewhite

noise stimulus, but have lower gains. These experiments demon-

strate that increases or decreases in contrast do not change the

biphasic character of Tm responses in the context of a noise stim-

ulus. Thus, contrast alonecannot account for changes in response

shape. Rather, we hypothesize that it is the information content in

the stimulus that drives stimulus-dependent changes in shape of

the responses of these cells.

The temporal responses of columnar T5 inputs move
through a stimulus- and state-dependent parameter
space
The similarities between shape changes in the temporal re-

sponses of T5 columnar inputs to either high contrast flashes

or to responses measured in the presence of OA are consistent

with a continuum of responses between states and stimuli (Fig-

ure 4A). To compare all stimuli and state conditions on a similar

temporal timescale, we describe a ‘‘parameter space’’ of re-

sponses for each of the inputs to T5, using parameterized re-

sponses (Figure S4, see STAR Methods).

We focused on responses to a 160 ms flash stimulus, either

measured directly or predicted from white noise filters across

all Tm cells, in the absence and the presence of OA. Plotted

together, it is clear that Tm1/Tm2/Tm4 exhibit a wide range of re-

sponses, while Tm9 shows somewhat fewer changes across

stimuli (Figure S4C). To better visualize how different conditions

affect these responses, we plotted the ratio of the area of the

trough by the area of the peak as a function of peak time, roughly

representing the extent of a filter’s biphasic character, as a func-

tion of speed of response (Figure 4A). The 2D space occupied by
Current Biology 31, 5249–5260, December 6, 2021 5253
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Figure 4. Tm1, Tm2, Tm4, and Tm9 temporal responses move within a parameter space

(A) Ratio of the area of the peak lobe with respect to the trough lobe (biphasic tuning) as a function of peak time (speed tuning) of parameterized responses of Tm1,

Tm2, Tm4, and Tm9 to 160 ms flashes across conditions, including high contrast and high-contrast OA (colored filled circles), low contrast and low-contrast OA

(gray filled circles), and baseline andOAwhite noise filter predictions for 160ms stimuli (colored open circles). For Tm1, normalized example traces are included in

insets comparing (1) white noiseOA prediction and high-contrast flash in OA, (2) high-contrast flasheswith andwithout OA, and (3) low- and high-contrast flashes.

Dashed black, dashed color, and solid gray lines indicate corresponding trends in biphasic tuning and speed tuning driven by OA or stimulus.

(B) Frequency tuning of parameterized filters obtained in saline (top) and in OA (bottom). Tm1/Tm2/Tm4 filters in OA become more band-pass (respond to a

narrower range of frequencies) and shift their peaks to higher frequencies. Additionally, Tm1/Tm2/Tm4/Tm9 become more distinct in the frequency range each

cell responds to.

See also Figure S4.
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the Tm neurons within these plots illustrates the span of the di-

versity of responses within cell types and reveals global trends:

responses shift toward being faster and more biphasic in the

presence of OA and move from being less to more biphasic be-

tween both noise/flash stimuli and low-/high-contrast flashes.

This analysis also reveals another stimulus-dependent effect:

high-contrast flash responses are faster than low contrast,

once again indicating that high-contrast flash stimuli can elicit

changes in Tm responses similar to those seen in OA. In the

case of white noise filters, the effect of OA is particularly clear

in the frequency domain (Figure 4B). OA shifts peak responses

of Tm1/Tm2/Tm4 toward higher frequencies so that their fre-

quency tuning curves are spread further from each other, and

thus across a broader spectrum of frequencies, than in saline

conditions. Tm9 changes are mainly restricted to the single

axis of speed tuning.

Our high temporal resolution electrophysiological recordings

of Tm1/Tm2/Tm4/Tm9 under different stimuli and neuromodula-

tory conditions reveal a highly adaptive circuit with the ability to

display changes in temporal filter shape and kinetics across a

wide range of parameters. We next investigated the computa-

tional consequences of these stimulus- and state-dependent

properties of neural input on the output of the circuit.

A sum of columnar inputs predicts T5 flash responses
In response to stationary high contrast flashing bars, T5 displays

asymmetric hyperpolarizing responses. For any particular T5
5254 Current Biology 31, 5249–5260, December 6, 2021
cell, flashing bars on the side of the spatial receptive field corre-

sponding to the leading edge of the cell’s preferred direction of

motion elicit only a depolarizing response while flashing bars on

the opposite side of the receptive field cause a depolarization fol-

lowed by a hyperpolarization.12 One potential model to explain

this functional property uses a combination of direct columnar

excitation and inhibition. However, since no such columnar inhib-

itory input has been found by connectome studies,9 we instead

hypothesized that state- and stimulus-dependent processing

properties of T5 inputs could explain responses at the level of

T5. Specifically, we hypothesized that the strongly biphasic nature

of the temporal responses of Tm1/Tm2/Tm4 to flashes could

explain T5 responses without the need for a direct inhibitory input.

Because Tm1/Tm2/Tm4 have similar processing properties

(Figure 3) and look at the same point in space,9 we first asked

whether a single biphasic excitatory columnar input, represented

by Tm1, combined with Tm9 via linear regression could capture

the dynamics of T5 response, including asymmetric hyperpolar-

ization, without additional manipulation. To compare our data

with existing T5 data, we first convolved the white noise ex-

tracted linear temporal filter of each cell type with a 20/40/80/

160 ms flash stimulus.12,37 Using linear regression with positivity

constraints, we fit these predicted responses to T5 flash re-

sponses collected by Gruntman et al.12 As expected from their

shape, we found that white noise filter predictions capture T5’s

depolarizing responses, but fail to capture asymmetric hyperpo-

larization (Figure 5A, top).
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We next asked if our flash responses, which were obtained

from an experimental paradigm more similar to the single-posi-

tion bar flashes of Gruntman et al., could predict response prop-

erties of T5 more accurately than our white noise filters. We

found that a weighted sum of Tm1 and Tm9 responses derived

from flash stimuli better reproduce measured T5 responses to

single-position bar flashes (Figure 5A, middle) but still fall short

of capturing both the extent and the kinetics of T5’s asymmetric

hyperpolarization at the trailing edge of its receptive field. Since

Tm1 flash responses obtained in OA conditions have faster ki-

netics and larger second lobes, we also ran the linear regression

using flash responses of Tm1 and Tm9 obtained in the presence

of OA. In this case, the linear regression provides a near perfect

fit with T5 data (Figure 5A, bottom).

It was puzzling that the flash responses recorded in OA pro-

vided such a good fit in the linear regression, as Gruntman

et al.12 acquired these data in regular saline and not in OA-supple-

mented saline. However, it is conceivable that endogenous state

modulation occurred during T5 recordings. This is hinted at by the

apparent variability in the amplitude and kinetics of the asym-

metric hyperpolarization in T5 responses across different cells.12

To investigate this, we performed linear regression on individual

T5 cells, instead of the average of all recordings, using flash re-

sponses recorded in either saline or saline with OA. For a subset

of T5 with slower and less salient hyperpolarization, the saline

linear regression provides a good fit (Figures 5C and 5D, top).

For a different set of T5 cells, the OA linear regression provides

a better fit (Figure 5D, bottom). This indicates that the diversity

of responses in the T5 data largely accounts for the distribution

of our r2 values (Figure 5C). In these cases, performing the linear

regression using the OA flash responses often increases the r2

value substantially (Figure 5E). Although we performed this anal-

ysis using Tm1 and Tm9 to predict 9� 160ms T5 flashes, these re-

sults stand across flash durations and widths as well as across

other combinations of Tm inputs (Figures S5A and S5B).

In all conditions, the coefficients output by this linear regres-

sion show distinct separation between Tm1 and Tm9 (Fig-

ure S5C), similar to that seen in the electron-microscopy (EM)

data. In addition, the weighted spatiotemporal receptive fields

constructed by linearly combining Tm1 and Tm9 fits are tilted

in space-time, indicating direction selectivity. The tilt is more

prominent when these are constructed from flash responses,

both in saline and OA. In agreement with this, the same linear

regression fits predict the profile of T5 responses to moving

bars from Gruntman et al.,12 as well as direction selectivity (Fig-

ure S5D, see STAR Methods).

These results demonstrate that including a biphasic input to T5

within the framework of this model is sufficient to explain

measured output response properties such as spatially asym-

metric hyperpolarization, which was previously proposed to

emerge from an unsubstantiated direct inhibitory input. Thus, ac-

counting for stimulus and state dependence of inputs to T5 is

critical to understanding the response properties of this hard-

wired circuit across conditions.

A connectome-based model captures T5 direction
selectivity across stimuli and states
Motivated by the linear regression, webuilt amodel of T5 direction

selectivity that is faithful to the anatomyof the circuit and takes into
account our experimental measurements of Tm response proper-

ties. We imposed the following overarching constraints: (1) T5 re-

ceives inputs from Tm9 in one ommatidial column and Tm1/

Tm2/Tm4 from an adjacent column, (2) all four T5 inputs are excit-

atory (cholinergic), and (3) the response properties of the transme-

dullary inputs varywith stimulus or state, aswedemonstrated.We

captured the first constraint by separating the center of the recep-

tive field of Tm9 by 5� from the rest of the Tm cells (Figure 6A). The

second constraint was satisfied by requiring all cells to provide

positive input to T5. Additionally, we used the relative synaptic

counts of Tm1/Tm2/Tm4/Tm9 from the connectome as synaptic

weights to constrain the relative contribution of each cell type to

T5 responses.9 For the third constraint, when constructing the

four inputs to T5, we matched their response properties with the

stimulus presented to our model, such as moving sine waves11,12

or high-contrast moving bars.12

We first modeled T5 responses to sine waves. To describe the

response of each T5 input to this stimulus, we used the temporal

and spatial filters of Tms extracted from white noise analysis,

as well as their associated static nonlinearities (see STAR

Methods). These filters accurately predict measured responses

of Tm cells to sine waves (Figure S6), making them appropriate

descriptors of cellular responses in this particular stimulus

regime. Output from this model in response to sine waves

matches T5 data from previous studies in that it predicts

maximum preferred direction (PD) tuning just below 1 Hz (Fig-

ure 6B).10,15 The direction selectivity index (DSI) for the output

of the model also falls within the range of experimentally calcu-

lated DSIs from two recent studies: Wienecke et al.,11 using

voltage-imaging and Gruntman et al.,12 using electrophysiology

(Figure 6C). We then asked how the enhanced biphasic char-

acter and shifted frequency tuning of filters extracted in the

presence of OA affected model output. In this case, our model

predicts a broadening and a shift in T5 PD frequency tuning to-

ward faster frequencies (Figure 6B) that matches previous mea-

surements of T510 and LPTC16 tuning in the presence of OA or

the OA agonist chlordimeform. Furthermore, using OA-derived

filters increases DSI (Figure 6C). Using white noise filters, these

results show that combining input Tm responses linearly with

EM connectome weights is sufficient to achieve the direction se-

lective response of T5 cells to sine waves across studies, and

that the biphasic character and faster kinetics introduced by a

neuromodulator can enhance direction selectivity while adjust-

ing frequency tuning. Notably, randomizing weights within col-

umns (randomizing Tm1/Tm2/Tm4 weights while maintaining

the relative ratio with respect to Tm9) increases variance and

produces slightly lower DSI, while completely randomizing

weights of Tms causes the model to perform poorly (Figure S6F).

This indicates that although there is some flexibility in terms of

the ratios of input from Tm1/Tm2/Tm4 from one column,

maintaining the anatomical ratio of Tm9 input to combined

Tm1/Tm2/Tm4 input is important for producing direction

selectivity.

We next modeled T5 responses to moving high-contrast bars.

The results of our linear regression analysis show that strongly

biphasic Tm responses best predict T5 flashing bar responses.

As expected, the characteristic white noise filters for Tms do

not capture the DSI of T5 responses to moving bars (Figures

6D, left, and 6E). We therefore constructed a corollary model of
Current Biology 31, 5249–5260, December 6, 2021 5255



Figure 5. The sum of adaptive columnar inputs predicts T5 flash responses

(A) Top: White noise extracted filters are convolved with a 160 ms flash stimulus and then fit with linear regression to T5 electrophysiological recordings from

Gruntman et al.6 for the 160 ms, 9� bar condition, at various positions in the receptive field of T5 (data, dashed black line; fit, solid gray line). T5 average traces

shown for bar position from ‘‘Leading’’ edge ð�5;�3;�1Þ and ‘‘Trailing’’ edge ð+ 1; + 3; + 5Þ. Middle: Average Tm1 and Tm9 responses to 160 ms flashes are fit

via linear regression to each T5 recording fromGruntman et al.6 for the 160ms, 9� bar condition (data, dashed black line; fit, solid dark green line) Bottom:Same as

middle using Tm1 and Tm9 160 ms flashes in the presence of OA (data, dashed black line; fit, solid light green line). Linear regression using flash responses and

flash responses recorded in OA provides a good fit to T5 data. This is especially evident in the trailing edge (bar positions +3 and +5). Shaded area represents

standard deviation.

(B) Aggregate r2 values (square of sample correlation coefficient, see STAR Methods) across bar positions for linear regression fits of Tm1+Tm9 to Gruntman

et al.12 recordings of T5 (conditions: 40 and 160 ms presentations of 2:25�, 4:5�, and 9� bars). Error bars depict standard deviation.

(C) Distribution of r2 values across bar positions for fits to individual T5 responses to 160 ms, 9� bars.
(D) Example traces of fits to two single cells from C (T5 data, dashed black line; fits using saline flashes, dark green line; fits using OA flashes, light green line).

(E) Using the highly biphasic Tm1/Tm9 flashes recorded in OA improves the r2 of fits on the trailing edge of the T5 receptive field, where asymmetric hyper-

polarization is most evident.

See also Figure S5.
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Figure 6. Low-parameter, connectome-based model is sufficient to capture OFF pathway direction selectivity in the context of different

stimuli and states

(A) Schematic of model framework constructed with Tm9 spatially offset from Tm1/Tm2/Tm4 by Dx = 5�. Connectome weights refer to weighted visuospatial

distribution of synaptic inputs.9

(B) Preferred direction (PD) and null direction (ND) frequency tuning of model to sine waves using parameterized spatiotemporal filters extracted in saline alone

(solid and dashed dark green lines, respectively) versus those extracted in the presence of OA (solid and dashed light green lines, respectively).

(C) Direction selectivity index (DSImag = ðjPDj � jNDjÞ=ðjPDj + jNDjÞ, see STAR Methods) for model using saline-derived filters with n = 20 samples of published

EM weights from Shinomiya et al.9 across various frequencies (dark green line) compared to output using OA-derived filters (light green line). Experimental

voltage-imaging (ASAP2f) T5 DSI data shown fromWienecke et al.11 (single recordings, light circles; averages, dark circles), and T5 electrophysiology data from

Gruntman et al.12 (single recordings, light diamonds; averages, dark diamonds). Shaded area and error bar represent standard deviation.

(D) Example PD andNDmodel output traces for an 80ms and a 160msmoving bar stimulus, with inputs based onwhite noise predictions (left: black solid line and

dashed gray line, respectively), flash responses recorded in saline (middle: solid dark green line and dashed gray line, respectively) and OA (right: solid light green

line and dashed gray line, respectively).

(E) Using flash response-based inputs, model DSI falls within the range of T5 electrophysiology data reported by Gruntman et al.12 for moving bars of 2.25�, 4.5�,
and 9� widths (single recordings, light circles; averages, dark circles). Direction selectivity index (DSImax = max PDð Þ �max NDð Þð Þ=ðmax PDð Þ+max NDð ÞÞ, see
STAR Methods) is poor for white noise predictions (black line), improves when using flash responses (dark green line), and increases even more when using OA-

based flash responses (light green line), due to their strong biphasic nature.

See also Figure S6.

ll
OPEN ACCESSArticle
T5 based on parameterized Tm flash responses (see STAR

Methods). The increased biphasic nature of the flash responses

allow the model to achieve direction selectivity for moving bar

stimuli in the range of T5 recorded electrophysiology data (Fig-

ure 6D, middle, and 6E).12 In this case, the negative lobe from

strongly biphasic Tm inputs cancels out depolarizations in lieu

of direct inhibition. Correspondingly, flash responses obtained

in the presence of OA increas the model’s DSI when used as in-

puts (Figure 6E). These results demonstrate that the increased

biphasic character of Tm cells, which occurs both as the result

of changes to stimulus or the presence of a neuromodulator,

can produce direction selectivity on par with that seen in T5 elec-

trophysiology recordings.

Our state- and stimulus-dependent measurements of the

response properties of neural inputs to T5, when considered
within the framework of a simple model grounded in connec-

tomic data, are therefore necessary and sufficient to explain T5

direction selective signals across experimental paradigms. Our

approach not only highlights encoding flexibility but also recon-

ciles anatomy and function in a canonical Drosophila circuit.

DISCUSSION

In this study, we show that the response properties of neurons in

the Drosophila OFF motion pathway are shaped by both visual

stimulus statistics and a behaviorally relevant neuromodulator.

Our results demonstrate that neurons in the Drosophila visual

system operate within a stimulus- and state-dependent space

of temporal filtering parameters and are underdescribed by the

filters commonly used in Drosophila motion circuit models.
Current Biology 31, 5249–5260, December 6, 2021 5257
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Incorporating these state- and stimulus-dependent properties

into an anatomically constrainedmodel of the OFFmotion circuit

based on input summation explains the direction selective

response of T5 across conditions. By measuring the relationship

between stimulus, state, and the response properties of inputs to

a motion detector and incorporating these adaptive signals in an

anatomically constrainedmodel, we clarify the core computation

for direction selectivity.

Stimulus- and state-dependent changes in filtering
properties highlight circuit flexibility
Previous work has demonstrated changes in frequency tuning10

and contrast gain adaptation17,18 at the level of T5 inputs. Here,

using methods with high temporal resolution, we characterized

changes in response shape, namely the biphasic character

that they can acquire in response to both specific stimuli or state.

This property has been previously demonstrated in blowfly

LMCs, the main inputs to the transmedullary cells that we

focused on in this study. Both van Hateren35 and Srinivasan

et al.36 have shown that the biphasic character of LMC re-

sponses is dependent on the SNR of the stimulus. These studies

provide a rationale for differences across conditions. A mono-

phasic, or low-pass, filter acts as an integrator, extracting slow

temporal components of a visual scene. This is useful when vi-

sual information is noisy (low SNR) because increases in the

redundancy of information translate into increases in reliability.

However, a biphasic, or band-pass, filter is advantageous in

high SNR conditions because it acts as a differentiator and de-

creases correlations, thereby reducing redundancy and effi-

ciently conveying changes in the visual scene.38

When comparing responses across stimulus regimes, our re-

cordings of Tm1/Tm2/Tm4 are compatible with these hypothe-

ses regarding SNR. The temporal filters of these three neurons

have less biphasic shapes in response to temporally unstruc-

tured stimuli, both white and ternary, whichwe consider to corre-

spond to a low SNR regime. Responses to low-contrast flashes,

which can also be considered low SNR, are also close to mono-

phasic and are well predicted by white noise filters. On the other

hand, high-contrast (high SNR) flashes produce strong biphasic

responses. The properties of Tm1/Tm2/Tm4 are therefore similar

to and likely inherited from their LMC input (primarily L2, Fig-

ure 1C). Similar effects of changing stimulus mean and variance

on neural filtering properties are ubiquitous across sensory sys-

tems.1,30–34 It will be important for future work to explicitly char-

acterize the effects of stimulus SNR on the responses of Tms and

their presynaptic partners, as well as determine the circuit/

intrinsic mechanisms underlying them.

Interestingly, we found that the addition of OA also produces a

more biphasic character in the white noise-extracted temporal

filtering properties of Tm1/Tm2/Tm4, similar to the waveform

changes seen in response to high contrast flashes.More biphasic,

differentiator-like responsesmay be beneficial during locomotion,

a state also associated with arousal39 or attention,4 where OA

would possibly prime the motion vision circuit to respond to

more salient moving stimuli. Furthermore, columnar inputs to T5

express receptors for many neuromodulators other than OA,40

suggesting that state-dependent modulation of motion detection

likely plays an evenmore heterogeneous role, withmultiple neuro-

modulators acting in concert at any given time.
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In addition to changes in filter shapes, we observed OA-

dependent shifts in the kinetics of the temporal filters of Tm1/

Tm2/Tm4 toward faster speeds. Locomotion, through the

release of OA, has previously been shown to broaden and shift

the tuning of Drosophila motion detector outputs toward higher

frequencies.15,16 This mechanism is thought to tune motion

pathways to the increased frequencies of motion that flies

experience as a result of self-motion during locomotion. Our

findings corroborate the hypothesis that octopaminergic modu-

lation of frequency tuning in this circuit is inherited in part from

upstream elements.10 In addition, our high temporal resolution

data show that Tm1/Tm2/Tm4 have similar temporal response

dynamics to one another in saline but acquire different kinetics

in the presence of OA. This broadens the range of temporal fre-

quencies collectively encoded by these three neurons (Fig-

ure 4C, right), an effect that we see in the output of our model.

This should enable a fly to respond to motion over the broader

range of frequencies it might encounter while walking or flying.

Thus, while Tm1/Tm2/Tm4 might appear to have redundant

roles, the differential effect of OA on these three T5 inputs high-

lights a functional relevance in the context of changing behav-

ioral states. Finally, in contrast to Tm1/Tm2/Tm4, we found

the temporal filtering properties of Tm9 to be less affected by

either stimulus statistics or by the presence of OA, showing

that adaptation need not affect all input elements of the circuit

to influence output tuning.

We focused here on changes in temporal dynamics; however,

it is likely that additional processing properties of Tm neurons,

such as in their spatial receptive fields, are sensitive to both stim-

ulus and state. Integrating changes in these processing proper-

ties could hypothetically fine-tune the motion-selective outputs

across conditions. In addition, we find two distinct classes of

Tm9 cells with different sizes of receptive field, as has been pre-

viously reported.26,13 Although larger spatial receptive fieldsmay

not contribute directly to direction selectivity, further character-

ization of this heterogeneity may provide insight into diverse T5

responses.

Accounting for stimulus and state dependence clarifies
circuit mechanisms
Although direction selectivity has been investigated since the

1950s, themechanisms underlyingmotion detection in the inver-

tebrate visual lobe are still being debated.6,7 In the OFF pathway,

one debate concerns the linearity of the summation of inputs to

directionally selective T5 neurons. Wienecke et al.11 argue that

the response of T5 axonal terminals to stationary and moving

sine waves suggests linear summation, whereas Gruntman

et al.,12—who studied responses to flashed and moving bars—

argue for nonlinear summation. Neither of the studies had access

to the waveforms of the actual inputs to T5, which we measured

here. On the basis of this additional knowledge, our modeling

work supports linear summation of adaptive input signals. Addi-

tionally, although T5 responses show apparent suppression in

some regions of the visual field, we found that this does not

require an inhibitory input. Instead, the biphasic character of

the Tm1/Tm2/Tm4 responses in specific stimulus regimes can

reproduce the data without direct inhibition. Furthermore, we

found that the model could account for direction selectivity

when the strengths of its connections were determined directly
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from the connectome data.9 It should be stressed that we are not

proposing that inhibitionplays no role in thedirectionally selective

OFF pathway. For example, the wide-field inhibitory cell CT19,21

may provide wide-field gain normalization.18,41 Such normaliza-

tion could enhance direction selectivity, but we argue that it is

not necessary for producing it.

More generally, the clarification of the computation underly-

ing direction selectivity is a direct consequence of our state-

and stimulus-dependent measurements combined with the

anatomical constraints imposed by the connectome. When

underdescribed, these parameters can lead to diverse algo-

rithms to account for what is ultimately the result of adaptive

encoding.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Octopamine hydrochloride Millipore Sigma 68631

Protease from Streptomyces griseus Millipore Sigma P5147

Deposited Data

FlyEM Optic Lobe Data Janelia FlyEM Project6 http://emdata.janelia.org/

T5 responses to flashing bars Reiser Lab, Janelia12 https://doi.org/10.25378/janelia.c.4771805.v1

T5 responses to sine waves Clandinin Lab, Stanford University11 N/A

Tm1, Tm2, Tm4, and Tm9 responses

to mutiple stimuli ± OA

This paper https://gitlab.com/rbehnialab/flexible-filtering

Experimental Models: Organisms/Strains

D. melanogaster: R71G04-Gal4 Bloomington Drosophila Stock Center RRID:BDSC_39868

D. melanogaster: R35H01-Gal4 Bloomington Drosophila Stock Center RRID:BDSC_49922

D. melanogaster: R24C08-Gal4 Bloomington Drosophila Stock Center RRID:BDSC_48050

D. melanogaster: otd-Gal4 Desplan Lab, NYU42 N/A

Software and Algorithms

Python 3.6 Python Software Foundation https://www.python.org

SciPy SciPy https://github.com/scipy/scipy

Sklearn Scikit-learn https://scikit-learn.org

AxoGraph AxoGraph Scientific https://axograph.com/; RRID:SCR_014284

Stimulus Software This paper https://gitlab.com/rbehnialab/motyxia2/-/tree/whitenoise

Retinotopic Mapping Package Allen Institute43 https://github.com/zhuangjun1981/retinotopic_mapping

Analysis Pipeline This paper https://gitlab.com/rbehnialab/flexible-filtering

DataJoint DataJoint https://docs.datajoint.org/python/

Multiclamp Commander Software v2.2.2 Axon Moleulcar Devices https://support.moleculardevices.com/s/article/Axon-

MultiClamp-700B-Commander-Download-page

Other

Patch clamp amplifier Axon Molecular Devices

MultiClamp700B

https://www.moleculardevices.com/products/axon-

patch-clamp-system/amplifiers/axon-instruments-

patch-clamp-amplifiers; RRID:SCR_018455

Universal Motorized Stage for

Microscopes

Scientifica https://www.scientifica.uk.com/products/scientifica-

universal-motorised-stage

DLP Texas Instruments DLP

LightCrafter 4500

https://www.ti.com/tool/DLPLCR4500EVM;

DLPLCR4500EVM
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Rudy

Behnia (rb3161@columbia.edu).

Materials availability
This study did not generate any new unique reagents.

Data and code availability
Processed data, as well as the Python code used for modeling and analysis, is available at https://gitlab.com/rbehnialab/

flexible-filtering All source code used for visual stimulation is available at https://gitlab.com/rbehnialab/motyxia2/-/tree/whitenoise.
Current Biology 31, 5249–5260.e1–e5, December 6, 2021 e1

mailto:rb3161@columbia.edu
https://gitlab.com/rbehnialab/flexible-filtering
https://gitlab.com/rbehnialab/flexible-filtering
https://gitlab.com/rbehnialab/motyxia2/-/tree/whitenoise
http://emdata.janelia.org/
https://doi.org/10.25378/janelia.c.4771805.v1
https://gitlab.com/rbehnialab/flexible-filtering
https://www.python.org
https://github.com/scipy/scipy
https://scikit-learn.org
https://axograph.com/
https://gitlab.com/rbehnialab/motyxia2/-/tree/whitenoise
https://github.com/zhuangjun1981/retinotopic_mapping
https://gitlab.com/rbehnialab/flexible-filtering
https://docs.datajoint.org/python/
https://support.moleculardevices.com/s/article/Axon-MultiClamp-700B-Commander-Download-page
https://support.moleculardevices.com/s/article/Axon-MultiClamp-700B-Commander-Download-page
https://www.moleculardevices.com/products/axon-patch-clamp-system/amplifiers/axon-instruments-patch-clamp-amplifiers
https://www.moleculardevices.com/products/axon-patch-clamp-system/amplifiers/axon-instruments-patch-clamp-amplifiers
https://www.moleculardevices.com/products/axon-patch-clamp-system/amplifiers/axon-instruments-patch-clamp-amplifiers
https://www.scientifica.uk.com/products/scientifica-universal-motorised-stage
https://www.scientifica.uk.com/products/scientifica-universal-motorised-stage
https://www.ti.com/tool/DLPLCR4500EVM


ll
OPEN ACCESS Article
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Fly Genetics
Flies were reared on standardmolasses-basedmedium at 25�C- 28�C.We used the following drivers to target eachmedulla cell input

to T5: R74G01-Gal4 (Tm1), otd-Gal4 (Tm2, gifted by the Desplan Lab42), R35H01-Gal4 (Tm4), and R24C08-Gal4 (Tm9). Drivers were

expressed homozygously in a w+ background along with a a cytosolic variant of UAS–GFP (a gift from G.Turner). All experimental

animals were collected approximately 24 h post-eclosion.

METHOD DETAILS

Electrophysiology
Flies were anesthetized on ice for approximately 30 s, or until movement ceased. Legs were then amputated below the coxa-femur

joint, and flies were gently mounted in a custom stainless-steel/3D-printed holder before being secured in place with epoxy resin. A

window was cut in the cuticle on the caudal side of the head to expose the medulla, where the cell bodies of Tm cells could be visu-

alized. Dorsal and anterior trachea and fat deposits were gently removed, and 1% protease in physiological saline (see below) was

applied to the exposed brain for 90 s to remove the glial sheath.

During recording, the eyes of the fly remained face down under the holder, and remained dry while viewing the visual stimuli, while

the upper part of the preparation, including the exposed brain, was covered with saline. The saline composition was as follows (in

mM): 103 NaCl, 3 KCl, 5 n-tri(hydroxymethyl) methyl-1Aminoethane-sulphonic acid, 8 trehalose, 10 glucose, 26 NaHCO3, 1

NaH2PO4, 1.5 CaCl2, and 4 MgCl2, adjusted to 270 mOsm. The pH of the saline was equilibrated near 7.3 when bubbled with

95%O2/5%CO2. Saline was perfused continuously over the preparation at 2 mL/min using a gravity perfusion system. To record

in OA conditions, the physiological saline solution was switched to a physiological saline solution containing 10 mMOA via a Y-perfu-

sion manifold.

Patch-clamp electrodes (resistance 8–12 MU) were pressure-polished and filled with internal solution composed of the following

(in mM): 125 potassium aspartate, 10 HEPES, 1 KCl, 4 MgATP, 0.5 Na3GTP, and 1 EGTA, 13 biocytin hydrazide, pH 7.3, adjusted to

265mOsm. Recordings were obtained under visual control using an Olympus BX51 with 60X water-immersion objective mounted on

a Scientifica Universal Motorized Stage, and the preparation was visualized using transmitted infrared illumination. Membrane po-

tential was measured in current-clamp mode using a Multiclamp 700B amplifier, and electrophysiology data were collected using

AxoGraph and analyzed using Python 3.6.

Stimulus Presentation
We built visual stimuli using our own custom extension of the Allen Brain Institute’s retinotopic-mapping package.43 Each stimulus

was warped and projected onto a flat screen aligned with the left eye. To correctly warp the stimulus, we assumed the eye was a

sphere and measured the size of the screen, distance of the eye to the screen, the angle of the eye center relative to the plane

that the screen lay in, and the position of the eye within the screen. Using this information, we mapped pixels to their corresponding

visual degrees.We added an indicator that was synced to the presentation of each stimulus and detected via a photodiode in order to

sync our stimulus to our electrophysiological recordings. For stimulus presentation, we used the PsychoPy package.44 Stimuli were

displayed using a Texas Instrument Lightcrafter 4500 in monochrome mode (green) running at 180 Hz. The mean luminance of the

projector was 1.39W=m2, while the max luminance was 4.37W=m2. Due to the difficulty of maintaining a patched cell for significant

durations of time under multiple conditions, the total duration time of each recording varied from 5 min to 25 min depending on the

health of the individual cell. Recordings were discarded if access to the cell became poor, or if the cell became overly unstable in its

responses.

d White noise stimulus: (Figure 2) our white noise stimulus consisted of a 100-300 s presentation of 5� horizontal bars flickering at

60 Hz with luminance values randomly drawn from a truncated Gaussian distribution. The stimulus was therefore changing across

one spatial dimension and one time dimension, allowing for the extraction of two-dimensional spatiotemporal filters via white noise

reverse correlation. The stimulus was randomly generated for each presentation.

d Full field flashes: (Figure 3, Figure S2) OFF flashes of 20 ms, 40 ms, 80 ms and 160 ms with 10 s intervals were repeated for

four sweeps per recording. While we conducted repeat sweeps within the same stimulus length condition, we randomized between

presentations of different length flashes. High contrast OFF flashes consisted of light decrements from the mean luminance of the

projector to its minimum output, corresponding to a Weber contrast of �1 (Figure 3A), while low contrast OFF flashes consisted

of light decrements from the mean luminance of the projector corresponding to a Weber contrast of �0.1 (Figures S3A and S3B).

d Ternary noise: (Figures S3C–S3E) The ternary noise stimulus consisted of a 120 s presentation of 5� horizontal bars flickering at

60Hzwith luminance values randomly sampled fromWeber contrast steps of�1, 0, or 1 (high contrast condition) from themean lumi-

nance of the projector, or �0.1, 0, or 0.1 (low contrast condition) from the mean luminance of the projector.

d Drifting gratings: (Figure S6) Drifting grating stimulus consisted of 0.5 Hz, high contrast drifting square waves of spatial wave-

lengths ranging from 2.5�, 10�, 12.5�, 25�, 40�, 50�, 80�, 100�, 125�, and 200�. Gratings were presented for 10 s each, in order of

increasing spatial frequency.
e2 Current Biology 31, 5249–5260.e1–e5, December 6, 2021
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Reverse correlation for extraction of white noise filters
We extracted spatiotemporal white noise filters and static nonlinearities via the reverse correlation method as described in Behnia

et al.24 and elsewhere.10,17,23,45 All ‘‘white-noise filter’’ predictions in this study are linear-nonlinear (LN) predictions, as cell response

predictions combine white noise (linear) filters with static nonlinearities.

To extract white noise filters for each cell, we selected continuous, steady-state responses to white noise over a window of time up

to 300 s depending on recording stability. Acrosswhite noise samples for all 4 cell types, the average durationwas 157 s. The shortest

duration was 40 s, and the longest duration was 300 s. Traces were downsampled to 100 Hz, and filters were extracted for a duration

of 5 s. Spatiotemporal filter properties were not significantly affected by different downsampling factors, or by increasing or

decreasing filter duration.

All spatiotemporal filters were space-time separable: thus, after a 2D spatiotemporal filter was extracted via reverse correlation, we

extracted a characteristic 1D temporal filter by selecting the temporal trace at the spatial location with the highest amplitude. These

1D temporal filters were averaged across individual recordings to get a characteristic temporal filter for each cell type (Figure 2A).

Cells that displayed a spatial response to stimuli near the edge of our screen were eliminated from analyses. In order to characterize

each temporal filter in frequency space, we convolved each 1D temporal filter with 1D sine waves of varying temporal frequencies

from 0.1 to 10Hzwith an arbitrary amplitude of 1. Themaximum steady-state amplitude of the convolved response at each frequency

constituted a frequency tuning curve. These tuning curves were normalized and averaged across individual recordings to get a char-

acteristic frequency tuning curve for each cell type (Figure 2B).

We extracted a characteristic 1D spatial receptive field by selecting the spatial profile at the time point with the highest amplitude.

These 1D spatial receptive fields were averaged across individual recordings to get a characteristic spatial filter for each cell type

(Figure 2C). As the white noise stimulus consisted of 5� horizontal bars, these spatial receptive fields had a resolution of 5�.
In order to obtain static nonlinearities, 2D white noise filters were convolved in time and summed in space to obtain (1D) linear pre-

dictions in time that could be comparedwith the (1D) recorded responses. The predicted and actual responseswere binned by ampli-

tude and averaged within each bin across recordings (Figure 2D). Bin size did not significantly affect static nonlinearity shape. For

stimuli that cause small deflections, such aswhite noise, the static nonlinearity only slightly improved fits (Figure S1). The contribution

of the static nonlinearity is more prominent with stimuli that cause large deflections, such as high contrast flashes. In this case, the

negative components of responses have lower amplitudes than the positive components (Figure S2). Furthermore, reduced dynamic

range in the presence of OA likely prevents cells from reaching response amplitudes at which nonlinear processing effects are seen.

In order to compare flash responses to predictions based on extracted white noise filters, each spatiotemporal white noise filter

was convolved in time with a 2D flash stimulus of the appropriate duration and summed across space. The resulting 1D linear pre-

diction in time was then transformed via the static nonlinearity, resulting in a LN prediction. These LN predictions were then averaged

(Figures 3A and S3A). The same approach was used to compare drifting grating data with white noise filter predictions (Figure S6).

Parameter Fitting
We parameterized both extracted white noise filters and flash responses in order to compare Tm cell changes across conditions. A

band-pass filter responds strongly to stimuli within a certain frequency range, and attenuates stimuli with frequencies outside of this

range. We define a biphasic filter, or response, to mean that there are two distinct ‘‘lobes’’ in the filter or response. The strength of a

biphasic filter’s band-pass properties, or the amount it attenuates frequencies outside of its peak sensitivity, depends on the ratio of

positive to negative lobes in the shape of filter. As our temporal filters show two distinct lobes, we fit them using a biphasic function

(see below).

Parameterization of White Noise Filters
Spatial receptive fields in all scenarios were fit to aGaussian function gðxÞ = e�ðx�mÞ2=2s2 . Themean temporal filters for Tm1, Tm2, Tm4

and Tm9 were similarly fit with a biphasic function in time t:

fðtÞ = 1

t21
t$e�t=t1 � c$

1

t22
t$e�t=t2 (1)

The two lobes of the biphasic function are determined by constants t1 and t2. For parameterizing temporal filters from our white

noise analysis, we set c = 1. This constrained the convolution of the above function with a constant stimulus to integrate to zero, thus

fitting the band-pass character of recorded cells. Recording responses to long, 10 s flashes of light confirmed that these neurons are

indeed band-pass, as their responses return to baseline during the course of the stimulation (Figures S2A and S2B). These param-

eterizations did not adversely affect the tuning properties of the filters for each cell type (Figure S4). For parameterized flash

responses, c was unconstrained. All functions were parameterized using scipy.optimize.curve_fit.

We derived frequency tuning curves for parameterized white noise filters by convolving them with 1D sine waves with temporal

frequencies varying from 0.1 to 10 Hz. The tuning curve consisted of the maximum amplitude of the steady state response at

each frequency (Figure 4C). These frequency tuning curves were identical to tuning curves derived analytically via transfer functions

(not shown). The full width half max (FWHM) and peak frequency was calculated numerically (Figure 4D). To compare flashes with

white noise filters in the same parameter regime, we generated white noise filter LN predictions of 160 ms flashes (Figures 4A

and 4B) and plotted them alongside parameterized 160 ms flash responses. For Tm9, we parameterized spatial properties based

on the population with narrower receptive fields, as these more closely matched the EM receptive field prediction from Shinomiya
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et al.9 Across cell types, we did not find center-surround structure in the spatial receptive fields extracted from our white noise

stimulus (Figure 2C), although we did find evidence for weak center-surround structure from the responses to drifting gratings

(not shown).

Linear Regression
In order to determine if our electrophysiological recordings of Tm1, Tm2, Tm4 and Tm9 could match electrophysiological recordings

of T5, we applied linear regression of Tm1 and Tm9 flash responses to recorded T5 responses from Gruntman et al.12 The authors of

this paper recorded individual T5 cell responses to static vertical bar flashes of width 2:25�, 4:5� and 9� at different spatial locations,
and for a duration of 40 ms and 160 ms, for a total of six conditions. T5 traces from Gruntman et al.12 were accessed via https://

figshare.com/collections/Simple_integration_paper_data_and_code/3955843.

We required coefficients to be strictly positive so as to maintain the sign of the input, and also did not fit an intercept under the

assumption that all T5 recordings were preprocessed such that they had a baseline of zero. Regression was done using the sciki-

tlearn LASSO module (since it allows positive weight constraints), with a= 0:0001 (a= 0 equivalent to a simple linear regression).

We first applied linear regression to the average T5 responses for each bar location and condition (Figures 5A–5C; Figure S5). We

then applied linear regression to individual T5 traces for each T5 cell, for each bar location and condition (Figures 5D–5F).

As input to the linear regression, we used: (1) Tm1 and Tm9 white noise LN predictions for 40 ms and 160 ms flashes, as well as (2)

measured Tm1 and Tm9 response to 40 ms and 160 ms flashes, and (3) measured Tm1 and Tm9 response to 40 ms and 160 ms

flashes in the presence of OA (Figures 5A and 5B). None of these inputs were parameterized.

Since our linear regression did not use an intercept term, we used the square of the sample Pearson correlation coefficient r2 as our

measure of goodness of fit, instead of the coefficient of determination R2.46 r2 values were averaged across spatial locations for each

condition and linear regression fit (Figure 5B).

Gruntman et al.12 also recorded T5 responses to moving bars consisting of 20/40/80/160 ms consecutive flashes, across 2:25�,
4:5� and 9� widths. In order to predict the T5 response to moving bars, we summed the weighted Tm1 and Tm9 flash responses

with appropriate time delays for the preferred direction and (opposite) null direction. The regression coefficients fit to the static T5

data were used for each matching condition (e.g., the coefficients from the 160 ms, 9� static condition were used to predict the

response to the 160ms, 9� moving bar condition, etc.). Both the PD andND summed traceswere then scaled by a single ‘‘gain factor’’

obtained by a separate linear regression on the combined PD and ND traces (Figure S5D). Notably, the DSI values of the T5 moving

bar data were well matched by our Tm1+Tm9 flash data in both baseline and OA conditions. This motivated us to build the connec-

tome-constrained model.

Model Construction
We built our framework for T5 based on established EM connectivity and an assumption of positivity for all Tm1, Tm2, Tm4 and Tm9

inputs onto T5. Specifically, Tm1/Tm2/Tm4were centered and Tm9 was offset by Dx = 5�.10,47 The output of each of these cells was

assigned a positive (cholinergic) connection weight proportional to EM synapse counts before being summed (Figure 6A, see below).

In order to construct a white noise model of T5 based on LN predictions for each cell type Tm1, Tm2, Tm4 and Tm9, 2D spatio-

temporal receptive fields for each cell were constructed by taking the outer product of the parameterized Gaussian spatial receptive

field gðxÞ and the temporal filter fðtÞ:
Dðx; tÞ = gðxÞ5fðtÞ (2)

A given 2D stimulus in space-time Sðx; tÞ is convolved with each spatiotemporal receptive field in time (but not in space), and then

summed over space to give a 1D time course for each cell Tm1, Tm2, Tm4, Tm9. In discrete time this is:

y½t� =
X
x

X
t

D½x; t�S½x; t� t� (3)

Finally, the mean of the static nonlinearities extracted via white noise analysis for each cell were parameterized by a softplus

function:

hðyÞ = c log
�
1 + eðay +bÞk

�
+d (4)

where a determines the sharpness of the ‘‘bend,’’ b translates the softplus curve along the x axis, themultiplicative factor c controls

the angle/slope, d determines offset along the y axis, and the exponent k increases the curvature. The LN output of each cell was then

normalized based on the numerical frequency tuning curve (so that the maximum possible gain across all frequencies was 1). Finally,

Tm1, Tm2, Tm4 and Tm9 were scaled in a relative manner determined by the ratio of synapse counts from EM connectome data (see

below).9

In order to construct a flashmodel of T5 based on the flash responses of Tm1, Tm2, Tm4 and Tm9, we parameterized responses to

20/40/80/160 ms flashes and constructed spatiotemporal receptive fields by taking the outer product with parameterized spatial

receptive fields derived from white noise spatial filters with a spatial resolution of 2:25�. In order to simulate responses to moving

bars, we summed temporal responses at each location with appropriate temporal delays for the PD and ND directions. We did

not explicitly model bar width (as we had Tm responses to full field flashes but not to different bar widths), hence the predictions
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for each model in Figure 6E are the same across the x axis. Like the white noise model, relative scaling between Tm1, Tm2, Tm4 and

Tm9 was determined by the ratio of synapse counts from connectome data (see below).9 Spatial receptive fields were those ex-

tracted from white noise. We did not include static nonlinearities, as our recorded flash responses already represent the nonlinear

processing properties of each cell.

Direction Selectivity Index
In order to match measurements of direction selectivity between our model output and those used in the T5 datasets, we use two

metrics that we call DSImax and DSImag.

Wienecke et al., 2018,11 inspired by,48 used the ‘‘peak-to-trough’’ response to calculate DSImag:

DSImag =
jPDj � jNDj
jPDj+ jNDj (5)

where jPDj represents the response magnitude to motion in the preferred direction, and response magnitude was calculated as

95th percentile minus 5th percentile. This works well to characterize steady-state responses to sine waves, and this metric is

used in Figure 6C for both the Wienecke et al.11 T5 sine wave data and the Gruntman et al.12 T5 sine wave data. However, this mea-

sure is less amenable to transient flash responses. DSImag ASAP2f values (Figure 6C) were provided by Wienecke et al.11 DSImag

values for T5 electrophysiology sine wave data from12 were calculated using average peak and average trough values for both

PD and ND traces.

Gruntman et al.12,37 used the following metric to describe their flash responses:

DSImax =
maxðPDÞ �maxðNDÞ

maxðPDÞ (6)

where each response max is defined as the 0.995 quantile within the stimulus presentation window. However, this does not take

into account the ND amplitude in the denomenator, and is possibly susceptible to spuriously large DSI values due to noise.48 We

therefore used a more conservative DSImax for flash responses:

DSImax =
maxðPDÞ �maxðNDÞ
maxðPDÞ+maxðNDÞ (7)
Connectome Data
T5 synapse-level connectomic data was accessed from the comprehensive electron-microscopy (EM) reconstruction of inputs to T4

and T5 cells in the Drosophila optic lobe by Shinomiya et al.9 Detailed data from twenty reconstructed T5 cells is available, with syn-

apse counts for each presynaptic cell Tm1, Tm2, Tm4, and Tm9 from various columns (https://flyem.dvid.io/fib19-grayscale ac-

cessed June 2020; the updated link is http://emdata.janelia.org/optic-lobe/). For a given T5 cell, we summed the synapse counts

for each input (e.g., the synapse counts of Tm9 from column ‘‘K’’ and Tm9 column ‘‘C’’ were summed) and calculated the relative

ratio of each of the four cell types. As reported in the study, Tm9 cells were consistently clustered on the leading edge of a given

T5 cell, while Tm1/Tm2/Tm4 cell synapses were clustered in the center of T5 dendrites. We therefore made the reasonable assump-

tion that all synapse counts for each cell from various columns should be treated as a single offset (Tm9) or centered unit

(Tm1,Tm2,Tm4). Twenty model instances were generated with these relative weight ratios, and the average PD tuning, ND tuning

and DSI tuning were calculated (Figures 6B and 6C). The same approach was applied to flash models (Figures 6D and 6E). While

a wide range of relative weight combinations confer direction selectivity on T5, we found that EM-based synaptic counts provide

good fits across multiple models, suggesting that they are a reasonable estimation of synaptic weights in this system.

In order to assess dependence on EM weight ratios, we randomized weight ratios ‘‘within column’’ by fixing the Tm9 value at 0.45

(the EM mean for Tm9) while generating 20 random values each for Tm1/Tm2/Tm4 such that they summed to 0.55. This leads to an

increase in overall variance and decrease in DSI (Figure S6F, middle). We also randomized all ratios for Tm1, Tm2, Tm4 and Tm9 i.e.,

‘‘between columns’’; this led to a large increase in variance and a degradation in DSI (Figure S6F, right).
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