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Abstract 

We study the periodic solutions of a two-cell network consisting of a relaxation oscillator and a bistable element. The aim 
is to understand how the frequency and wave form of the network depend on the intrinsic properties of the cells and on the 
strength of the coupling between them. The network equations constitute a fast-slow system; we show that there are four 
curves of saddle-node points of the fast system whose geometry in parameter space encodes information about the wave form 
and frequency. These curves give information about the value of the variables at which transitions are made between high and 
low voltage states for either of the elements, and how those transition points in phase space depend on the coupling strength. 
Furthermore, we develop a new geometric method to construct the curves of saddle-nodes from families of curves associated 
with the equations for each of the two cells. The construction allows one to see how changes in either of the elements affects 
the wave form of the network output. The analysis also shows that the network can produce unintuitive behavior. For example, 
though electric coupling may keep the network pinned longer at a higher or lower voltage level than the uncoupled oscillator, 
larger values of the coupling strength may be less effective at this pinning. © 1998 Elsevier Science B.V. All rights reserved. 

Keywords: Oscillations; Wave form; Bistable element; Electrical coupling 

I. Introduction 

Electrical coupling between neurons is often modeled by discrete diffusion. If  the cells being coupled are identical, 
it is clear that synchronous behavior is possible. The effect of  the coupling is less clear when the interacting cells 
are fundamentally different in their uncoupled dynamics. This paper focuses on the interaction of  an oscillator and a 
bistable cell; the oscil lator is of  a relaxation type, mimicking the envelope of  spikes of  a bursting neuron. The study 
is motivated by a subnetwork in the crustacean stomatogastric ganglion in which the pacemaker is a pair of  such 
electrically coupled cells [ 1,2]. One purpose of  this paper is to clarify how the interactions of  the dynamics and the 
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Fig. 1. Graphs of v ~ f ( v ,  w) for different values of w. The graphs are higher for lower values of w, and the shapes are not necessarily 
the same, though they are all assumed to be qualitatively cubic. 

f(v,  w ~ h ( v , = o  w) = 0 

Fig. 2. Eq. ( 1.1 ) has a stable limit cycle with two fast and two slow pieces. 

coupling leads to changes in relative timing of the on and off portions of a burst. The clarifications will allow us to 
make detailed predictions about the range of possible behaviors of such a network. 

We shall use simple descriptions of the oscillator and the bistable element, but the analysis can be extended to 
more complicated systems with the same basic features. The oscillator will be described by a system of the form 

cAl dv /  dt = f'(v, w), (l . la)  

d w /  dt = ~h(v, w), e << 1. (1.1b) 

In these equations, the v represents the voltage, b"l is the capacitance and the slow variable w is a measure of some 
recovery process. For each fixed w, the function v ~ 7(v, w) is assumed to have a qualitatively cubic shape, and 
Of/Ow < 0 (see Fig. I). The nullcline f ( v ,  w) = 0 is also "cubic," with f >  0 below the cubic and f <  0 above 
the cubic (see Fig. 2.). (For example, if f ( v ,  w) -- f ( v )  - w then all the curves of Fig. 1 are vertical translations 
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Fig. 3. The graph o f x  ~ g(x) is also qualitatively cubic and has three zeros. 
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of w = .f(v).) The function h is chosen to be positive on the right-hand branch of  v ~ f ( v ,  w) over the range 
of relevant w, and negative over the left-hand branch. This insures that (1.1) has a stable periodic limit cycle; in 
the limit ~ ~ 0, the periodic trajectory is as in Fig. 2. An example of a system such as (1.1) is the Morris-Lecar 
equations [3], often used to model the envelope of  a bursting neuron. 

The bistable cell is described even more simply: In the absence of coupling, it is given by ~'2 d x / d t  = ~(x), 
where x is the voltage of the cell and ~'(x) is a cubic shaped function with three zeros, the outer two of  which 
correspond to stable critical points for the uncoupled x equation (see Fig. 3). Its recovery processes are omitted, 
and the equation describes only the fast dynamics of the voltage between two stable states. 

The cells are coupled via diffusion of electrical current; this is modeled by discrete diffusion of the voltage 
variables. Thus, the full equations are 

d d 
~ l d v / d t =  f ' ( v , w ) + - ( x - v ) ,  d w / d t = ~ h ( v , w ) ,  ~ 2 d x / d t = g ( x ) +  (v - x), 

p l - p  

where ~ << 1. Here p represents the ratio of  the surface area of the oscillator to the total surface area of  the two 
cells, and d is the strength of  the electrical synapse. 

The above equations can be simplified by letting c] = P~'I, c2 = (1 - P)~2, f = p f ,  and g = (1 - p)~'. The 
equations then become 

Cl dv/dt  = f ( v ,  w) + d(x - v), dw/dt  = ~h(v, w), c2 dx/dt  = g(x) + d(v - x). (1.2) 

These equations have two fast and one slow variable, and a parameter d. We are interested in finding the periodic 
solutions of  the coupled system (1.2), and in understanding how the coupling and the intrinsic properties of the cells 
determine the wave forms of the output of  the coupled network. We shall construct the periodic solutions by first 
constructing singular solutions in the limit ~ --+ 0. 

Singular solutions to ( 1.2) are constructed as the union of solutions to simpler equations. The "fast equations", 
whose solutions are the jumps between the slow segments of  the trajectory, are 

c l d v / d t  = f ( v , w ) + d ( x - v ) ,  c2dx/dt  = g ( x ) +  d ( v - x ) .  (1.3) 

In (1.3), w and d both act as parameters. The slow segments are determined by 

dw/dt  = Eh(v, w), (1.4) 

where v = v (w, d) is the v-component of a (w, d) dependent critical point of the fast equations (1.3). The "matching 
condition" is that each fast solution has as its limit points (as t ~ ±c~)  the end points of  adjacent slow segments. 

There are different kinds of  singular solutions for different classes of  singularly perturbed equations such as (1.2), 
depending on the stability of  the relevant critical points of  the fast system. In our case, the relevant critical points of  
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( 1.3) turn out to be the stable ones, which will be shown to be bounded by curves (in the w, d plane) of parameters 
at which (1.3) has a saddle-node point. It will be shown that each fast segment begins at a saddle-node; equivalently, 
each slow segment ends when the trajectory reaches a saddle-node for ( 1.3). For such singular solutions, it is proved 
in [4] that for ~ << 1, there are nearby solutions to the full equation (1.2). Thus, we are free to concentrate on the 
behavior of  the singular solutions. We note that the periodic solutions that we construct are asymptotically stable. 
This is discussed more in Remark 2.4 below. 

For two-dimensional relaxation oscillators, as in Fig. 2, it is easy to construct the singular solution from 
the cubic-shaped nullclines of  the fast variable. The singular solution moves along that nullcline and jumps 
at each of its "knees"; each knee, or local extremum of the nullcline, is a saddle-node for the fast dynamics. 
In (1.2), the singular periodic solutions again move along a one-dimensional submanifold, which is the "slow 
manifold" of  the system, and jump at points on the slow manifold that are saddle-nodes for the fast dynam- 
ics. However, these slow manifolds and their saddle-node boundaries are now no longer as evident from the 
equations. 

In this paper, we give two kinds of results. One set of  results (Section 3) concerns the construction of the saddle- 
node boundaries from the shapes of  the v --+ f ( v ,  w), x ~ - g ( x )  curves and their relative placement. The other 
set (given in Section 2) shows how one can deduce the wave forms and frequency of the periodic solutions from 
these saddle-node boundaries. Using the two sets of results, we can see how changing f or g or the coupling strength 
d can change the periodic solution. 

More specifically, Section 2 contains the construction of  the periodic solution, once the saddle-node curves are 
known (e.g. from numerical calculation or the construction of Section 3). Some technical points are only stated 
there, with details postponed to Section 4. Without further information, this gives the shape of the trajectory in 
phase space, but not necessarily the time dependence. However, if the nullcline h(v, w) is relatively flat over the 
slow branches of the trajectory (as in Fig. 2), the saddle-node curves also turn out to give qualitative information 
about the times spent on each branch. We show that for some classes of  functions f ,  g there is a finite value of  
d for which the periodic trajectory is held for the longest time on a given branch. Thus, though the electrical 
coupling can act to pin the network trajectory to its low or high branch for a longer or shorter time than the 
trajectory of the uncoupled oscillator, larger values of  the coupling will not necessarily be more efficient at doing 
this. 

We are also able to deduce conditions on the saddle-node boundary curves for which the behavior is even less 
intuitive. For example, we see how changes in either of the circuit elements, without changing coupling strength, 
can drastically change the behavior of  the circuit, e.g. acting to functionally couple or uncouple the circuit. We also 
show that there are conditions under which the bistable element jumps ahead of the oscillator that is "causing" the 
jump. There are other conditions for which there is an interval in d such that the oscillator is unable to get the bistable 
to jump with it, while at both higher and lower values of  d, the elements do jump together. Another unexpected 
conclusion is that electrical coupling can act to turn the bistable element permanently to its low or high position. 
Depending on the properties of h, coupling with the bistable element may also keep the oscillator permanently in 
its low or high position. 

One difficult part of Section 2 is the determination of where each fast portion of  a singular trajectory goes when 
it leaves a saddle-node point of  ( 1.3). It is not hard to show, for these equations, that the fast portion must go (as 
t -+ ~ )  to another critical point. However, for some regions of  the d, w plane, there is more than one stable critical 
point of (1.3). For general equations, the t --~ ~ limit of  particular trajectories cannot be deduced simply from the 
position of the critical points of  the fast equation. By contrast, for equations of  the form (1.3) we show that, at a 
non-degenerate saddle-node of  the system, the unique unstable manifold must tend to the "nearest" other critical 
point in the "correct" direction, which is shown to be well-defined. Using this, we are able to provide some rules 
governing the fast jumps between the slow manifolds. 
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In Section 3, we show how the shapes of the curves v --~ f ( v ,  w) and x ~ g(x) ,  as well as their placement 
with respect to one another, determine important features of the saddle-node boundary curves in the d, w plane. The 
techniques also show how the ratio p of the surface area of the oscillator to the total surface area of the two cells 
affects the position of the curves. To construct the curves of saddle-nodes, we introduce a new geometric method 
for reading off the qualitative shape of the saddle-node curves from the shapes of v ~ f ( v ,  w), x ~ g(x)  and 
their placement. Though we are interested in the value of w at which a saddle-node of (1.3) is reached for a fixed d, 
it turns out to be easier to construct the sets of stable critical points of (1.3) for fixed w and varying d; the curves we 
seek are the boundaries of these sets. The construction makes strong use of the structure of (1.3), particularly the 
fact that the coupling currents are equal and opposite. Section 3 states the results connecting the equations to the 
shapes of the saddle-node curves, and gives the main ideas of the proofs; the technical points are again postponed 
to Section 4. 

Section 4 contains mathematical details postponed from previous sections. Section 4.1 discusses the construction 
of the saddle-node curves via the implicit function theorm, and makes explicit the conditions for having non- 
degenerate saddle-nodes. It also contains the proof that, along a slow trajectory, stability for the fast system is lost 
at a saddle-node, not through a Hopf bifurcation. Section 4.2 shows that for the electrically coupled system, the 
projection of the full trajectory to the v, w plane is qualitatively like that of the uncoupled system. Section 4.3 proves 
assertions in Section 2 about the destinations of the fast jumps. Section 4.4 gives the proofs of the assertions in 
Section 3 connecting the geometry of the equations with the shapes of the trajectories in phase space (and therefore 
the times in the high and low voltage modes). 

The discussion in Section 5 contains two parts. The first concerns a motivating example from the perspective of 
the theory developed in the paper. The example, from [2], deals with a pair of cells in the crustacean stomatogastric 
ganglion that are electrically coupled, and that have been modeled in simulations by equations having the form (1.2) 
plus a slow current added to the bistable element. The simulation in [2] shows how that coupled pair, but not the 
oscillator alone, is capable of regulating itself so that the proportion of time the cells burst does not change when 
the frequency is modified (e.g. by current injected into the oscillator). This regulation is known as "constant duty 
cycle" behavior. The theory of this paper addresses the prior question of how the extra slow current can modulate 
the times in the active position to compensate for imposed changes in the time spent in the inactive period. We 
also show, from the geometry, why the equilibrium produced in [2] is a stable one. The second part of Section 5 
discusses related work and extensions of the current work. 

2. Saddle-node curves and singular solutions 

We first give some information (to be proved in Section 5.1 ) about the saddle-node curves. We then show how the 
singular solutions are constructed once the saddle-node curves are known. Finally, we discuss the kind of information 
that can be read off from knowledge of the saddle-node curves. 

2.1. The four  saddle-node curves 

There are four curves in d, w space that are of particular interest. These are the projections to d, w space of the 
boundaries of four two-dimensional surfaces in v, x, d, w space that are the stable critical points of (1.3). (The latter 
corresponds to the "slow manifold" of (1.2).) The projected curves are bounded at d = 0 by four points that we now 
describe. Assume that f ( v ,  w) and g(x)  are cubic as in Figs. 1 and 3. Let XL and XH denote the two stable critical 
points of dx /d t  = g(x).  (see Fig. 3.) We denote by w = WL and w = WH the two values at which v ~ f ( v ,  w) 
has a "knee" (i.e., Of~Or = 0), where f = 0, see Figs. 4(A) and (B). Let VL denote the value of v on the lower 
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Fig. 4. The graphs  of  v ---* f ( v ,  w) at w = WL, WH. (A) At  w = tVL, the local  m i n i m u m  of  f takes the value f = 0. (B) At  w = WH, 
the local  m a x i m u m  takes the value f = 0. 

branch corresponding to this knee for w --//3 L. Similarly, OH is the value of  v on the higher branch corresponding 
to the value w = wn. At  d = 0 there are four saddle-nodes. They are: 

HH: V=VH,  X = X H ,  W = W H ,  LL: V = V L ,  X----XL, W = W E ,  (2.1) 
HL: v = o H ,  X = X L ,  W = W H ,  LH: V = V L ,  X = X H ,  W = W L .  

It will be proved in Section 5.1 that there is a curve of  saddle-nodes (in v, x, d, w space) ending at each of  the points 
of  (2.1). These curves can be parametrized by d, and are smooth at almost all points. We shall refer to those curves 
by the name of the point at d = 0: HH, LL, HL or LH. Sometimes, when the meaning is clear, we shall also use 
HH, etc. to refer to the projection of the curve to the d, w space. For LH and HL, the boundary consists of  more 
than one section parametrized by d. When we say saddle-node, we shall always mean a critical point of  (1.3) with 
one negative and one zero eigenvalue. 

In Section 3, we give conditions on f and g under which the HH curve, projected to the d, w plane, may have 
any of  the shapes in Fig. 5. In each of the cases, the curve begins at d = 0, w = WH, can be written as the 
graph of w = w(d), and has a vertical asymptote. Depending on the choices of  f and g, the curves may have w 
decreasing as d increases (case A), w increasing as d increases (case B), or w not monotonic in d (cases C and 
D). The vertical asymptote can be either to the left of  w = WH (cases A, D) or to the right (cases B, C). The filled 
in area denotes the parameter values for which (1.3) has stable critical points. For the LL curve, possible cases 
are the mirror images of  those in Fig. 5, with the initial point at w = WL, d ---- 0. As discussed in Section 3, the 
pictures in Fig. 5 are not a complete classification; they are intended to illustrate some of  the possible behaviors 
of  the curve. As will be seen below, a change of  shape of  one or more of  these curves (by changing f and/or 
g) changes the singular trajectories. In case D, the singular solution can have peculiar properties, described in 
Section 2.3. 

The LH and HL curves are more complicated. Under conditions specified in Section 3, the LH curve begins at 
d = 0, w = W L  and is parametrized smoothly by d for d < dmax < oo. There is another branch of  the boundary 
curve, also parametrized by d for 0 < d < dmax (see Fig. 6(A) and (B)). For some values of  w, there is more than 
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Fig. 5. Some possible shapes of HH saddle-node curves. All are functions w = w(d), and all have a vertical asymptote. 

A) B) 
d d 

w w 

WL ~r WL 

Fig. 6. Some possible shapes of LH saddle-node curve. There is a horizontal asymptote at d = 0, and a point at which the curve is not 
smooth. 

one interval in d with stable critical points. The HL boundary is analogous to the LH one, with mirror image shapes 
and initial point at d = 0, w = WH. 

2.2. Construction of the singular orbits 

We now discuss how the saddle-node curves and the manifold h(v, w) = 0 determine a singular periodic orbit. 
We assume for this exposition that we are dealing with Eqs. (1.2) for which there are no stable critical points for 
(1.3) other than those bounded by the HH, LL, HL and LH curves. We will refer to the branches of stable critical 
points by the label of  the curve that bounds them. To have periodic orbits, at some value of d, with a slow segment 
on a given branch of  stable critical points of (1.3), we also require that the manifold h(v, w) = 0 does not intersect 
that branch for that value of  d. 
(i) Slow segments. Along a slow segment, d is fixed and w changes according to (1.4). In (1.4), v = v(w, d), where 

the latter is a critical point of  (1.3) uniquely determined (by continuation) by being on a branch of  critical points 
with one of the four designated boundary curves. When v is on its high branch, w is always increasing. When 
v is on its low branch, w decreases. Thus, the trajectory traverses a horizontal line in w, d space, in a direction 
that depends on the branch of  critical points of  the fast system. On the HH and HL branches, w increases; on the 
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Fig. 7. Projection onto d,w space for a periodic trajectory whose slow portions traverse between the LL and HH branches. On HH (resp. 
LL) the slow portion moves with w increasing (resp. decreasing). 

LL and LH branches, w decreases. Unlike the case of  a single two-dimensional relaxation oscillator, the slow 
trajectory does not follow a nullcline or even any of the cubics of Fig. 1. However, it is qualitatively similar, in 
that the projection of  the trajectory to v, w space satisfies dv /dw < 0 along slow segments, as in Fig. 2. The 
proof of this is given in Section 4.2. 

To put together the slow segments and the fast jumps, we start with the case in which the only stable critical 
points are those bounded by HH and LL. (For many equations, including those whose saddle-node curves are 
given in Fig. 6, there are no HL or LH stable points for d large enough.) For definiteness, we illustrate one 
possible set of  HH and LL curves in Fig. 7. The region filled in with vertical (resp. horizontal) lines are the 
values of  d, w for which (1.3) has a stable critical point corresponding to both v and x high (resp. low). For a 
fixed value o l d ,  the value of  w in a slow segment travels along the dark horizontal line segment in Fig. 7, with 
end points at w = w0 and w = Wl on the saddle-node curves. While w is moving to the right, v = v(w, d) 
and x = x(w,  d) are coordinates of  the stable critical point of  (1.3) that is a continuation of the point on 
the saddle-node curve HH; while w is moving to the left, they are coordinates of  the critical point that is the 
continuation of  the point on the saddle-node curve LL. If h(v, w) = 0 does not intersect the HH or LL slow 
manifold (in 4-space) along the slow segment, the trajectory of  the slow system must exit at a saddle-node 
curve. At w = w0 the trajectory jumps; the values of d and w remain fixed, but the values of  v and x jump 
from the coordinates of  the LL saddle-node point to those of  the HH stable point, and similarly in the other 
direction. This statement is a special case of the more general rules discussed below (and proved in Section 4.2) 
concerning the behavior of  the fast segments. 

(ii) The fast jumps. For some values of  d and w, there may be more than one stable critical point to which the fast 
trajectory might go. Furthermore, it is not clear, without analysis of the fast dynamics (1.3), that the system 
must jump to another critical point. In this section, we describe the rules that constrain the fast behavior; the 
proofs are in Section 4.2. 

The main result of  this section says that, on leaving a slow segment at a saddle-node for (1.3), the fast 
dynamics takes the trajectory to the "nearest" other critical point in the "correct" direction. More precisely, a 
non-degenerate saddle-node (~, 2) has a unique unstable manifold, which is the jump trajectory (Fig. 8). The 
lines v = ~ and x = 2 divide the v, x plane into quadrants. Another critical point is "in the correct direction" 
if it is in the same quadrant as the unstable manifold. We say that a critical point (vl, xt) is a neighboring 
point if it is in the same direction and it is a closest such one: there is no other critical point (v2, x2) in that 
quadrant having either Jv2 - ~1 < Ivj - ~1 or Ix2 - xl < Ix1 - xl. The desired information is the t ~ c~ limit 
point of the jump trajectory. The following theorem gives that information, showing that the closest point in 
the x-coordinate is also the closest point in the v-coordinate, and that this is the limit point. 
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Fig. 8. Phase plane diagram near non-degenerate saddle-nodes for (1.3). There is only one trajectory exiting the critical point. 

Theorem 2.1. 
(a) For Eqs. ( 1.3) any non-degenerate saddle-node has exactly one neighboring critical point, which is itself either 

a sink or a saddle-node. 
(b) The unstable manifold of the non-degenerate saddle-node critical point tends to the neighboring critical point. 

Theorem 2.1 gives a characterization that allows the jump destination to be easily determined by computing only 
some local behavior at the saddle-node and the critical points of  (1.3) for the values of  d, w at which the jump 
occurs; no global computations of the dynamics need to be made. The following corollaries say that, in many cases, 
the outcome can be predicted from knowledge of the saddle-node curves (which tells us, for given d, w, which of  
the HH, LL, LH or HL sets have a stable critical point at that d. w) without doing even those computations. These 
corollaries are proved in Section 4.3. 

Corollary 2.2. Suppose that there are no stable critical points other than those bounded by HH, HL, LH and LL. 
The characterization in Theorem 2.1 implies the following: 
(1) If  d is sufficiently small, the unstable manifold from an HH (resp. LL) saddle-node tends to an LH (resp. HL) 

stable critical point. (That is, with small coupling, the v variable jumps to a different branch, and the x-variable 
stays on the same branch.) 

(2) For some fixed d and w at which there is a non-degenerate HH saddle-node, suppose that an LH or HL stable 
point exists and is in the third "quadrant" with respect to the HH saddle node (i.e. both the x and v coordinates 
are lower than those of  the HH point). Then the unstable manifold from the HH saddle-node tends to a point in 
the LH or HL branch, as opposed to LL. (In other words, if it is possible for only one variable to jump to a stable 
point, rather than both, this is what happens.) A similar statement holds for a non-degenerate LL saddle-node 
point. 

(3) Suppose the LH curve is as in Fig. 6 (i.e. consists of  two smooth curves, continuous at the boundary point). 
Also assume that cl/c2 is sufficiently close to 1 or d is sufficiently small. Then a fast trajectory, which leaves 
LH on the left-hand part of  the curve, tends to a HH stable point. Similarly, a fast trajectory leaves HL on the 
right-hand part of  the curve and tends to a LL stable point. 
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Remark 2.3. When Cl ----- c2, the point at which the LH or HL curve is not smooth is also the only point on the 
curve at which a saddle-node may be degenerate. (This is proved in Section 4.1.) The non-degeneracy of  the other 
saddle-node points is used to determine the direction of its unstable manifold, to use Theorem 2.1. For Cl/c2 near 
1, this direction can still be found for points outside a neighborhood of  the non-smooth points, e.g., saddle-node 
points with a small d coordinate (depending on cl/c2). 

Remark 2.4. The solutions described above are asymptotically stable. To see this, we consider a two-dimensional 
slice in x, v, w space transverse to a slow portion of  the orbit, which lies along a piece of  a one-dimensional slow 
manifold for (1.2). Each periodic orbit is a fixed point of  the singular Poincar6 map P defined on such a slice. By 
construction, away from the jump points, the points of  the slow portion of  a periodic orbit are stable critical points 
for (1.3), and hence the slow manifold is attracting. That the constructed fixed point of  P is asymptotically stable 
then follows from the work in [4]. 

2.3. Some implications 

From the behavior of  the slow segments and the rules governing jumps between them, we can read off many 
facts about the possible singular orbits of  (1.2), and how these can change as parameter values (including coupling 
strength) are varied. We list some of  these conclusions here. For all of  these cases, we are assuming that h(v, w) = 0 
does not intersect the slow manifolds in question, so it does not impose a barrier to motion. 
(1) Suppose the curves v ~ f ( v ,  w) and x ~ - g ( x )  and the value of d are such that the HL and LH slow 

manifolds do not exist. Then the singular orbit goes back and forth between the HH and LL manifolds, moving 
to the right on HH and to the left on LL. That is, v and x jump simultaneously, with the jump points given by 
the saddle-node boundaries associated with the given value of  d, as in Fig. 7. 

(2) If  d is sufficiently small, the singular orbit travels between HH and LH or between LL and HL. That is, the 
oscillator continues to oscillate, but does not affect the bistable element enough to cause the latter to jump. We 
can see this as follows: In Fig. 9, a possible configuration of  the HH stable points and LH points is illustrated. 

WL 

~ d d n  L H  

wit  

d 

Fig. 9. Superimposed saddle-node curves for HH and LH. For d < ddn, trajectories leaving HH enter LH. For d > ddn the LH region 
does not exist for the values of d, w along the HH curve. The LL region does exist at those values, since the LL curve lies to the left of 
the HH one, and the LL region consists of points to the right of the LL curve (see Fig. 7). 
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For d < ddn, a slow segment leaving the HH regime will go to the LH critical point, in which x remains high; 
for d > ddn, the latter regime does not exist and the slow segment goes to the LL critical point. Similarly, there 
is a value d --- dup below which the slow segments from LL go to HL, and above which they go to HH. 

Assume that d < ddn and d is sufficiently small that Corollary 2.2 (3) holds. Then the slow segment on HH 
goes next to LH. On LH, v is in the low state, which implies from ( 1.4) that on this segment w must decrease. 
Hence, the trajectory leaves LH at the left-hand boundary of the possible LH points. At this boundary, there is 
a stable HH point, and by Corollary 2.2 (3), this is the destination of the fast jump. Thus the orbit is of the form 
HH ~ LH ~ HH. For d < dup, we get an orbit LL ~ HL ~ LL. 

(3) For d sufficiently small, both orbits HH --+ LH --+ HH and LL ~ HL ~ LL are stable. It should be emphasized 
that "sufficiently small" depends on the configuration of the curves v ~ f ( v ,  w)  and x ~ - g ( x ) .  Hence, 
a change of  the circuit elements, without changing d, can change the orbits from those in point (1) above 
to orbits in which the oscillator jumps but the bistable does not, thus having a circuit that is functionally 
decoupled. 

(4) One unexpected property of  electrical coupling is the ability of the oscillator to permanently switch the bistable 
element to its high or low position for some ranges of coupling strength d. In general, ddn -¢ duo, e.g. ddn < dup. 
For ddn < d < duo, x can jump down but not up. (This follows from Corollary 2.2 (3).) Hence the coupling with 
the oscillator will turn x permanently to its low position after one full cycle. Similarly, if dup < ddn, there is a 
range o f d  in which the coupling can turn x permanently to its high position within one cycle. (By "permanently 
low" we mean that x has only small oscillations at low voltage.) 

(5) Another unexpected and related property is the existence of  situations in which, as d is changed monotonically, 
there is an interval I in d in which the bistable element does not jump with the oscillator, even though it does 
jump for values of  d both lower and higher. The saddle-node curves for HH and LH which correspond to this 
situation are illustrated in Fig. 10. Note that for d ~ I,  a slow trajectory in HH, traveling with increasing w 
coordinate, exits HH at a parameter value at which there is a stable LH point. Thus, by Corollary 2.2 (2), the 
bistable element remains on its high branch. 

(6) Suppose cj /c2 is close to 1 or d is sufficiently small, so that the conclusion of Corollary 2.2 (3) holds. Then 
there are no orbits with HH ~ LH --+ LL or LL ~ HL --+ HH. That is, once the oscillator has jumped to a 

HH 

d 

T 
l l - -  

WL 

L H  
I [ l l L l l l l l L I I I I I I I l l q " l ~ l l h " a  ~ W  

WH 

Fig. 10. Superimposed saddle-node curves for HH and LH. In this configuration, there is a finite interval I in d for which slow trajectories 
leaving HH cannot enter LH, even though they do so for values of d both higher and lower. 
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d 

SSL 

H H  

I l l l l l l l l l l l [ l l l l l l  

wit  
~ w  

Fig. 11. Superimposed saddle-node curves for HH and HL. In this configuration, for d ~ 1, the trajectories go to HL from HH. Thus the 
bistable cell jumps before the oscillator. 

different state, the bistable element cannot follow after a finite time with the oscillator remaining in its changed 
state. To see this, note that if an orbit goes from HH to LH, then the slow segment on LH has the oscillator on 
the low branch, and hence w is decreasing. Thus, the trajectory exits at the left-hand part of  LH. By Corollary 
2.2 (3), the trajectory jumps to HH. A similar argument holds for LL ~ HL --+ HH. 

By contrast, i t /s possible in some restricted parameter ranges to have a situation in which x jumps, followed 
(a non-zero time later in the singular solution) by v (see Remark 3.4 below). Consider, for definiteness, the 
jump from the HH manifold. In order for the jump to be to the HL manifold (i.e. x jumps, not v), d must be 
small enough that the HL manifold exists, but not so small that the jump is forced to be to the LH manifold. 
The HH, and HL manifolds of such a situation is sketched in Fig. 11 with dEl.  In the HL regime, the v is still 
high, so w continues to increase and hence the slow segment exits HL on the right-hand side of the curve where 
LL (but not HH) is available. Thus the trajectory is HH --~ HL ~ LL. 

Note that the delay from the x-jump to the v-jump is not a property of delays in coupling or duration of the 
jump (which is zero in the singular limit). Rather, it is an emergent property of  the system. 

(7) The shapes of  the saddle-node curves, plus the jump rules, determine the v, w, x coordinates of  periodic solutions 
traversed in the singular (~ --~ 0) limit. The shapes possible for these saddle-node curves (as shown in Figs. 5 
and 6) show how the orbits change as the coupling strength is varied. As can be seen from Fig. 5(A), the 
electrical coupling can reduce the value of  w at which the downward jump takes place, with a larger reduction 
for a larger d. For the case of  Fig. 5(B), the coupling increases the value of  w. Since the v coordinates depend 
on w with dv /dw  < 0, this means the threshold voltage value v (the value of  v at which the jump takes place) 
goes up with coupling in case (A) and down with increasing d in case (B). In cases (C) and (D), the threshold 
for v or w is not monotone in d, and there is a finite value of  d at which the upper value of w on the slow 
segment is maximal. For Fig. 5(D), the thresholds can be on either side of  the uncoupled values for different 
values of d. 

(8) The analysis gives information about the trajectory in phase space, not directly about time on each branch. 
To figure out how the amount of  time spent on each slow manifold is changed by changing d or some other 
parameter, an additional computation has to be made. The time along a slow branch is determined by (1. lb) 
and the saddle-node boundaries of  the slow segments. If  a slow segment is bounded by w = wo and w = wt, 
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then (1. l b) implies that the time to traverse that segment is given by 

/ *  

T : ] [ 1 / E h ( v ,  w)]dw,  (2.2) 
71!(I 

where v = v ( w ,  d) is the v-coordinate of the branch of  critical points on that slow segment. 
As can be seen from (2.2), the time depends not only on w0 and wl but also on v(w, d), which in turn depends 

on information not in the saddle-node curves. In some important cases, however, h (v, w) is essentially independent 
of v. For example, in the Morris-Lecar equations, h(v ,  w)  has the form 

h(v ,  w)  = W~c(V) - w,  (2.3) 

where w = woo(v) is a saturating sigmoidal function as in Fig. 2. For v in the range of the slow segments of  the 
periodic trajectory, woo(v) can almost be constant in v. 

For such cases, we can read off from the saddle-node curves how the time on a given slow segment changes 
with d. For example, in Fig. 7 both boundaries of  the slow segment move outward as d increases; this implies 
that the time on the HH slow segment increases with d. In Fig. 5(C) and (D), depending on the shape of the LL 
saddle-node curves, there can be afinite value of d at which the periodic trajectory is held longest on the HH slow 
segment. 

The same analysis holds in establishing the effects of  changing the equations. If f and/or g is changed without 
changing h, the time on a segment is again given by (2.2), with boundaries given by the saddle-node curves. If h is 
again independent of  v in the relevant regions, the change of shape of the saddle-node curves changes the time on 
the slow segments in a predictable manner. We return to this theme in Section 5, where we show how changes in 
ionic currents of  the bistable element change the shapes of the saddle-node curves, and hence affect the duty cycle. 

In the previous part of  this section, we have assumed that the surface h = 0 does not intersect the surface HH, 
LL, LH or HL of critical points of (1.3). If  there is such an intersection, in general it will be a curve in v, x, w, d 
space. Such a point corresponds to a critical point for the full system (1.2). Thus, a slow trajectory approaching 
such a point will stop, and there will be no oscillation. 

3. Equations and the saddle-node curves 

In this section, we give results that connect the shapes of  the curves v --> f ( v ,  w), x ~ - g ( x )  and their 
placement to the shapes of  the saddle-node curves (or, more specifically, the projection to the d, w plane of the 
boundaries of  the sets of  stable critical points of (1.2)). We start with the HH saddle-node curve; the results and 
proofs for the LL curve are similar. 

Theorem 3.1 below gives conditions that lead to the saddle-node curves in Fig. 5. As we will see, for d small, 
the behavior is determined just by the positions of  VH and XH (as in Fig. 12). But for larger d, more global aspects 
of the graphs v ~ . f (v ,  w)  and x ~ - g ( x )  come into play. Before we state the theorem, whose formal proof is in 
Section 4.4, we discuss its central ideas. 

We can prove directly (Lemma 4.1) that the saddle-node curves are smooth except at isolated points, and they 
can be parametrized by d. However, the proof of that iemma does not provide information about the shapes of the 
saddle-node curves. To determine this, we construct the surface of  stable critical points for which the HH curve is 
the boundary. 

To construct the curve of  saddle-nodes, we consider vertical slices in the d, w plane. We look for the (w-dependent) 
set o f d  within each slice for which there are HH critical points; the boundaries of  these sets form the curve d = d ( w )  
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A) 

v----) f ( v , w )  I x--- )  - g ( x )  

I ! 

v ~ x  

v--) f(v,w) 

B) ,' 
I 

J 

! x ---) - g ( x )  

v ~ x  

Fig. 12. Parts of a curve v --+ f ( v ,  w) and x ~ - g ( x ) .  A critical point of (1.3) corresponds to a pair (v, x) for which f ( v ,  w) = - g ( x ) .  
The value of d for which that pair is a critical point is the aspect ratio (height/width) of the box drawn in figures A and B. 

that we seek. The visual technique we use exploits the fact that, for a critical point of  (1.3), the x and v coordinates 
must satisfy f (v, w)  = - g ( x ) .  Furthermore, 

d = f ( v ,  w ) / ( v  - x)  = g ( x ) / ( x  - v). (3.1) 

Thus, a critical point of  (1.3) with a given w can be visualized by drawing v ~ f ( v ,  w) and x ~ - g ( x )  on the 
same graph, with v, x on the same axis (Fig. 12); a solution corresponds to a pair of  points (v, x)  with f ( v ,  w) and 
g(x )  at the same height, and d is given by the aspect ratio (3.1) of  the small rectangle in Fig. 12. Note that d > 0 
implies that if v > x, then f ( v ) ,  - g ( x )  > 0, as in Fig. 12; if v < x, then f ( v ) ,  - g ( x )  < 0, as in Fig. 12. 

A simple example is shown in Fig. 12 corresponding to solutions for all d > 0 (i.e. all aspect ratios); d = 0 
corresponds to the pair of  points on the v, x axis, and d --- oo to the point with x --  v. A more complicated situation 
is shown in Fig. 13, corresponding to values of  w for which there are solutions only for some values of d. The key 
lemma (Lemma 4.3) says that the interval in d (for fixed w) can be parametrized by v or x; it can be constructed by 
continuation from a point known to correspond to a stable critical point of  (1.3) up to a point at which d' (x)  = 0 or 
d'(v)  = 0. Lemma 4.2 says that such a point must be a saddle-node. 

Fig. 13 shows a situation with OH > Xn, and some curves v ~ f ( v ,  w), w < WH filled in. At  d = 0, there is 
a stable critical point for (1.3) with components x --  xH, and v = oH. For d > 0, the interval in d in which there 
are stable critical points can be parametrized by v, and this is indicated on each v ~ f ( v ,  w) curve as the darker 
interval. The value of  d is computed for each point in the dark interval as the aspect ratio (3.1) of  pairs of  points 
(v, x) at the same height. The bullets not on the v- or x-axis  correspond to points where d ' (v )  ---- 0. Note that the local 
maximum of the curve v --+ f ( v ,  w) is not in general the point at which d(v)  reaches its local maximum; indeed, 
this can be seen from the geometry of the curves, as in Fig. 13, or by calculating the Jacobian of  the right-hand 
side of  (1.3), and seeing that the eigenvalues are strictly negative at the point at which v --~ f ( v ,  w) has its local 
maximum. 

The geometrical construction of the w-dependent intervals in d is done separately for each w. It then remains to 
argue that the intervals can be put together to form a curve such as the ones in Figs. 5 or 6. Here the crucial point 
is that, by Lemma 4.1, the curve is known to be parametrized by d, i.e., each smooth piece of  each of  the curves is 
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x - - )  - g(x)  
w i n c r e a s i n g  

! 

v -9 f ( v . ~ ) - ~ / ~ ~  l 
. .  v-) f(v..)_ 4 ~ ~  ~ 

S • 
• % 

- " " 

I ~, s 

I 

Fig. 13. Parts of curves v -* f ( v ,  w) and x --+ - g ( x )  in the case XH < OH. The curves v ~ f ( v ,  w) can be parametrized by v. The 
dark portion of each curve corresponds to the stable critical points for (1.3). At w = ~, the local maximum of v ~ f ( v ,  (o) intersects 
x ~ - g ( x ) .  These curves are schematic, as are the dark portions and the bullets. 

A) 
I 

s ~ V ~  X x ~ l  t • % 
X L s  " 

• ~ V ~ X  

x - - )  - g (x)  
f(v.w~ ) 
f(v.w*) 

B) x--)- g(x) 
I 

s 

X L d S  %% V H ~ X 11][,,,/'J 
V X 9 

t v - - )  f ( v , w .  ) ~  ,, s 

v - ~  f ( v , ~ v ) - - / ~ ~  "" 
v - ~  f ( v , ~ ) J  I " 

Fig. 14. Some schematic curves v ~ f ( v ,  w) in the case that XH > OH. For pairs (v, x) such that f, - g  < 0, the requirement that d > 0 
forces v < x. As w increases, the curves v -*  f ( v ,  w) pull off the graph of x ~ - g ( x )  on the right-hand branch (A) or the middle 
branch (B) ofx  -* - g ( x ) .  

the graph of  a funct ion w = w ( d ) .  This creates constraints on the curves  in d, w plane and forces the intervals to 
fit together  in ways  shown in Figs. 5 and 6. 

Us ing  these techniques,  we can prove the fol lowing:  

T h e o r e m  3.1.  
(i) Suppose  that XH < VH and, as w decreases f rom w = WH, the curves  v ~ f ( v ,  w )  intersect  the right branch of  

x ~ - g ( x ) .  Assume  that, as some value ~ of  w, the intersection is at the local m a x i m u m  of  v ~ f ( v ,  w ) .  (see 
Fig. 13.) Then the associated saddle-node curve  is quali tat ively like that in Fig. 5(A). The  vert ical  asymptote  
occurs  for a value of  w greater  than tb. 

(ii) Suppose  XH > VH and, as w increases f rom wH, there is a value w* such that the curve v - *  f ( v ,  w )  is tangent  
to the right branch of  x ~ - g ( x )  (see Fig. 14(A)). Then the associated saddle-node curve  is qual i tat ively like 

that in Fig. 5(B). The  asymptote  is at w = w*. 
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Suppose that xH > VH and, as w increases from WH, there is a value of  w such that the curve v -+ f ( v ,  w)  
is tangent to x -+ - g ( x )  along the middle branch of the latter. Suppose that as w increases further, the local 
maximum of  v ~ f ( v ,  w) decreases below the local minimum of  x -+ - g ( x )  (see Fig. 14(B)). Then the 
saddle-node curve is as in Fig. 5(C) or (D). In particular, it takes its maximum in w at a finite value of  d. 
The maximum occurs at the value ~ of w for which the local max of v --+ f ( v ,  w)  equals the local min of  
x -+ - g ( x ) .  The asymptote of  the saddle-node curve may be larger than WH (as in Fig. 5(C)) or less than 
WH (Fig. 5(D)). The asymptote occurs at a value w* of w larger than ~ ,  where ~ is such that v ~ f ( v ,  w)  
intersects the minimum o f x  ~ - g ( x ) .  Fig. 14(B) corresponds to the case w* > WH. 

Remark  3.1. The behavior of the saddle-node curves for d small is intuitively clear. At d = 0 the saddle-node point 
is at w = WH, where v -+ f ( v ,  w)  has its local max at f = 0. The x-component  at d = 0 is xH, the high stable 
critical point. For 0 < d << 1 the slope of the saddle-node curve is determined by whether the v- or x-component  is 
larger at d = 0; if, e.g. (as in Fig. 13) the v component is larger, then the electrical coupling pulls the v-component 
downward and causes the jump to the low voltage state at a lower value of  w. The behavior for large d is much less 
intuitive. 

Remark  3.2. Theorem 3.1 gives information about how the value of  w at the saddle-node curve changes with d. 
The same techniques show how that value of  w changes as the functions v --~ f ( v ,  w)  and x -+ - g ( x )  change for 
fixed d. We return to this in Section 5, in which we show how changing g ( x )  can change the saddle-node curves. 

Remark  3.3. The above techniques can be used to see the effects on the saddle-node curves of  changing the relative 
proportions of the surface areas of  the two cells. Going back to Eq. (1.2), expressed in terms of  ~'l, f ,  ~', and p,  it is 
possible to see that, for p2 > pl (i.e. increased proportion of surface area of the oscillator), the HH curve is moved 
toward WH. This agrees with the intuition that a smaller surface area for the bistable cell relative to the oscillator 
makes it more difficult for the bistable cell to change the point at which the oscillator jumps to the lower voltage 
(which is WH when there is no coupling). A similar statement holds for the LL curves. Conversely, for larger p,  the 
pinning effect of  the electrical coupling is larger. 

Remark  3.4. Each case of Theorem 3.1 describes a set of hypotheses about the curves v ~ f ( v ,  w)  in relation to 
x -+ - g ( x ) .  It is possible to construct a family v ~ f ( v ,  w)  whose behavior combines elements of  the hypotheses 
of  (i)-(iii),  e.g., satisfying one of these for w small and another for w larger. Though the specific conclusions of 
Theorem 3.1 do not hold for such combinations, the methods in the proof remain valid, and can be used to find the 
saddle-node curves for arbitrary families v --+ f ( v ,  w) .  

The next theorem describes the LH saddle-node curve; similar results hold for the HL curve. As will be shown 
in Section 4.1, all the saddle-node curves are piecewise smooth and parametrized by d. In addition, we have: 

Theorem 3.2. 
the value o f x  at which the local minimum o f x  ~ - g ( x )  occurs (see Fig. 15). Then 
(1) The LH saddle-node curve extends for all values of w > WL. 
(2) Smooth parametrization fails only for points at which Dl = 0, where 

Ol -~ d g ' [ O f  /Ov - d] - [g' - d]Z[oZ f /Ov2]. 

Assume that for each w, the value v at which the local minimum of  v ~ f ( v ,  w) occurs is less than 

(3.2) 

For w small, Dj < 0, for w large Dt > 0. Thus, there is a point at which D1 = 0. Let ~ be the value of  w 
and @, x~ the values of  (v, x) such that f (U,  N) = - g ( x ~  and Of/Or  = 0, g '  = 0. If  at ~ ,  ~', ~', we have 
0 2 f / O v 2  = - g " ,  then Di = 0 at that point. 
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A )  
v --') f ( v , w )  x " )  - g ( x )  ~ v ~ x  

B )  
v --> f ( v , w )  x --') - g ( x )  

~ 1 ~  I ,  x~, 
v ~ x  

v ~ - v  x m x  

Fig. 15. Parts of  curves v --+ f ( v ,  w) and x ~ - g ( x )  relevant to the LH critical points. The dark intervals of  v ~ f ( v ,  w) denote the 
portion corresponding to stable LH critical points. The dark interval o f x  --~ - g ( x )  denotes (schematically) the portion corresponding to 
stable LH critical points for a value of w > ~ (e.g., the outermost curve of v --+ f ( v ,  w) shown). 
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Fig. 16. An inconsistent set of saddle node curves for HH and HL. 

(3) If at that point, 102f/Oo2l < Ig"l, as in Fig. 15(A), then the LH saddle-node curve is as in Fig. 6(A); i.e. for 
t t  

some w > O, there are stable LH points in disjoint intervals in d. If at that point 102f/Ov21 > Ig I, as in 
Fig. 15(B), the LH points are as in Fig. 6(B), with disjoint intervals for some w < O. 

(4) For w large, the saddle node asymptotes to d -- 0. 
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x ~ - g ( x )  

"/li e 

xi 7 ¢ N , \ ," xH ) V~X 

Fig. 17. Curves v ~ f ( v ,  w) and x ~ - g ( x )  that give rise to the saddle-node curves in Fig. 11. 

Remark  3.5. The saddle-node curves HH, LH, HL and LL are partially, but not totally independent of one another. 
(By independent we mean that, given the curves, functions f and g can be constructed that have those curves.) As 
can be seen from the statements of Theorems 3.1 and 3.2, different parts of each of the saddle-node curves depend 
on different aspects of the functions v ~ f ( v ,  w)  and x ~ - g ( x ) .  There is an overlap, however. Consider, for 
example, Fig. 16; which has an HH curve that is decreasing in w as d increases. This pair of saddle-node curves is 
not achievable for any choice of f and g. The reason is essentially that both the HH and HL saddle-nodes depend 
on the shape of v ~ f ( v ,  w)  on their right-hand branches. For d small, the relevant stable points of HH have 
x-components that lie much to the right of the x-components of the points of HL; this forces the saddle-node curves 
HH to lie to the right of the HL curve, contradicting Fig. 16. Fig. 11 however, is achievable. Functions f and g with 
the appropriate qualitative properties necessary to produce Fig. 11 are given in Fig. 17. We leave to the reader the 
exercise of verifying this last assertion; practice in going between functions such as in Fig. 17 and the associated 
saddle-node curves can be obtained by going through the proofs of Theorems 3.1 and 3.2 in Section 4.4. 

Remark  3.6. The configuration in Fig. 11 is compatible with the sequence of jumps HH ~ LH ~ HH, in which the 
oscillator jumps down, then up again, leaving the bistable on its high branch. To be certain that the HH piece of the 
trajectory next enters HL instead of LH, we can arrange that the right hand boundary of the LH saddle-node curve 
fall below the bottom of the interval I. This can be done because that part of the curve depends on the position of the 
left branch of v ~ f ( v ,  w) ,  which can be manipulated independently of the parts of these curves that determine 
the HH curve and HL curve. 

Remark  3. 7. The techniques of the proof again give results about the effects of changing p. As before, increasing 
p changes the saddle-node curve in the direction of decreasing the pinning effect of the bistable cell. 

4. Proofs 

4.1. The saddle-node curves 

We start by showing (Lemma 4.1) that there are four saddle-node curves as described in Section 2.1. This allows 
us to see that the LL and HH curves exist for all d. Then we show (Lemma 4.2) that the ends of the slow segments 
lie on the saddle-node curves. Lemma 4.3 gives the critical characterization of the saddle-node points, which allows 
us to read offthe saddle-node curves from the curves v ~ f ( v ,  w)  and x --~ - g ( x ) .  Finally, Lemma 4.4 gives the 
condition for a saddle-node to be non-degenerate, which we use in deducing the rules for jumping from one slow 
segment to another. 
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Lemma 4.1. For each of  the four points in (2.1), there is a curve of  saddle-nodes, parametrized by d. The curve can 
be continued through each saddle-node point, provided that Dl # 0, where D1 is given by 

D1 = d g ' [ O f  /Ov - d] - [ f  - d]2[O2 f /Ov2]. 

Proof Note that this formula for Dt was given in (3.2), reproduced here for clarity. Saddle-nodes for (1.3) occur 
when one of  the eigenvalues of  the linearization is zero, implying that the determinant of  the linearized matrix A is 
zero, where 

A = ( [ ( O f / O r )  - d]/cl  d / c l  ) (4.1) 
\ d/c2 (g'(x)  - d) /c2 " 

Thus, the equations for the saddle-nodes are obtained by appending the equation for det A = 0 to the equations for 
the critical points of  (1.3). They are 

0 = f ( v ,  w) + d(x  - v), 0 = g(x)  + d(v  - x) ,  
0 = (Of/Ov - d ) ( f ( x )  - d) - d 2 = - d ( O f / O p  + g '(x))  + Of/Oo.  g'(x) .  (4.2) 

Each of  the points in (2.1) is a solution to (4.2). By the implicit function theorem, there is a curve of  solutions to 
(4.2), parametrized by d, provided that the Jacobian of  (4.2) with respect to v, x, and w has non-zero determinant. 
This Jacobian is 

( O f / O d - d  d O f /Sw  ) 
g ' (x)  - d 0 = Dvxw. (4.3) 

\ (oz f /OvZ)[g - d] gr'[(Of/Ov) - d] (02 f /avOw)[g ' ( x )  - d] 

Note that the upper left-hand 2 x 2 matrix is the Jacobian (4.1) of  the critical point of ( 1.3), which vanishes along 
any solution to (4.2) by the third equation of  (4.2). Expanding the determinant of (4.3) by its last column, we see 
that it is non-zero iff the lower left-hand matrix is non-singular, i.e. D1 5 ~ 0. [] 

Remark 4.1. At a point at which D1 = 0, it can be shown by a similar computation that the determinant of  the 3 x 3 
Jacobian matrix Dvxd of (4.2) with respect to v, x, d also vanishes. Indeed 

O f ,  ,] 
Dvxd = (x - v )Dj  l + ~ v / g  j . (4.4) 

This shows that the implicit function theorem does not guarantee a smooth parametrization of  the saddle-node curve 
using w as a parameter instead of d. 

Remark 4.2. The condition Dl # 0 is satisfied along the HH and LL curves. To see this, we note that along the 
HH and LL curves, g" and 02 f /Ov  2 have the same sign. Furthermore, [g' - d] 2 > 0. Thus, if we can show that 
[Of/8 v - d] < 0, we will have both terms of  D1 with the same sign, and hence D1 # 0. At a saddle-node, det A = 0 
and tr A < 0, i.e. 

(Of~Or - d ) / c l  + (gl _ d)/c2 < O, (4.5) 

so that at least one of  the two terms on the left-hand side of  (4.5) is negative. Using det A = 0, we find that 
the product of  those two terms is positive, and hence both terms are negative. Thus, for the HH and LL cases, 
the implicit function construction does not break down. In the HL or LH cases, it does break down, because the 
factors g" and 8 e f / o v  2 have opposite signs, while the terms of (4.5) are still both negative. Along any piece of 
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the LH curve which is smoothly parametrized by d, the sign of  D1 does not change, a fact that will be used in 
Section 4.4. 

In general, critical points can lose stability either by a saddle-node bifurcation or a Hopf bifurcation. In the case 
of ( 1.3), only the first can happen, as shown in the next lemma. 

Lemma 4.2. Along any curve of  stable critical points of  (1.3) in v, x, d, w space, the critical point does not encounter 
a Hopf  bifurcation before it encounters a saddle-node. 

Proof A critical point (v, x)  of  (1.3) is stable iff the matrix (4.2) has negative eigenvalues. At  a boundary of 
stability given by saddle-nodes, one of the eigenvalues is zero, so the determinant must vanish. The determinant 
is 

Det a -- [(Of/Or - d)(g'  (x) - d) - d2]/clc2 
= [ - d ( O f / O v  + g ' (x))  + Of~Or. g'(x)]/ClC2. (4.6) 

Hopf  bifurcations occur where the eigenvalues are pure imaginary, i.e. where the trace of  the Jacobian determinant 
is zero and the determinant is positive. Thus, for (4.1) the conditions for a Hopf  to occur first are Tr A = 0 and 
det A > 0. Using Tr A = 0 we have det A = - (Cl /C2)(g t - d) 2 - d 2 < 0. This contradicts encountering a Hopf 
bifurcation before a saddle-node. [] 

We now go to the key lemma. For a fixed value of d, the construction of  a singular periodic orbit involves finding 
the values of  w at which a slow segment hits a saddle-node boundary curve. The geometric construction (discussed 
briefly in Section 3) for getting the S-N curves from the functions f and g does not allow us to find those points 
directly. In that construction, we fix w and find the values of  d that lie on the boundary curves. Each of these 
vertical "slices" in the d - w plane is more conveniently parametrized by v and/or x than by w, with d = d(v)  or 
d = d(x) .  The following lemma characterizes the saddle-node points as those for which the function d = d(v)  or 
d = d(x)  (along a "slice" w = constant) has a local maximum or minimum. This characterization is the heart of the 
geometrical construction. 

Lemma 4.3. For any fixed w, there is an interval (perhaps empty or a single point) in d >_ 0, parametrized by v 
and/or x, for which there are stable critical points for (1.3). Each of  these curves of  critical points (in v, x, d, w 
space) can be parametrized by v (resp. x), providing the curve does not touch a point at which g~(x) = 0 (resp. 
Of(v,  w) /Ov # 0) or the set v = x. If the curve is parametrized by v (i.e., is described by v, x (v ) ,  d(v)) ,  then the 
critical point ~, x (~), d(~)  is a saddle-node if and only if  d ~ (~) = 0. For a curve parametrized by x the critical point 
2, v(2),  d(2)  is a saddle-node if and only if  d'(-£) = O. 

Proof. To see if a curve of critical points in v, x, d, w space can be parametrized by v (with w fixed), we consider 
the Jacobian matrix of  (1.3) with respect to d and x. The determinant of  this matrix is (1 /c l  c2)(v - x)g1(x). Thus 
the curve can be parametrized by v away from the points at which g~(x) = 0 or v = x. Similarly, for parametrization 
with respect to x, the determinant of the relevant Jacobian matrix is ( l / c l  c2)(x - v)Of/Ov, so the parametrization 
is valid when this product is non-zero. 

To find the saddle-node boundary, we write d = f ( v ,  w) / [v  - x]. Then d'(v)  = {(v - x ) O f / S v  - f ( v ,  w) • 
(1 - x~(v))}/(v - x) 2. Differentiating 0 = g(x)  + d(v - x),  we find that 0 = g'(x)x~(v) + d[1 - x'(v)]  or 
x ' (v )  = d / [d  - g'(x)]. Substituting (v - x)  = - g ( x ) / d  into the formula for d'(v)  we thus get 

d ' ( v ) = O  iff - g  8 f  ( d ) d 8v f 1 d - g '  = 0 "  (4.7) 
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At a critical point, we must have f = - g ,  so (4.7) reduces to [Of/Ov]/d - 1 + [d/(d  - g'(x))]  = 0. Sim- 
plifying this expression, we get that d(Of/Ov + g ' (x) )  = Of~Or • g', which says that the determinant of  the 
Jacobian (4.1) is zero, so there is a saddle-node. An identical argument works if the curve is parametrized 
by x. [] 

Non-degenerate saddle-nodes have a half-plane of trajectories approaching the critical point, and a unique trajec- 
tory (unstable manifold) leaving the critical point. The following lemma implies that all the critical points on HH 
or LL are nondegenerate. For LH or LH, there are isolated degeneracies which coincide, if cl = c2, with the points 
at which the curve cannot be smoothly parametrized by d. 

Lemma 4.4. The non-degeneracy condition for a saddle-node is (g' - d)D2 ~ 0, where 

D 2 =~ dg" [(Of/Or) - d] [g' -- d]2(O2f /Ov  2) 
C2 Cl 

Remark 4.3. Note that if cl ---- c2, then Dj = D2 up to a positive constant multiple. 

(4.8) 

Proof  o f  Lemma 4.4. Let e denote the eigenvector for the zero eigenvalue of some saddle-node, and Q the vector 
of  quadratic terms in the Taylor expansion around the saddle node. The general non-degeneracy condition for a 
saddle-node is that Q(e, e) • e :fi O. In the case of  (1.3), let (ev, ex) denote the components ofe.  The vector Q(e, e) 
is given by [(O2f/Ov2)e2/2Cl,  g"e2x/2C2]. Thus 

O Z f e 3 / c l  g ' te3/c2 . (4.9) 2 Q ( e , e ) . e  = ~ v  2 ~,, + 

Now e~ and ex can easily be computed (up to a constant) from (4.1). In particular, we may take (e~,, ex) to be 
(d - g' ,  d), which points in the first quadrant. We may then rewrite (4.9) as 

oZ f (d 2Q(e,  e) • e = ~ - g ' )3 /c  I + g 'd3 /c2 .  (4.10) 

Using det A = 0 along a saddle-node, we have that 2Q(e,  e ) .  e = (g' - d)D2. [] 

4.2. A proper~ o f  the slow segments 

We now show that along any given slow segment, the variables v and w = w(v)  satisfy d v / d w  < 0. This implies 
that the projection of  the trajectory to the v, w plane is qualitatively like the outer branches of the v' = 0 nullcline 
in Fig. 2. 

The critical points of (1.2) satisfy the first two equations of (5.2). Differentiating with respect to w, we get the 
equations 

( ( 1 A d x / d w  = 

where A is given in (4.1). (Note that, since we are concerned with critical points of  (5.2), the scaling factors 
cl, c2 play no role.) At a stable critical point, the eigenvalues of A are negative. To find the sign of  dv /dw ,  we 
solve (4.11): 

d x / d w ]  -- d ~ A  - d  O f / O v - d  " (4.12) 



388 N. Kopell et al./Physica D 121 (1998) 367-395 

Hence, d v / d w  = - ( 1 / d e t  A) Of/Ow (g'(x)  - d). Since det A > 0 and Of/Ow < 0, we find that sign d v / d w  = 
sign (g' - d). To determine the latter, we note that (4.5) is valid since the eigenvalues are both negative. Hence, as 
in Remark 4.2, at least one of  the terms is negative. Using (4.5), (4.6) and det A > 0, we get that both (Of~Or - d) 
and (g' - d) are negative. 

4.3. The destination o f  the fas t  jumps  and some consequences 

We now prove the assertions made in Section 2.2, including Theorem 2.1. The proof requires some information 
about the geometry of  the fast equations near a non-degenerate critical point. At a non-degenerate saddle-node 
(~, 2) there is a half-plane of  trajectories that approach the saddle-node as t --~ ~ ,  and a unique (unstable manifold) 
trajectory that approaches the critical point as t -+ - ~  (see Fig. 8). We first show that the unstable manifold must 
be in the first or third quadrants generated by (~, ~-). 

Lemma 4.5. Let (~, Y) denote a non-degenerate saddle-node of (1.3). 
(i) The eigenvector associated with the zero eigenvalue of  (~, 2) has positive slope (i.e. is in the first and third 

quadrants). 
(ii) Let D2 be as in (4.8). Then the unstable manifold trajectory is in the first quadrant if D2 < 0 and in the third 

quadrant if D2 > 0. 

Proof  
(i) The eigenvector (d - gt, d) of (4. l) corresponding to the zero eigenvalue has a slope 

(d - Of / O v ) / d  = d / ( d  - g').  (4.13) 

As in Remark 4.2, g '  - d and 3 f fOv  - d are both negative, so that the slopes in (4.13) are positive. 
(ii) From the proof of  Lemma 4.2, we know that 2 Q (e, e). e = (gt _ d) D2, so D2 has the opposite sign of  Q (e, e). e. 

The sign of  Q(e, e ) .  e says whether the unstable manifold is in the same or the opposite direction from the 
vector e. Hence, D2 < 0 (resp. D2 > 0) implies that it is in the same (resp. opposite) direction. Since (d - gl, d) 
points in the first quadrant, the conclusion follows. [] 

We now show that the unstable manifold of a non-degenerate critical point (~, 2) must tend to the neighboring 
critical point (_v, x). Let R denote the rectangle in v, x space bounded by v --= ~, x -= 2, v - v, x = x. The 
definition of  neighboring given in Section 2 is equivalent to saying that (_v, x) is in the appropriate direction, and 
that there are no other critical points of (1.3) in 7?.. We may then restate Theorem 2.1 in a slightly stronger manner: 

Theorem 2.1a. For Eqs. (1.3), any non-degenerate saddle-node has exactly one neighboring critical point. All 
trajectories in 7~ tend to that critical point; in particular, the unstable manifold tends to that point. 

Proof  We first show that there is at least one critical point in the appropriate quadrant. Note that, by the cubic nature 
of f and g, f ( v ,  w) and g(x)  are bounded above uniformly for v -+ o¢, x -~ cx~ and bounded below uniformly 
for v -+ - c e ,  x -~ - o o .  Suppose, for definiteness, the unstable manifold is in the third quadrant. It follows from 
(1.3) that, for v, x sufficiently negative, v' > 0 and x I > 0. Thus trajectories cannot go to infinity. 

For any critical point ~, ~- (not just a saddle-node) the vector field of  (1.3) points into the third quadrant on the 
lines v = ~ ,x  < 2 and x = 2, v < ~. (This follows immediately from v r = 0, x r = 0 at v = ~ ,x  = 2 and the 
form of the coupling.) Thus, the trajectories cannot leave the closure of the third quadrant or become unbounded. 
In a two-dimensional phase space, this implies that there is at least one critical point in the closure of  the third 
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Fig. 18. The vector field for (1.3), assuming a pair of critical points (vi, xi) with Ixj - ~l < Ix2 - Y[ but Iv2 - ~l < IVl - ~l- 

quadrant. A similar argument holds for the first quadrant. The non-degenerate nature of the critical point (~, Y), 
plus the direction of the vector field on the lines v = ~, x < Y and x = Y, v < ~ imply that the unstable manifold 
trajectory cannot tend to v, x as t ~ ~ .  Thus, if the unstable manifold trajectory is in the third quadrant, there 
must be another critical point in the third quadrant (besides ~, Y). 

Let Vl, Xl (resp. v2, x2) be the critical point in the third quadrant whose v-coordinate (resp. x-coordinate) is 
closest to that of ~, 2. We shall show that Xl = x2 and vl = v2. The above argument that shows that the vector 
field of (1.3) points into the third quadrant also shows that the vector field points inward on all the line segments of 
the box 7~1 (resp. 7~2) with comers v = ~, x = Y, v = Vl, x = xl (resp. v = v2, x = x2). Thus, unless Vl = v2 
and Xl = x2, the configuration is as in Fig. 18. Let 7~ ----- 7~1 N 7~2. Then the vector field also points inward on the 
edges of R.  It follows that there must be a critical point in 7~ other than ~, Y. But, by the definition of xi,  vi, this is 
a contradiction. 

We can now identify Ri  with R.  Since the vector field points inward at all non-critical points of the boundary of 
and there are no critical points in the interior, all trajectories of the rectangle including the unstable manifold of 

v, x, must tend to the neighboring critical point. Thus, this critical point must be a sink or a saddle-node. [] 

We can now prove the corollary 2.2 stated in Section 2.2. 
(1) I f d  << 1, the results are obtained from perturbation o f d  = 0, and do not directly use Theorem 2.1. At d = 0, 

the saddle-node for the HH manifold occurs where v = VH and x = XH. The x and v systems of ( 1.2) uncouple 
at d = 0, and the fast system associated with the saddle-node is v' -- f ( v ,  WH) and x '  ---- g(x) .  Thus, the fast 
trajectory satisfies x ( t )  =--- xH and v(t)  ~ ~H, where ~H is the transversal zero of f ( v ,  wH). The pair ~H, XH 
is in the LH slow manifold. An analogous trajectory goes from the saddle-node of the LL manifold to the HL 
manifold. 

For d sufficiently small, the non-degeneracy of the saddle-node at d = 0 implies that there is still a unique 
nearby non-degenerate saddle-node; such a critical point has a nearby unstable manifold. Also, the sink which is 
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the t ~ ~ limit for d = 0 perturbs to a nearby sink with a nearby basin of  attraction. Hence it is still true that the 
unstable manifold of  the HH (resp. LL) saddle node goes to the LH (resp. HL) slow manifold. That is, for suffi- 
ciently small coupling, the oscillator changes its branch (between high and low) but the bistable element does not. 

(2) Theorem 2.1 says that the unstable manifold of  the HH saddle node must tend to the nearest critical point in 
the correct direction. By hypothesis, the LH or HL stable critical point is in the correct direction. Furthermore, 
the x-coordinate (resp. v coordinate) of  the LH (resp. HL) critical point is closer to that of  the HH critical 
point than that of  the LL critical point. By Theorem 2.1a, if  either coordinate is closer, so is the other. Thus, 
if  an LH or HL stable critical point exists for a fixed w, d, the HH state at that w, d may not jump to the LL 
state. 

(3) For definiteness, consider LH; the argument is the same for HL. For fixed d, there is a finite interval in w for 
which there are LH stable critical points (see Fig. 6). We focus on the end points w_ < w+ of the interval. 
Each end point corresponds to a saddle-node for (1.3). At  a saddle-node, at least one of  Of~Or and g~ must 
be positive, since the determinant of  (4.1) is positive if both those quantities are negative. Indeed, for w < O, 
the saddle-node has Of/Or > 0, and for w > O, the saddle-node has g~ > 0. Thus, the end point with 
w = w_ (resp. w = w+) corresponds to a critical point of  (1.3) with O f l a y  > 0 (resp. gt > 0) (see Fig. 15). 
For the unstable manifold of a non-degenerate saddle-node to go to HH (resp. LL), its tangent must point 
into the first (resp. third) quadrant. By Lemma 4.5, the tangent points into quadrant 1 (resp. quadrant 3) if  
D2 < 0 (resp. D2 > 0). We also know that if cj/c2 = 1, then D2 = 0 implies DI = 0. Thus, for Cl/C2 
sufficiently close to 1 (depending on d), sgn D2 = sgn DI at w = w_ and w ---- w+. We know that D1 > 0 
for w > • by Theorem 3.2. Hence, for Cl/C2 close enough to 1, we have that D2 < 0 at w_ and D2 > 0 
at w+. Hence, if the slow trajectory exits at w_, the trajectory goes to HH, and if it exits at w+, it goes to 
LL. 

4.4. From geometry of equations to geometry of trajectories 

Proof of Theorem 3.1. For each fixed w, we construct an interval of critical points for a range of  d, with the end 
points established to be saddle-nodes of  the fast system. The saddle-node curve we want is the union of  the end 
points of those intervals. The stablity of  the critical points to the left of  the saddle-node curve is established by 
continuation, starting from some points known to be stable. For example it is easy to see from (4.1) that the four 
basic d = 0 solutions are stable, using the slopes of v ~ f ( v ,  w) and x ~ - g ( x )  at the points where f = 0 = g. 
From Lemma 4.2, any curve in w, d space that starts at a stable point and does not pass through the saddle-node 
curve has points that are the parameters for stable fixed points. 

(i) First consider d << 1. For this case, there are no stable critical points for w > WH. To see this, we note that 
for w > wn, the points near v = OH on v ~ f ( v ,  w) are below the line f = 0. Recall that a critical point 
corresponds to a pair v, x with f ( v ,  w) = - g ( x )  and associated d = f / ( v  - x). With f < 0, we must have 
(v - x)  < 0 to have d > 0. But the points near OH = 0 on v ~ f ( v ,  w) are to the right ofxH. 

For w < wH and close to wH, there is a part of  v ~ f ( v ,  w) for which d = f / ( v  - x)  > 0. By continuity of  
stability, these are all stable for d sufficiently small. As proved in Lemma 4.3, the stability ends where d ' (v )  = 0. 
By direct calculation using (4.1), the point on a curve v -+ f ( v ,  w) satisfying Of~Or = 0 corresponds to a 
stable point, so the saddle node occurs at a lower value of  v (see Fig. 13). 

The asymptote occurs at the highest value of  w for which there are solutions for all 0 < d < cx~. This 
value, w = w*, is the value at which the saddle-node point lies on the intersection of the curves v --+ f ( v ,  w) 
and curve x --+ -g ( x ) .  If  at some w = ~ ,  the local max of v --+ f ( v ,  ~) is on x ~ -g ( x ) ,  we have 
W * > ~ .  
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(ii) We first show that for w < 1/)H, there are solutions for all 0 < d < oc. w < to H corresponds to curves above v --+ 
f ( v ,  WH). For w = wn, the relevant points are on the dark portion of  v ~ f ( v ,  WH) in Fig. 14(A). For w suffi- 
ciently below wn that the right-hand branch of  v --+ f (v, w) hits to the right of  XH, the relevant points are above 
f = 0, - g  = 0, as in Fig. 14(A). The value o f d  is zero for v, x such that f ---- g = 0, and is infinite when v = x. 

Now consider w* > w > WH. We show that there are solutions for dw < d < c~. To see this, note that in 
this range of  w there are no solutions for d small, since there are no points (near v = vn) with f ( v ,  w) = O. 
However, v ~ f ( v ,  w) continues to intersect x --~ - g ( x ) ,  so there are solutions with large d. By Lemma 
4.3, the stable solutions stop at a value d = dw where d'(v) = O. 

Let WA be the value of w at the asymptote. We now show that WA = W,. Beyond the asymptote, there are no 
stable solutions, i.e. d~ ~ o~ as w ~ ~/3 A. For any value of  w for which v ~ f ( v ,  w) intersects x --+ - g ( x )  
on the right-hand branch of  each, there are solutions for d sufficiently large. Hence, solutions can disappear 
only when that intersection disappears. This occurs at w = w..  For w > w. ,  the values of  v for which f = - g  
are greater than those of  x, making it impossible to have a critical point with d > 0. 

To finish (ii), we note that solutions for d small, w = wrt are stable because those for d = 0 are, and then 
the stability of  the other points to the left of  the saddle-node curve follows from continuation. 

(iii) We first show that for w > O, there are no stable solutions. This follows because there are no points near the 
right-hand branch of  v ~ f (v, w) which satisfy f (v, w) = - g ( x ) .  

Next, consider wn < w < O. We show that there are solutions for 0 < d~  < d < d +,  where d + might 
be oo. Because there are no points on the relevant part of  v ~ f ( v ,  w) with f = 0, there are no critical 
points with d small. For w close to O, there is also no intersection of  the relevant part of  v -9, f ( v ,  w) with 
x ~ - g ( x ) ,  so there is a largest value of d. 

For w sufficiently small that the right-hand branch of  v --+ f (v, w) hits the right-hand branch o fx  ~ - g  (x), 
there are solutions for all d sufficiently large. For w somewhat smaller, the continuity of  the eigenvalues and the 
continued existence of the intersection v --+ f ( v ,  w) with v ~ - g ( x )  implies there continues to be solutions 
for all d sufficiently large. Thus, the asymptote occurs at a value greater than ~ .  The stability of the critical 
points follows as above. 

Proof of  Theorem 3.2. 
(1) The critical points of  (1.3) corresponding to LH have values of x that are on or near the right-hand branch of  

x --+ - g  (x) and the values of  v that are on or near the left-hand branch of  v --+ f (v, w) (see Fig. 15). By hypothesis, 
the relevant values of  v are less than those of x, so d > 0 implies that the critical points have f = - g  < 0. Thus, 
for w = WL, the only stable critical point corresponds to d = 0. To finish (1), we note that for all values of  w > WL, 
there is a critical point corresponding to each d sufficiently small, since the left-hand branch of v ~ f ( v ,  w) 
intersects f = 0. Thus, the curve of  saddle-nodes exists for all w > WL. 

(2) Lemma 4.1 says that a smooth parametrization can fail only if D1 = 0. Critical points in the LH region have 
g"(x) < 0 and 02f /Ov  2 > 0. The LH saddle node curve passes through the point d = 0, w = WL. By (4.1), at that 
point D1 = _(g , )2  ozf/ov2. Thus, for values of  w near WL, we have Dl < 0. 

To determine the sign of Dl for large w, we rewrite D1 using det A = 0. 

Ol = d[g" (Of /Ov - d) - d(g' - d) (oz f / ov2 ) / (O f  /Ov - d)]. (4.14) 

When w is large, Of~Or is large and negative. The aspect ratio, d = - f / ( x  - v), is small. Hence, the dominant 
term in the bracket is g"Of/Ov. Since - g "  > 0 when the bistable element is on its upper branch, D1 > 0 at those 
points, and hence for the whole smooth piece containing the points with w large. 

To see the behavior near D1 = 0, we focus more closely on the curves near the w = O. For w < O, the local 
minimum of  v --+ f ( v ,  w) lies above the local minimum o f x  ~ - g ( x ) .  It can be seen from (4.1) that, at w = O, 
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the associated point ~', ~ corresponds to a saddle-node. Suppose that at 3 ,  ~', ~ we have 0 2 f / O v  2 : - g " .  From 
(3.2), we have 

DI = - d Z  g '' - d 2 oz f /ov  2 : O. 

(3) The pairs of  points (x, v) with f = - g ,  Of~Or < 0 and _g l  > 0 correspond to stable critical points. As in 
the HH case, there are also some points with Of~Or > 0 or - g  < 0. The stability of  a pair depends on the sign of  
det A = Of~Or. g' - d[Of/Ov + g']. For points near v = ~, x = Z, the dominant term in det A is - d [ O f / O v  + g']. 

First suppose that [oZf/ov21 < gt,, as in Fig. 15(A). Then for pairs near ~', ~" satisfying f ( v ,  3 )  = g(x),  the 
curvature implies that IOf/Ov[ < Ig'l. It follows that there are some stable points with v > ~" and x > ~" (see 
Fig. 15(A)). By continuity, for w > ~ (but close enough) there are also points with v > ~', x > ~" satisfying 
f ( v ,  w) = - g ( x )  and the stability condition. These give rise to values of  d in an interval disjoint from the set of  
d ' s  associated with v < ~'. 

Now suppose 102f/Ov21 > g,t, as in Fig. 15(B). This time, at w ---- 3 ,  the stability criterion is satisfied for points 
with v < ~', x < ~'. For w < ~ (but close enough) continuity again implies there are stable solutions with v < ~" 
and x < ~'. As above, the associated set of d 's  for these solutions lie in an interval disjoint from that corresponding 
t ox  > x .  

(4) As w increases, the left-hand branch of  the curve v --+ f ( v ,  w) moves to the left, further from x -+ - g ( x ) .  At 
the saddle-node, If[  is bounded by J min g (x)l, where the minimum is taken over the points of  the middle and fight 
branches o fx  ~ - g ( x )  (see Fig. 15). Since d = - f / ( x  - v), and the numerator is bounded while the denominator 
increases without bound, we have that d --~ 0 as w increases. 

5. Discussion 

5.1. A geometric look at duty cycle regulation 

The analysis in this paper was motivated partly by the simulations in [2] concerning the regulation of "duty cycle", 
described in Section 1. When current is injected into the oscillator cell ("AB cell"), the period of  the cell changes, 
mainly by a change in the time the cell is quiet. Thus, the proportion of  time the cell is bursting (the duty cycle) 
changes with injected current. When the cell is coupled to the bistable element ("PD cell"), the resulting network 
is able to keep a fairly constant duty cycle. Abbott et al. [2] suggested a mechanism involving a slowly changing 
current added to the PD cell. In that model, the maximum conductance ~ of  the current increases linearly on the 
active branch and decreases linearly on the other branch; equilibrium occurs at a value of ~ for which the change 
over a full cycle is zero. Abbott et al. [2] showed that for a linear change in the slow conductance, the duty cycle is 
independent of  the injected current in the AB cell. 

The geometry in this paper does not say more about the mechanism for the regulation. Rather, it sheds light 
on how a change of properties of  the bistable element can change the time on the active part of  the cycle enough 
to balance the changes in the inactive part, so as to maintain the constant burst proportion. It also shows why the 
equilibrium produced by this method is stable. 

Over one cycle, ~ is almost a constant. Thus, to consider its effects, we replace the third equation of  (1.2) by 

C2 dx / dt = g(x)  + -~G(x). (5.1) 

Here, x --> G(x)  is qualitatively as in Fig. 19(A), with a zero at a lower value than the lowest critical point of  
x'  = g(x)  and negative for x larger than that value. The new current is ~G(x) .  By including some of  the term 
-~G(x) in the definition of g(x),  we can, with no physical contradiction, allow ~ to be negative as well as positive. 
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Fig. 19. (A) Graph of x ~ - G ( x ) .  (B) Graphs of x ~ - g ( x )  and x ~ -lg(x) + ~G(x)] for two values of ~, one positive and one 
negative. The graph of x --~ - [g  (x) + ~G (x)] is obtained from that of x -~ - g  (x) by pivoting the latter around a point near its left zero. 
For ~ > 0, the points to the right of the pivot point are moved upward. 

Changing the value of ~ can then be thought of  as modulating the conductance of  an outward current with a low 
reversal potential. The graphs of x ~ - g ( x )  and x --+ - g ( x )  + -~G(x)  are as in Fig. 19(B) for a pair of  values of 
~, one positive and one negative. We also assume that h is chosen so that the speed w' is relatively independent of 
the value of v on each of  the branches (see Section 2.3). 

For ~ > 0, the graph of  x ~ - [ g ( x )  + ~G(x)]  is perturbed from that of  x ~ - g ( x )  by being pivoted upward 
around the point x -- x0. Since the pivot point is near the lower critical point XL, the choice of  ~ has only a 
small effect on the length of time spent on the lower branch. Thus, we focus on the time spent on the high (HH) 
branch. 

In the context of  the example of [2], we are interested in d large enough so that there are no HL or LH stable 
critical points. Hence, we restrict to d large (e.g., large enough to be on the asymptote of the HH saddle-node curve). 
In order for a change in ~ to change the wave form, it must change the position of  the vertical asymptote. More 
explicitly, we will show (with some restrictions) that, as ~ increases, the position of the asymptote decreases. Hence 
the trajectory stays in the HH region for a shorter distance in w, and hence for a shorter amount of  time. Similarly, 
as ~ decreases, the time on the high branch increases. 

Before we show that, we note that this implies the stability of the equilibrium point. Suppose, for example, that 
the trajectory starts by spending too much time on the high branch relative to the low one. Then ~ increases on this 
branch during a trajectory. The increase in ~ reduces the time spent on this branch in the next cycle of the trajectory, 
bringing the trajectory closer to the equilibrium. 

We now show that the increased ~ decreases the time on the HH branch, at least for cases (i) and (ii) of 
Theorem 3.1. To see the effect of tilting the curve x -+ - g ( x )  on the positions of  the asymptote of  the saddle-node 
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curve, we argue by these cases. Case (i) of Theorem 3.1 is illustrated in Fig. 13. The geometric reasoning in the 
proof of Theorem 3.1 shows that, for fixed w, the saddle-node plot occurs at a lower value of d. Because of the 
slope of the saddle-node curve this implies that, for fixed d, the saddle-node point is at a lower value of w. In case 
(ii), the geometric reasoning shows that, for ~ > 0, the tangency to a curve v ~ f ( v ,  w)  occurs at a lower value 
of w. Since this gives the value w at which there is a saddle-node for large d, we see that increasing ~ leads to a 
saddle node at a lower value of w for fixed (large) d. As discussed above, this implies the stability of the critical 
point, at least in those cases. 

We recall that for small d, the relative position of xH and vH is the determining factor in deciding if increasing 
increases or decreases the time on the HH branch, since increasing ~ (i.e. tilting x ~ - g ( x )  upward to the 

fight of x0) decreases xH. Intuitively, this reduces the ability of the bistable element to pin the oscillator to the high 
branch, and reduces the time spent on that branch. (The techniques from the proof of Theorem 3.1 can be used 
to prove that statement.) Thus, the large d behavior is the same as that for small d, at least in cases (i) and (ii) of 
Theorem 3.1. 

5.2. Re la t ed  work  

Electrical coupling between neurons or other electrically excitable cells has been treated in related papers. Kepler 
et al. [5] treated the interaction of a bursting cell with a passive cell to show that the coupling can increase or 
decrease the frequency of the oscillation. The current paper deals with similar issues, replacing the passive cell with 
a bistable cell, and introducing new techniques to handle the resulting new complexity. 

Other papers that deal with electrical coupling between two dissimilar cells are [6,7]. Those papers explore how 
the interaction of non-oscillating cells can produce network oscillations via electrical coupling. Simulations on a 
mathematically related system of equations describing chemical oscillations are in [8]. 

The equations describing a pair of electrically coupled cells are identical in form to those describing the interaction 
of two compartments in a compartmental model of a single cell. Papers describing consequences of separations of 
currents in a compartmental model are [9-12]. 

The current paper uses, in a critical manner, the assumption that the oscillator is of relaxation type. The specific 
results depend on the simple one-dimensional nature of the bistable equations. However, the methods developed 
here can be extended [ 13] to deal with higher-dimensional descriptions of the cells [7], provided the equations are 
taken to be in the relaxation range. The current method can also be extended [ 13] to deal with networks, such as a 
larger subset of the crustacean stomatogastric ganglion that uses both electrical and chemical synapses [ 14]. 

The methods of this paper do not hold if the individual cells of the network are far from a relaxation regime. Thus, 
they do not capture phenomenon such as antiphase coupling between identical oscillators coupled electrically [ 15], 
which is more naturally understood in the context of averaging methods [ 16,17]. 
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