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SUMMARY

Synaptic connectivity varies widely across neuronal
types. Cerebellar granule cells receive five orders of
magnitude fewer inputs than the Purkinje cells they
innervate, and cerebellum-like circuits, including
the insect mushroom body, also exhibit large diver-
gences in connectivity. In contrast, the number of in-
puts per neuron in cerebral cortex is more uniform
and large. We investigate how the dimension of a
representation formed by a population of neurons
depends on how many inputs each neuron receives
and what this implies for learning associations. Our
theory predicts that the dimensions of the cerebellar
granule-cell and Drosophila Kenyon-cell representa-
tions are maximized at degrees of synaptic connec-
tivity that match those observed anatomically,
showing that sparse connectivity is sometimes supe-
rior to dense connectivity. When input synapses are
subject to supervised plasticity, however, dense wir-
ing becomes advantageous, suggesting that the type
of plasticity exhibited by a set of synapses is a major
determinant of connection density.

INTRODUCTION

Extensive synaptic connectivity is often cited as a key element of

neural computation, a prime example being the cerebral cortex,

where neurons each receive thousands of inputs. However, the

majority of neurons in the human brain, the 50 billion neurons

that form the cerebellar granule-cell layer, each receive input

from only about four of the mossy fibers innervating the cere-

bellum (Eccles et al., 1966; Llinás et al., 2003). Sparse input is

a feature shared by neurons that play roles analogous to granule

cells in other neural circuits with cerebellum-like structures, such

as the dorsal cochlear nucleus, the electrosensory lobe of elec-

tric fish, and the insect mushroom body (Mugnaini et al., 1980;

Bell et al., 2008; Keene and Waddell, 2007). What is the func-

tional role of diversity in synaptic connectivity, and what deter-
mines the appropriate number of input connections to a given

neuronal type? In this study, we address these questions by

investigating the ability of populations of neurons with different

degrees of connectivity to support associative learning.

Both cerebellar and cerebrocortical regions are involved in a

variety of experience-dependent adaptive behaviors (Raymond

et al., 1996; Buonomano andMerzenich, 1998). In cerebellar cor-

tex and other cerebellum-like circuits, synaptic modifications

associated with learning occur among the elaborate dendrites

of densely connected output neurons— for example, cerebellar

Purkinje cells (Ito et al., 1982) and the output neurons of the

Drosophila mushroom body (Hige et al., 2015). Classic Marr-Al-

bus theories of associative learning propose that the abundance

of granule cells supports a high-dimensional representation of

the information conveyed to the cerebellum by mossy fibers

and that the large number of synapses received by Purkinje cells

allows them access to this representation to form associations

(Marr, 1969; Albus, 1971). These theories assume that the inputs

to granule cells are random and are not modified during learning.

Anatomical and physiological studies suggest that the handful

of inputs received by granule cells in the electrosensory lobe of

electric fish (Kennedy et al., 2014) and by Kenyon cells, the

granule-cell analogs of the mushroom body, are a random sub-

set of the afferents to these structures (Murthy et al., 2008; Caron

et al., 2013; Gruntman and Turner, 2013). In many regions of

cerebellar cortex, granule cells receive diverse (Huang et al.,

2013; Chabrol et al., 2015; Ishikawa et al., 2015; but see Jörntell

and Ekerot, 2006; Bengtsson and Jörntell, 2009; and Discus-

sion), though not completely random (Billings et al., 2014),

mossy-fiber input. In Marr-Albus theories, learning in cerebellar

cortex relies exclusively on climbing-fiber-dependent modifica-

tions of the connections between parallel fibers and Purkinje

cells, but unsupervised forms of plasticity have been reported

for synapses from mossy fibers onto granule cells (Hansel

et al., 2001; Schweighofer et al., 2001; Gao et al., 2012, 2016;

D’Angelo, 2014; but see Rylkova et al., 2015).

The logic of experience-dependent circuit modifications is

less clear in cerebral cortex, where densely connected neurons

exhibit diverse forms of synaptic plasticity (Abbott and Nelson,

2000). Recent theoretical studies have proposed that popula-

tions of randomly connected cerebrocortical neurons support

high-dimensional representations that enhance the ability of
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Figure 1. Schematic of Random Expansion

(A) N input channels project to a mixed layer of M neurons. Each mixed-layer

neuron receives K connections from a random subset of input channels and

inhibition via a global inhibitory neuron.

(B) Schematic of Drosophila mushroom body. Kenyon cells (the mixed-layer

neurons) receive inputs from antennal lobe projection neurons in the calyx

(shaded blue region) and send bifurcated parallel-fiber axons that form the

mushroom body peduncle and lobes (shaded green region). Mushroom body

output neurons read out the activity of parallel fibers. Kenyon cells excite and

are inhibited by the anterior paired lateral (APL) neuron.

(C) Schematic of cerebellar cortex. Mossy fibers project to the granule-cell

(mixed) layer. Granule cells send parallel-fiber axons that are read out by

Purkinje cells. Granule cells are inhibited by Golgi cells, which are excited by

mossy and parallel fibers.
readout neurons to learn associations (Hansel and van Vrees-

wijk, 2012; Rigotti et al., 2013; Barak et al., 2013; Babadi and

Sompolinsky, 2014), much as in theories of cerebellar cortex.

Although these studies support the idea of random, high-dimen-

sional representations as substrates for associative learning,

they do not explain why the degree of synaptic connectivity in

granule-cell and cerebrocortical layers is so different.

To address this issue, we explore the effects of degree of

connectivity, balance of excitation and inhibition, and synaptic

weight distribution on the ability of a large neural representation

to support associative learning. We also investigate whether

synaptic plasticity of input connections (e.g., mossy fiber to

granule cell), augmenting plasticity of output connections (e.g.,

granule cell to Purkinje cell, as in Marr-Albus theories), improves

performance. In these analyses, we distinguish between unsu-

pervised synaptic plasticity that normalizes or otherwise modu-

lates the gain of synaptic input without the aid of a feedback

(‘‘error’’) signal and supervised synaptic plasticity that exploits

feedback signals to reshape the neural representation based

on prior experience.

Using a combination of analytic calculation and computer

simulation, we find that the number of connections per neuron

required to produce ahigh-dimensional representation increases

slowlywith the number of neurons. For awide range of conditions

(but not all), dimension and learning performance are maximized
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if the number of inputs is small. These results apply when the

input synapses onto the granule or granule-like cells are selected

randomly or approximately randomly and are not modified by a

supervised learning procedure. In contrast, if we permit super-

vised modification of these synapses during the learning of a

task, dense connectivity becomes advantageous. Our theory

predicts a degree of connectivity that maximizes dimension for

cerebellum-like structures and quantitatively matches what is

observed for cerebellar granule cells and Kenyon cells of the

Drosophilamushroombody. It also predicts that supervised syn-

aptic plasticity at multiple stages of processing is necessary to

exploit the dense connectivity of cerebral cortex.

RESULTS

The ‘‘granule-cell’’ layer we consider consists of M neurons that

each receive K excitatory connections from a random subset of

N input channels and feedforward inhibition via a globally con-

nected inhibitory neuron (Figure 1A). We assume that, as in the

cerebellum and its analogs, M>N. We refer to K as the synaptic

degree. Because the neurons in the second layer are selective to

combinations of their inputs, we refer to the two layers as the

input (e.g., mossy-fiber) and mixed (e.g., granule-cell) layers,

respectively.

The ratio of the number ofmixed-layer neurons to inputs,M=N,

which we call the expansion ratio, is a critical parameter for our

study. Our analysis assumes that the input channels are inde-

pendent, so multiple channels with redundant activity are classi-

fied as a single input. This means that, for the Drosophila mush-

room body, the number of distinct inputs isN = 50, an estimate of

the number of antennal lobe glomeruli, while the estimated num-

ber of Kenyon cells is M = 2,000 (Keene and Waddell, 2007),

yielding an expansion ratio of 40 (Figure 1B). For the cerebellum,

the number of mossy fibers and granule cells presynaptic to a

single Purkinje cell in the rat are estimated to be N = 7,000 and

M = 209,000 (Marr, 1969; Harvey and Napper, 1991; Tyrrell

and Willshaw, 1992; see STAR Methods), meaning the expan-

sion ratio in this case is 30 if the mossy fibers are assumed to

be independent (Figure 1C).

Heterogeneous Responses via Random Connectivity
A necessary requirement to produce a high-dimensional repre-

sentation in the mixed layer is that its neurons should respond

to different ensembles of inputs. To understand what is needed

to produce this response heterogeneity, we first ask the simple

question: what values of K ensure that, with high probability,

each mixed-layer neuron receives a distinct subset of inputs?

This question is a variant of the ‘‘birthday problem,’’ which con-

cerns the likelihood ofM people being born on unique days of the

year. More generally, one can ask: what is the probability p of

M draws (with replacement) from R equally likely possibilities

all being different? In our case, the number of possibilities is

R=N choose K, the number of ways a mixed-layer neuron can

choose K presynaptic partners from N inputs. The maximum

value of this probability is always at K =N=2, but this maximum

typically lies in the middle of a large range of K for which p is

extremely close to 1. We therefore denote by K� the smallest

value of K for which p attains at least 95% of its maximum.
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Figure 2. Dimension of Mixed-Layer Representation

(A) Illustration of dimension for a system with three degrees of freedom: x1, x2,

and x3. Each point represents the response of the system to an input. The

dataset consisting of the magenta points has a higher dimension than that of

the green points.

(B) The input-current dimension dimðhÞ and mixed-layer dimension dimðmÞ,
normalized by N, are plotted as a function of the expansion ratio M=N (light

curve and dark curve, respectively). For eachM, dimension is evaluated at the

value of K that maximizes it. Results are shown for N= 1; 000, f = 0:1, and

homogeneous excitatory synaptic weights.

(C) Dependence of dimension on K.

(D) Dependence of dimension on K for networks with and without inhibition in

the limit of a large expansion ratio.
The level of 95% is, of course, arbitrary, but the value of K� typi-
cally changes very little, if at all, if p is varied over a reasonable

range near 100% (see below).

Using numbers appropriate for the mushroom body, N = 50

and M = 2,000, leads to K� = 7, equal to the average observed

number of projection-neuron inputs received by Kenyon cells

(Caron et al., 2013; p takes the values 0.88, 0.98, and 0.996 for

K = 6, 7, and 8). Using the same criterion for the cerebellum

(N = 7,000 and M = 209,000) leads to K� = 4, equal to the typical

number observed anatomically (Eccles et al., 1966; p takes

values of 0.69, 0.9998, and greater than 0.9999 for K = 3, 4,

and 5). That a small number of connections is sufficient to ensure

each mixed-layer neuron receives a unique set of inputs owes to

the rapid growth ofN chooseKwithK. In other words, the combi-

natorial explosion in the number of possible wiringswith synaptic

degree permits even very sparsely connected systems to elimi-

nate duplication in the mixed layer with high probability.

Dimension of Mixed-Layer Inputs and Responses
The combinatorial calculation in the previous section treated two

mixed-layer neurons as distinct even if only one of their inputs
differed, but partially overlapping inputs may introduce correla-

tions between neural responses that reduce the quality of the

mixed-layer representation. To provide a more nuanced anal-

ysis, we define and calculate a quantitative measure that char-

acterizes the mixed-layer representation: its dimension. We

define the dimension of a system with M degrees of freedom,

x= ðx1; x2;.xMÞ, as

dimðxÞ=
�PM

i = 1li

�2
PM

i = 1l
2
i

; (Equation 1)

where li are the eigenvalues of the covariance matrix of

x computed by averaging over the distribution of inputs to the

system (Abbott et al., 2011). If the components of x are indepen-

dent and have the same variance, all the eigenvalues are equal

and dimðxÞ=M. Conversely, if the components are correlated

so that the data points are distributed equally in each dimension

of an m-dimensional subspace of the full M-dimensional

space, only m eigenvalues will be nonzero and dimðxÞ=m (Fig-

ure 2A). Later, we will show that this measure is closely related

to the classification performance of a readout of mixed-layer

responses.

Increased dimension of the mixed-layer representation re-

quires, in addition to mixing of the inputs received by each

neuron, a nonlinearity provided by their input-output response

function. We begin by analyzing the effect of input mixing alone

and then address the effect of nonlinearity for the case of purely

excitatory input (later wewill add inhibition). In studying the effect

of mixing alone, the components of the vector we consider,

which we call h, are the total synaptic currents received by

each of the mixed-layer neurons. These currents are given by

h= Js, where J is theM3Nmatrix of synaptic weights describing

the strengths of the connections from the input layer to themixed

layer and s is the vector of activities for the input layer. We

consider the case of uncorrelated inputs with a uniform variance

across them. If the excitatory connections onto the mixed-layer

neurons have homogeneous weights,

dimðhÞz N

1+N=M+ ðK � 1Þ2
.
N
; (Equation 2)

when M and N are large. Two features of this result are note-

worthy. First, dimðhÞ%N even when M[N (Figure 2B, light

curve). This is because h is a linear function of the activity of

the input layer s, so it cannot have dimension higher than N.

Second, increasing the synaptic degree K reduces the dimen-

sion (Figure 2C, light curve). This is due to the final term in

the denominator, which arises from correlations between the en-

tries of h. On average, two mixed-layer neurons share K2=N of

their K inputs, leading to an average correlation of K=N. Indeed,

as K approaches N, all the currents received by mixed-layer

neurons become identical, and dimðhÞ approaches 1. Thus, un-

like the combinatorial calculation of the previous section, this

analysis indicates that increasing K beyond 1 is detrimental

because it reduces the dimension due to increased correlations

even when the identities of the inputs to each neuron are

different.
Neuron 93, 1153–1164, March 8, 2017 1155



However, our real interest is the dimension of the nonlinear

output of the mixed layer. We consider mixed-layer neurons

with binary outputs given by m=Qðh� qÞ, where Q is a step

function (applied element-wise) and q is a vector of activity

thresholds, one for each neuron. The thresholds are chosen so

that each neuron is active with probability f, averaged across

all the input patterns which, for now, we take to be standard

Gaussians (we refer to the input-layer response to a particular

stimulus as an input pattern). We call f the coding level of the

mixed layer. Under these assumptions, the mixed-layer dimen-

sion is given by

dimðmÞz 1

1

M
+
�
rij
�2

+Var
�
rij
�; (Equation 3)

where rij is the correlation coefficient of the activitiesmi andmj of

neurons i and j averaged over the distribution of input patterns

(a more general expression holds when the coding levels of

the neurons are not identical; see STAR Methods). Thus, the

maximum mixed-layer dimension is limited by correlations

among its neurons and saturates to a limiting value as the

expansion ratio grows (Equation 3; Figure 2B, dark curve; also

see Babadi and Sompolinsky, 2014). The limiting value scales

linearly with N (since VarðrijÞ � 1=N; Figure S1). For a coding

level of f = 0:1, the saturation suggests that expansion ratios

beyond 10–50 do not increase the mixed-layer dimension. This

maximum expansion ratio and the maximum dimension both in-

crease as the coding level is reduced (Figure S1), but as we will

see, representations with extremely low coding levels do not

necessarily lead to improved discrimination (Barak et al., 2013;

Babadi and Sompolinsky, 2014).

We next investigate the dependence ofmixed-layer dimension

onK.WhenM is small, themixed-layer dimension is similar to the

input-current dimension and nearly constant over a wide range

of K values (Figure 2C, top). However, for larger M, dimension

initially grows with K, as increased K results in each mixed-layer

neuron being selective to different combinations of inputs (Fig-

ure 2C, middle and bottom). The dimension is maximized for

an intermediate value of K that depends onN, f, and the distribu-

tion of synaptic weights. For the case of homogeneous excit-

atory synaptic weights, this value is K = 9 for N= 1;000 and

f = 0:1. Above this value, dimension decreases because of pos-

itive average correlations among the mixed-layer neurons (Fig-

ure 2C; Figure S1). Thus, the detrimental effect of even small

average correlations (hriji in the denominator of Equation 3) on

dimension leads to dimension being maximized at small K.

Many studies have shown that inhibition can decorrelate neural

activity (Ecker et al., 2010; Renart et al., 2010; Wiechert et al.,

2010), so we next investigate whether inhibition can increase

dimension by reducing correlations among mixed-layer neurons.

In theDrosophilamushroombody, asingleGABAergic interneuron

on each side of the brain inhibits the Kenyon-cell population glob-

ally (Liu and Davis, 2009; Figure 1B). In the cerebellum, Golgi cells

are vastly outnumbered by the granule cells they inhibit (Eccles

et al., 1966; Figure 1C).We therefore begin by introducing a single

neuron that inhibits all mixed-layer neurons in proportion to its

input,which isequal to thesummed input-layeractivity (Figure1A).
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When inhibition is tuned to balance excitation on average (see

STARMethods), the distribution of the correlation between inputs

received by pairs ofmixed-layer neurons has zeromean, although

the variance remainsfinite (FigureS1).Consequently, dimðhÞdoes
not decrease with K, and dimðmÞ does not exhibit a peak at small

K (Figure 2D). However, even in this case, dimension quickly ap-

proaches its maximum (which occurs at K =N=2), and when

N= 1;000 and the expansion ratio is large, it attains 95% of its

maximum value at K = 29, or approximately 3% connectivity.

Furthermore, the increase in dimension due to inhibition is only

substantial for sufficiently large K.

Thus, nonlinear mixed-layer neurons with small synaptic de-

gree are sufficient to produce high-dimensional representations.

This observation is consistent with the combinatorial argument

of the first section, which showed that the explosion in possible

wirings with synaptic degree leads to few redundant mixed-layer

neurons, even when the degree is small. The present analysis

also shows that positive average correlations limit dimension

when mixed-layer neurons receive purely excitatory input, and

that when K is large global inhibition can increase dimension

through decorrelation. Although our analytic calculations are

most easily performed for systems with feedforward inhibition,

we verified with simulations that our qualitative results also

hold for sufficiently strong recurrent inhibition (Figure S2).

Optimal Connectivity for Random Representations
under Resource Constraints
The observations of the previous section suggest that a repre-

sentation formed by many neurons with small synaptic degree

may be higher dimensional than one formed by fewer neurons

with large synaptic degree. Therefore, when constructing a

randomly wired neural system with limited resources, the former

strategy may be preferable. To formalize this intuition, we ask:

what combination of mixed-layer neuron number M and synap-

tic degree K maximizes the dimension of the mixed-layer repre-

sentation when the total number of connections S=MK is

limited to some maximum value? This is equivalent to fixing

the number of presynaptic sites to which mixed-layer neurons

can connect.

For f = 0:1 and S = 14,000, consistent with the Drosophila

mushroom body (Keene and Waddell, 2007; Caron et al.,

2013), the optimum occurs at K = 4 when inhibition is absent or

K = 8 when it is present (Figure 3A), close to the observed value

of 7. For f = 0:01 and S= 8:43105, parameters consistent with

the cerebellar granule-cell representation (Eccles et al., 1966;

Harvey and Napper, 1991), the optimum occurs at K = 4 (Fig-

ure 3B), equal to the observed value. In this case, the presence

of inhibition has a vanishing effect when K is small. This is

because, for N= 7;000 and small K, the average overlap of in-

puts received by granule-cell pairs is negligible, and decorrela-

tion via inhibition is not necessary. Although we chose the

mixed-layer coding level based on available experimental esti-

mates (Chadderton et al., 2004; Honegger et al., 2011), our con-

clusions do not depend strongly on this parameter (Figures 3C

and 3D). For both the Drosophila mushroom body and the

cerebellum, therefore, allocating synaptic resources among

randomly connected neurons to maximize dimension quantita-

tively predicts the observed synaptic degree.
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Figure 3. Optimal Connectivity with Constrained Connection

Number

(A) For each K, dimðmÞ=N is plotted with the number of mixed-layer neurons

set to M=S=K. S is equal to 14,000, an estimate of the total number of con-

nections from projection neurons onto Kenyon cells in each hemisphere of the

Drosophila mushroom body (Keene and Waddell, 2007; Caron et al., 2013).

Other parameters are N=50, an estimate of the number of antennal lobe

glomeruli, and f = 0:1. Arrow indicates the average value of K observed

anatomically.

(B) Same as (A), but for parameters consistent with the cerebellar granule-cell

representation (Eccles et al., 1966; Harvey and Napper, 1991), S= 8:43105,

N= 7; 000, and f =0:01.

(C) Optimal value of K for the Drosophila mushroom body representation,

defined as the maximum of curves computed as in (A) for different mixed-layer

coding levels.

(D) Same as (C), but for the cerebellar granule-cell representation. In (B) and

(D), points for inhibition and no inhibition lie on top of each other when K � N.
Heterogeneous Synaptic Weights
EPSP amplitudes recorded in vitro are not homogeneous but

broadly distributed (Sargent et al., 2005; Song et al., 2005). To

examine if our results are valid in the presence of this heteroge-

neity, we ask: what changes when synaptic weights are drawn

from a distribution with mean hwi and variance VarðwÞ? We first

examine the dimension of the input currents. WhenM[N[1,

and in the absence of inhibition,

dimðhÞz N

1+
ðK � 1Þ2

N

 
hwi2

hwi2 +VarðwÞ

!2
: (Equation 4)

First, we observe that the input-current dimension still de-

creases as K increases (compare with Equation 2). However,

this decrease occurs more slowly when VarðwÞ is large. This

makes sense because, with heterogeneous weights, even neu-

rons with identical input ensembles can receive different input

currents. Accordingly, when considering the nonlinear mixed-

layer responses, the maximum dimension occurs for a larger

value of K = 19 when synaptic weights are sampled from a

log-normal distribution matching recorded EPSP amplitudes in
neocortical slices (Song et al., 2005) and inhibition is absent

(Figure 4A). This is in contrast to K = 9 for the case of homoge-

neous weights (Figure 2D).

Next, we add global inhibition. We assume that the synaptic

weights of the connections from the input layer onto both mixed-

layer neurons and the global inhibitory neuron are heterogeneous,

while inhibitory weights are homogeneous. In this case, the addi-

tion of one inhibitory neuron only modestly increases the mixed-

layer dimension (Figure 4A). To understand why this improvement

is weaker than for homogeneous weights (Figure 2D), we again

examine the correlation of the input currents received by pairs

of mixed-layer neurons. When the weights of the connections

received by the inhibitory neuron from the input layer are chosen

from a distribution with mean hwIi and variance VarðwIÞ, the

average input-current correlation is proportional to

K

N

 
1� hwIi2

hwIi2 +VarðwIÞ

!
; (Equation 5)

when inhibition is tuned to minimize correlation (see STAR

Methods). Only when all the connections received by the inhibi-

tory neuron have homogeneous weights (so that VarðwIÞ= 0)

can perfect decorrelation occur. This is because, when these

weights are heterogeneous, inhibition serves as an extra source

of correlated input, precluding full decorrelation.
However, this heterogeneity can be averaged out by the pres-

ence of multiple inhibitory neurons, leading to more effective de-

correlation. When the number of inhibitory neurons is increased,

the maximum dimension increases, and the maximum is located

at a larger value of K (Figure 4B). Notably, the advantage of inhi-

bition is restricted to large K, as in the case of homogeneous

weights (Figure 2D).

There seems to be little benefit to the presence of inhibition

when K is small and N is large, at least as far as dimensionality

is concerned. However, inhibition may be useful for different pur-

poses. For example, if inputs convey signalswith different coding

levels, it is difficult to set an activity threshold that assures that

neurons respond to signals with a low coding level without satu-

rating for signals with a high coding level (in other words, the

dynamic range of the mixed layer is low). Global inhibition can

mitigate this problemby increasing a neuron’s effective threshold

for dense signals (Marr, 1969; Albus, 1971; Billings et al., 2014). In

our model, one global inhibitory neuron is sufficient to increase

the dynamic range of the mixed layer, even if it sums its inputs

through connections with heterogeneous weights (Figure 4C).

Inhibition may therefore serve two purposes in neural circuits

implementing random expansions: normalization and decorrela-

tion. The former can be accomplished with a single inhibitory

neuron that provides global graded inhibition (Figure 4C), while

the latter requires either precisely tuned inhibitory synaptic

weights (Figure 2D) or sufficiently many inhibitory neurons to

average heterogeneities in synaptic weights (Figure 4B). The

benefits of decorrelation are more pronounced as synaptic de-

gree grows, but even in this case, dimension increases at best

logarithmically (Figure 4B). Thus, neural circuits containing

manymixed-layer neurons with relatively small synaptic degrees

and few global inhibitory neurons are capable of providing many

of the benefits of a random expansion. Accordingly, even for
Neuron 93, 1153–1164, March 8, 2017 1157
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Figure 4. The Case of Heterogeneous Syn-

aptic Weights

(A) Dependence of dimension on K for log-

normal synaptic weights chosen from a distribu-

tion consistent with recordings from neocortical

neurons (Song et al., 2005), with N= 1; 000, f = 0:1,

and in the limit of a large expansion ratio.

(B) Similar to (A) for different numbers of global

inhibitory neurons NI.

(C) Dependence of mixed-layer coding level f on

input-layer coding level for K = 10. Input-layer ac-

tivities were sampled from a standard Gaussian

distribution truncated at zero with a coding level of

finput. Mixed-layer activity thresholds were chosen

to obtain an average coding level of f = 0:1 across

input patterns when finput is drawn uniformly from

the range (0,1) for each pattern.

(D) Dimension of the Drosophila mushroom body

representation as in Figure 3A but for log-normal

synaptic weights (NI = 1 for the case of inhibition).

Parameters of the log-normal distribution were

chosen to match data from neocortical neurons

(Song et al., 2005; filled circles) or cerebellar

granule cells (Sargent et al., 2005; open circles).

(E) Same as (D), but for the cerebellar granule-cell

representation. In this case, the presence of inhi-

bition or the number of inhibitory neurons NI does

not affect the shape of the curves.
broadly distributed synaptic weights, the optimal value of K for

the mushroom body and cerebellum calculated in the manner

of Figure 3 is no more than 7 (Figures 4D and 4E). Notably,

when the distribution of weights is chosen to match recordings

from cerebellar granule cells (Figures 4D and 4E, open circles;

Sargent et al., 2005), rather than recordings from neocortical

neurons that predict a broader distribution (Figures 4D and 4E,

filled circles; Song et al., 2005), dimension is increased, and

the optimal synaptic degrees more closely match the values

observed anatomically.

Local Connectivity in Cerebellar Cortex
The inputs to Drosophila mushroom-body Kenyon cells appear

to be random (Caron et al., 2013), but the extent to which this

is true for cerebellar cortex is unclear. We extended a recent

model (Billings et al., 2014) to determine the dimension of the

representation formed by cerebellar granule cells when their in-

puts are chosen in accordance with the constraints imposed

by the spatial arrangement of granule cells and mossy fibers.

In the model, synaptic connections are formed depending on

the distance between granule cells and mossy-fiber rosettes

(Figure 5A; see STAR Methods).

This connectivity rule leads to an increased proportion of

nearby granule-cell pairs that have multiple shared mossy-fiber

inputs (Figure 5B). Consistent with this increased redundancy,

the dimension of the resulting representation decreases by

approximately 50% compared to the case of random con-

nectivity (Figure 5C), suggesting that spatially structured wiring

limits dimension. Nonetheless, the optimal synaptic degree still

occurs at K = 4. Thus, sparse connectivity can be sufficient to

create high-dimensional representations even when dimension

is limited by nonrandom wiring.
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Classification of Mixed-Layer Responses
Dimensionality provides a convenient measure of the quality of a

mixed-layer representation because it makes few assumptions

about how the representation is used. A less abstract measure

is the ability of a decoder to correctly classify input patterns on

the basis of mixed-layer responses. Consider a set of P patterns

of activity sm for m= 1.P in the input layer, each of which is asso-

ciated with a positive or negative valence, denoted by vm = ±1,

with equal probability. Patterns associated with positive or nega-

tive valences might correspond to neural activity evoked by

appetitive or aversive stimuli, for example. We examine the per-

formance of a fully connected Hebbian classifier of mixed-layer

responses trained to discriminate between input patterns of

opposing valences (Figure 6A; see STAR Methods). During the

training phase, the classifier updates its synaptic weights ac-

cording to the mixed-layer activity and the valence so that, after

training, the weights are given by
PP

m=1ðmm � fÞvm, where mm

is the mixed-layer activity pattern evoked by input pattern sm

(the subtraction is performed element-wise). To assess the per-

formance of this classifier during the test phase, we compute its

error rate when classifying the activity evoked by instances of

previously learned input patterns that have been corrupted by

noise. Input noise produces noise in the mixed layer, which we

quantify by a measure D=d=2fð1� fÞ, where d is the mean-

squared distance between the mixed-layer activity during

training and testing (see STAR Methods). If noise is not present,

D= 0, while if noise is so large that training and test patterns are

uncorrelated, D= 1.

For the case of uncorrelated input patterns and valences,

mixed-layer neurons with a fixed coding level, and input-layer

to mixed-layer connections that are not modified by supervised

learning, there is a particularly simple relationship between the
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Figure 5. Spatial Model of Cerebellar Cortex

(A) Schematic of random model (left) and local model (right) of mossy-fiber to

granule-cell connectivity based on Billings et al. (2014).

(B) Distribution of the number of sharedmossy-fiber inputs received by pairs of

granule cells when connections are chosen randomly (random model, gray) or

based on the distance between mossy-fiber rosettes and granule cells in the

local model (black).

(C) Dimension as a function of K as in Figure 3B for the two models. For the

local model, the granule-cell density is scaled inversely with K to fix the total

number of connections. Results are shown for excitatory synaptic weights with

a distribution of strengths chosen to match recordings from cerebellar granule

cells (Sargent et al., 2005), but the results do not change if global inhibition is

added to the model (see Figure 4E).
performance of a Hebbian classifier and mixed-layer dimension

(Equation 3). The error rate of the classifier is expressed in terms

of a signal-to-noise ratio (SNR) for the mixed layer through the

relation PðerrorÞ= 0:5erfcð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SNR=2

p Þ (Babadi and Sompolinsky,

2014). The SNR is proportional to the mixed-layer dimension

(see STAR Methods) and given by

SNR=
dimðmÞ,ð1� DÞ2

P
; (Equation 6)

when P is large. Thus, SNR and error rate, which is a monoton-

ically decreasing function of SNR, depend only on the mixed-

layer dimension, the number of input patterns, and D. We have

already explored the dependence of dimension on synaptic

degree (Figures 2, 3, 4, and 5). All that remains is to understand

the dependence of D, which is determined by the difference be-

tween the mixed-layer representation of an input and that same

input corrupted by noise. For a fixed coding level and Gaussian

noise in the input layer, the dependence is trivial; D is indepen-

dent of synaptic degree (Figure 6B, left). Thus, the synaptic

degree that maximizes dimension for a given coding level also

minimizes error rate, regardless of the level of noise in the input

layer (Figure 6C, left). We note that D is high when the coding

level is low (Barak et al., 2013; Babadi and Sompolinsky, 2014;

Figure S3), meaning that representations with a very low coding
level have a reduced SNR even though they have a higher dimen-

sion (Figure S1).

Gaussian input patterns and noise may apply when in-

puts received by mixed-layer neurons are communicated via

smoothly varying firing rates. However, for neurons with small

synaptic degree, a few EPSCs are often sufficient to generate a

spiking response (Chadderton et al., 2004). In this case, it is

more appropriate to describe the input patterns as discrete spike

counts. While the qualitative dependence of mixed-layer dimen-

sion on synaptic degree is similar for discrete andGaussian inputs

(Figure S4), the dependence of D is not (Figure 6B, right). Surpris-

ingly, sparse connectivity leads to lower D than dense connectiv-

ity in this case (except whenK is very small; see Figure 6 caption).

This further biases the optimal connectivity toward small synaptic

degree (Figure 6C, right). Noise reduction at small K arises from

the fact that, when coding level is low, manymixed-layer neurons

are just slightly above or below threshold and thus sensitive to

noise. When K is large, all neurons experience noise in a fraction

of their inputs, while when K is small, there is a subpopulation of

neurons whose input is not strongly affected by noise and that

can respond reliably. The effect is maximal for low noise and

high mixed-layer coding level (Figure S3). Thus, small synaptic

degree can curtail the amplification of input noise if this noise

arises from low-rate spiking activity.

For the above analyses, we assumed that only fluctuations in

the input layer contribute to noise in the mixed layer. However,

if synaptic release is unreliable and uncorrelated across release

sites (Markram et al., 1997; Sargent et al., 2005), D can be

reduced by increasing synaptic degree to average over these

fluctuations (Figure S5). This averaging biases the optimal syn-

aptic degree toward larger values. Cerebellar granule cells

appear to be capable of responding reliably to mossy fiber acti-

vation (Chadderton et al., 2004), but quantifying the relative con-

tributions of input-layer and synaptic fluctuations to noise in the

mixed layer requires further analysis.

Learned Mixed-Layer Representations
We have shown that small synaptic degree is sufficient to obtain

optimal or near-optimal classification performance when the

connections and synaptic weights of the mixed-layer neurons

are set randomly and the activities of input-layer andmixed-layer

neurons are normalized (meaning that their variances and coding

levels are homogeneous). What happens if synaptic weights can

be modified by plasticity directed by a learning process? We

considered the performance of a classifier after both unsuper-

vised and supervised modifications of the connections received

by mixed-layer neurons.

Unsupervised learning has been proposed to improve classifi-

cation by regulating the activity of the cerebellar granule-cell

layer (Schweighofer et al., 2001; D’Angelo, 2014). We hypothe-

sized that such learning could be particularly important when

the activities of different inputs are not normalized. In this case,

synaptic plasticity could increase the influence of presynaptic

inputs whose activity only weakly activatesmixed-layer neurons,

ensuring each mixed-layer neuron conveys information rele-

vant to a task (Schweighofer et al., 2001). We implemented a

plasticity rule that bidirectionally adjusts synaptic weights based

on recent activity to compensate for changes in activity level as
Neuron 93, 1153–1164, March 8, 2017 1159
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Figure 6. Classification of Mixed-Layer Responses

(A) Schematic of network with a classifier that computes a weighted sum of

mixed-layer activity to determine the valence of an input pattern.

(B) D for N= 1; 000 and an expansion ratio of M=N= 5 for log-normal synaptic

weights (Song et al., 2005) without inhibition (black) and with NI = 100 global

inhibitory neurons (red). At left are Gaussian input patterns (curves with and

without inhibition lie on top of each other); at right are binary input patterns with

coding level of finput = 0:5. For Gaussian patterns, the standard deviation of the

noise at the input layer is 0.3 times that of the signal; for binary patterns, noise

is introduced by randomly flipping the activity of 10% of the inputs. For binary

patterns and no inhibition, the mixed-layer coding level cannot be adjusted to

exactlymatch the desired level of f = 0:1 because the input to eachmixed-layer

neuron takes only discrete values. We therefore choose the threshold that

leads to the highest f%0:1. For K = 1; 2; 3, it is not possible to find such a

threshold with f > 0, so data is not shown.

(C) Error rate of a Hebbian classifier when classifying P= 1; 000 random input

patterns. Circles denote simulations, and dashed lines denote prediction from

Equation 6.
well as one that adjusts the excitability of mixed-layer neurons to

maintain a desired coding level (see STAR Methods). After

learning, the error rate of the classifier is reduced (Figure 7A).

Notably, small synaptic degree is still sufficient to attain high

performance.

We next asked if supervised learning could further reduce the

error rate for a system in which inputs and mixed-layer re-

sponses have already been normalized. To implement learning,

the strengths of connections received by mixed-layer neurons

were modified with a Hebbian rule to associate each input

pattern with a target pattern of activity in the mixed layer (see

STAR Methods). In this scenario, the problem of learning is to

determine the appropriate target patterns. Unlike the unsuper-
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vised case, this form of learning requires a feedback signal to

determine the target patterns.

A previous study proposed associating each input pattern

with a random and uncorrelated target pattern (Babadi and Som-

polinsky, 2014). This approach attempts to reduce the overlap of

any two target patterns, which may otherwise be large if mixed-

layer neurons are highly correlated. Such learning reduces the

error rate, but only for large synaptic degree (Figure 7B, blue

curve). The magnitude of the reduction is greater for very low

coding levels (Figure S6), although it is still restricted to large syn-

aptic degree.

Improved performance can be achieved if mixed-layer target

patterns incorporate information about valence. When target

patterns are selective for conjunctions of valence and input, clas-

sification performance improves dramatically for large synaptic

degree (Figure 7B, cyan curve). This improvement demonstrates

the utility of mixed representations that incorporate information

about both input and desired outcome. Such representations

canbegenerated in abiologically plausiblemanner by computing

linear combinations of input andvalenceandapplyinga threshold

(see STAR Methods).

The mixed-layer representation is not uncorrelated with

valence or the input patterns presented during training in the

case of supervised learning; therefore, the error rate is no longer

simply related to dimension (Equation 6). In fact, the dimensions

of the representations described above, computed over the dis-

tribution of all random input patterns, are lower than the dimen-

sion of a random representation (Figure 7C). This reflects a trade-

off between minimizing classification error for known patterns

and creating a high-dimensional representation of arbitrary novel

patterns. Surprisingly, the benefits of these learned representa-

tions,when compared to randomconnectivitywithGaussian sta-

tistics, are only evident whenK > 10, suggesting that when inputs

to mixed-layer neurons are appropriately normalized and synap-

tic degree is small, implementing a supervised learning proced-

ure may not improve performance on associative learning tasks.

DISCUSSION

Our analysis demonstrates that the sparse connectivity observed

in the cerebellar granule-cell layer and analogous structures is

well suited for producing high-dimensional representations that

can be read out by densely connected output neurons. This

conclusion is supported by simple combinatorial arguments,

analysis of dimension (Figures 2, 3, 4, and 5), and the relationship

between dimension and classification error (Figure 6C), all of

which demonstrate that the performance of randomly wired neu-

ral systems quickly saturates as synaptic degree grows. While

random wiring is unable to exploit synaptic degrees beyond

this saturation point, supervised Hebbian modifications of input

synapses can dramatically improve classification performance

for large synaptic degrees (Figure 7B). Such modifications may

therefore be present in cerebrocortical circuits, where input and

output neurons are both densely connected.

Expansion via Sparse Connectivity in Neural Systems
Classic theories of cerebellar cortex were primarily interested in

the mechanisms that maintain a low coding level (that is, sparse
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Figure 7. Learning Mixed-Layer Represen-

tations

(A)Error rateofaHebbianclassifierbefore (magenta)

and after (black) unsupervised learning. The input-

layer activity and mixed-layer coding level are

initially heterogeneous (see STAR Methods). Pa-

rameters are N= 1; 000, M=N= 5, P= 1;000, and

f = 0:1. Global inhibition is present, and excitatory

synaptic weights are initialized to be homogeneous

before learning.

(B) Effect of supervised learning on error rate.

Results are shown for learning that associates in-

puts with either random mixed-layer target pat-

terns (blue) or mixed-layer target patterns in which

neurons are sensitive to combinations of input and valence (cyan). Results are compared to the case of synaptic weights drawn randomly from a standard

Gaussian distribution (black). Other parameters are as in (A).

(C) Same as (B) but for mixed-layer dimension averaged over the distribution of random input patterns.
activity) in the granule-cell layer and did not consider its dimen-

sion (Marr, 1969; Albus, 1971). While a low coding level can

increase dimension (Figure S1), it is not sufficient to do so,

because correlations in activity can limit dimension regardless of

the coding level (Figure 2A). The representations we considered

exhibit low coding levels, but we note that a low coding level

does not require or imply sparse connectivity. Marr (1969)

implied that sparse connectivity can ensure that the granule-

cell coding level does not saturate as the level of mossy fiber ac-

tivity is varied, and a similar argument has been made for the

mutual information between mossy-fiber input and granule-cell

responses (Billings et al., 2014). However, the importance of

sparse connectivity for this purpose is reduced if inhibition is

included (see Figure 4C) or if preprocessing normalizes the activ-

ity of the inputs (see below). Our result that small synaptic degree

maximizes dimension does not depend strongly on coding level

(Figures 3C and 3D).

Our analysis shows that when synaptic wiring is random, the

dimension of a representation formed by a large number of

sparsely connected neurons is typically higher than that of a

smaller number of densely connected neurons (Figure 3). This

intuition holds as long as the ratio of mixed-layer neurons to in-

puts is below 10–50. Above this expansion ratio, increases in

dimension are modest and require both well-tuned inhibition

and large increases in synaptic degree (Figure S1). The observed

expansion ratio in the Drosophila mushroom body and an esti-

mate of the expansion ratio of the granule cells presynaptic to

a single Purkinje cell in cerebellar cortex both lie within this range

of 10–50 (Keene and Waddell, 2007; Marr, 1969; Tyrrell and Will-

shaw, 1992). Thus, the extensive dendritic arbors of the output

neurons in both circuits may provide near-optimal classification

ability, allowing cerebellum-like circuits to operate close to the

limit of performance for sparsely connected neural systems.

While we established a formal link between dimension and one

specific computation, binary classification (Figure 6), high-

dimensional representations may be useful for a variety of tasks

(Rigotti et al., 2013) and thus desirable even in circuits whose

output neurons do not perform binary classification.

The Cerebellar Granule-Cell Representation
Classic theories of cerebellar cortex assumed that granule cells

employ fixed, random connections frommossy fibers to produce
a high-dimensional representation (Marr, 1969; Albus, 1971). The

spatial organization of cerebellar cortex (Billings et al., 2014; Fig-

ure 5) rules out the extreme case in which every mossy-fiber

input can be assigned randomly to any granule cell. However,

within defined spatial domains, inputs to individual granule cells

appear heterogeneous (Huang et al., 2013; Chabrol et al., 2015;

Ishikawa et al., 2015), supporting a spatially restricted form of

randomness. This is sufficient for our theory because granule

cells represent heterogeneous combinations of mossy-fiber

input relevant to the classification performed by their postsyn-

aptic Purkinje cells, which are unlikely to require all possible input

combinations. Some studies have suggested that granule-cell

input is more homogeneous (Jörntell and Ekerot, 2006; Bengts-

son and Jörntell, 2009) and that granule cells function as noise

filters (Ekerot and Jörntell, 2008) or improve generalization

(Spanne and Jörntell, 2015). However, even when we impose a

corresponding level of similarity of tuning in our cerebellar cortex

model, the synaptic degree that maximizes dimension is still

small (K%4), although the dimension of the resulting representa-

tion is reduced (Figure S7). Another study related to ours, of

which we recently became aware, shows that sparse connectiv-

ity also improves convergence speed in a model of associative

learning in cerebellar cortex (N.A. Cayco-Gajic et al., 2016,

BMC Neurosci. abstract).

Classic models of cerebellar cortex assume that the inputs to

granule cells are fixed (Marr, 1969; Albus, 1971), but plasticity

has been reported at mossy-fiber-to-granule-cell synapses

(Hansel et al., 2001; Schweighofer et al., 2001; Gao et al., 2012,

2016;D’Angelo, 2014), although thesesynapsesappearmorpho-

logically stable (Rylkova et al., 2015). Priormodeling studies have

suggested that these modifications reflect an unsupervised

learning process that allows granule cells to respond to inputs

relevant to a task (Schweighofer et al., 2001). Consistent with

this, unsupervised learning improves classification performance

in our model (Figure 7A). However, the performance of these

models still saturates when synaptic degree is small, in contrast

to models subject to supervised learning (Figure 7B). The fact

that climbing-fiber error signals target Purkinje cells but not

granule cells is consistent with this observation. It is also possible

that mossy-fiber plasticity is useful for functions other than

improving associative learning performance, and further work is

necessary to test this hypothesis (D’Angelo, 2014).
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The distribution of the strengths of connections received by

cerebellar granule cells from mossy fibers appears to be less

variable than the very broad, log-normal distribution observed

for neocortical neurons (Sargent et al., 2005; Song et al.,

2005). In our model, this reduced heterogeneity increases the

dimension of the granule-cell representation (Figure 4E). In

contrast, the broader distribution for neocortical neurons may

be the outcome of a supervised learning process rather than

the basis of a high-dimensional representation, which would

be consistent with our predictions (Figure 7) and other theoret-

ical analyses showing that similar distributions can be gener-

ated through associative learning (Chapeton et al., 2012; Bru-

nel, 2016).

Neural Representations for Associative Learning
We considered the simple case of learning associations between

outputs and random, uncorrelated input patterns with a fixed

coding level, a standard benchmark for learning systems (Gard-

ner, 1988; Barak et al., 2013; Babadi and Sompolinsky, 2014).

Under these assumptions, we derived a direct relationship be-

tween the performance of a Hebbian classifier and dimension

(Equation 6), thus making explicit the previously assumed rela-

tionship between these two quantities that characterize random

mixed-layer representations (Rigotti et al., 2013). Our qualitative

results also hold for more sophisticated pseudoinverse and

maximum-margin classifiers, which can achieve low error rates

when mixed-layer neurons have heterogeneous coding levels

(Figure S8).

The activities of the inputs to biological systems will inevitably

exhibit some level of correlation, violating the simplifying as-

sumptions of our model. However, the magnitude of this correla-

tion may be reduced by decorrelating mechanisms within pre-

processing circuitry such as the Drosophila antennal lobe

(Bhandawat et al., 2007). Similarly, normalizing circuitry may

ensure that input coding levels remain relatively constant (Caran-

dini and Heeger, 2011). For more complicated distributions of

input patterns and noise that strongly violate our assumptions,

different analyses are required, and the results will depend on

the exact forms of these distributions. Some simple forms of cor-

relation among input channels do not substantially affect the

location of the optimal synaptic degree (Figure S7). For a classi-

fication problem related to the challenging ‘‘parity’’ task, in which

only knowledge of the pattern of activity in every one of a set of

independent input streams provides any information about

valence (Barak et al., 2013), larger synaptic degree is needed

when there are many input streams (Figure S8). Dense connec-

tivity or structural plasticity mechanisms capable of selecting

relevant inputs may be necessary for such tasks.

Our analysis also did not consider the complex temporal

dynamics that underlie many forms of associative learning. To

extend our model to the temporal domain for systems that

lack strong recurrence, each input pattern could be interpreted

as the averaged activity during a period comparable to the inte-

gration time constant of a mixed-layer neuron. In this case, it is

necessary to consider an ensemble of patterns with correlations

determinedby the temporal statistics of the input. Short-termsyn-

aptic plasticity (Xu-Friedman and Regehr, 2003; Chabrol et al.,

2015) and unsupervised learning mechanisms (Schweighofer
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et al., 2001) are likely to control these statistics to ensure well-

timed input to mixed-layer neurons. In general, we expect the

qualitative result that small synaptic degree is sufficient for high

performance to hold, provided that the temporal overlap of inputs

is sufficient to allowmixed-layer neurons to respond to heteroge-

neous input combinations.

In our model, supervisedmodifications of the synaptic weights

received by mixed-layer neurons, in addition to those of the

classifier, are required to exploit large synaptic degree, but

they provide little improvement when synaptic degree is small

(Figure 7B). We also found little improvement at small synaptic

degree using a state-of-the-art implementation of a gradient

descent algorithm for modifying synaptic weights (Figure S9;

Kingma and Ba, 2014). We cannot rule out the existence of other

learning rules that lead to improved performance, but, if they

exist, these rules may not be easily implementable by biological

systems.

Learning in Cerebellum-like and Cerebrocortical
Systems
These observations suggest that supervised learning of the

inputs to cerebellar granule cells or analogous neurons in

cerebellum-like circuits may be unnecessary to achieve near-

optimal performance for learning associations when input-

layer activity is normalized (Figure 7). As described above,

the modifications of mossy-fiber to cerebellar granule-cell syn-

aptic transmission that have been identified in vitro and in vivo

may underlie an unsupervised learning process (Schweighofer

et al., 2001). Another study reported enhanced Kenyon-cell re-

sponses to conditioned odors in honeybees, but this change

may reflect learning at other stages of the olfactory processing

hierarchy (Szyszka et al., 2008). In cephalopods, plasticity in

the vertical lobe, a cerebellum-like structure, appears to be

confined to output neurons in cuttlefish but to be present

only in the dendrites of intermediate-layer, not output-layer,

neurons in Octopus vulgaris (Shomrat et al., 2011). This does

not contradict our analysis, which predicts that supervised

learning of mixed-layer responses is dispensable only in the

presence of output-layer plasticity. Experiments suggest that

Kenyon cells in the locust mushroom body are densely con-

nected (Jortner et al., 2007), unlike in Drosophila, implying

that their input synapses may potentially exhibit associative

modifications.

For densely connected neural systems, we investigated

various forms of supervised modifications of input-layer to

mixed-layer connections and found that learning based on

mixed-layer conjunctions of valence and input provides the

greatest improvement. This is consistent with the observation

that both task-relevant variables and reward are represented in

higher neocortical regions (Saez et al., 2015). Although our anal-

ysis neglects features of cerebral cortex, including recurrence

and complex temporal dynamics, it suggests that supervised

learning of both inputs and outputs is critical to take advantage

of the dense connectivity of cerebrocortical systems. Thus,

these systems are likely to exploit supervised synaptic plasticity

at multiple levels of processing, similar to artificial neural net-

works that attain high performance on complex categorization

tasks (LeCun et al., 2015).
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METHOD DETAILS

Combinatorics
Suppose we draw M items with replacement from R possibilities. The probability p that all items are distinct is given by

p=
RðR� 1ÞðR� 2Þ.ðR�M+ 1Þ

RM
=

R!

ðR�MÞ!RM
: (Equation 7)

For the case of a synaptic degree ofK andN input channels, settingR=

	
N
K



yields the probability of all mixed-layer neurons being

distinct.

Neuron Model
The mixed-layer responses are given by

m=QðJs� qÞ; (Equation 8)

where J are the synaptic weights, s is the input-layer activity, q are the activity thresholds, and Q is the Heaviside step function

(applied element-wise). When inhibition is present, J= J+ + J�, where J+ represents excitatory synaptic weights and J� = JmJ
T
s rep-

resents global inhibition. Jm is a vector of length M with each element equal to �a, and Js is a vector of length N with each element

either equal to 1 (homogeneous inhibition) or equal to ð1=NIÞ
PNI

i = 1wI;i (heterogeneous inhibition), where wI;i is drawn from the same

distribution as the excitatory synaptic weights and NI is the number of inhibitory neurons. When a=K=N, inhibition and excitation

are balanced. For all analyses of dimension, we choose the value of a that minimizes input-current correlations; this value depends

on the distribution of inhibitory synaptic weights and is less than K=N except for homogeneous weights (see Calculation of Input-

Current Dimension). We note that our model is insensitive to the mean of the distribution of input activities, since the activity thresh-

olds can be adjusted to compensate for a change in mean (specifically, if sj)sj +m, the thresholds may be redefined

as qi)qi +m
PN

j =1Jij).

For heterogeneous weights, synaptic weights were drawn from a log-normal distribution with m= � :702, s= :936 (consistent with

neocortical data; Song et al., 2005) or m= 0, s= 0:438 (leading to a CV of 0.46 consistent with data from cerebellar granule cells; Sar-

gent et al., 2005).

Dimension
To compute the dimension of a system whose state is defined by x, we construct the covariance matrix C= hðx� hxiÞðx� hxiÞT i.
Using Tr C=

P
ili, where flig are the eigenvalues of C, and noting that C is symmetric, we find

dimðxÞ= ðTr CÞ2
Tr C2

=
MhCiii2D

C2
ii

E
+ ðM� 1Þ

D
C2

ij

E; (Equation 9)

where Cii and Cij are random variables representing the diagonal and off-diagonal elements of C, respectively. For the case of the

input currents, analytic expressions can be obtained in terms of the distribution of synaptic weights (see Calculation of Input-Current

Dimension), leading to Equations 2 and 4. For the case of binary mixed-layer responses with identical coding levels for each neuron,

hCiii= fð1� fÞ, VarðCiiÞ= 0, and the expression reduces to Equation 3 whenM is large. The distribution of Cij can be obtained exactly
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for the case of homogeneous weights, while for heterogeneous weights we estimated the distribution by sampling (see Heteroge-

neous Weights).

Classifier Performance
The synaptic weights of the Hebbian classifier are given byw=

PP
m= 1ðmm � fÞvm, wheremm � f is short for element-wise subtraction

of f frommm. We assume that the training patterns and noisy test patterns have amean-squared distance (equivalent to the Hamming

distance divided by M) of d and equal coding levels. Denoting the classifier input by gm =w,ðcmm � fÞ, wherecmm
represents a noisy

test pattern,

hvmgmi= hðmm � fÞ,ðcmm � fÞi=Mðfð1� fÞ � d=2Þ: (Equation 10)

The average is taken over noise realizations. The variance VarðvmgmÞ is equal to

Var

 X
n= 1

P

vmvnðmn � fÞ,ðcmm � fÞ
!
: (Equation 11)

When P is large, this quantity can be approximated by the sum over nsm. In the special case of random and uncorrelated patterns

and noise, then if nsm, the statistics of vmvnðmn � fÞ,ðcmm � fÞ are identical to those of Omnhðmn � fÞ,ðmm � fÞ, which are Gaussian

distributed with mean zero. Therefore VarðvmgmÞzPVarðOmnÞ. Omn is a random variable representing the overlap of the mixed-layer

responses to two random input patterns. We now relate these overlaps to the covariance matrix of mixed-layer responses, and

thus to dimension.

Consider a set of Q mixed-layer responses to random input patterns fmmg, m= 1.Q, and construct the matrix M, whose mth col-

umn is equal to mm � f. The covariance matrix of mixed-layer responses can be written as C= limQ/Nð1=QÞMMT . Furthermore,

VarðOmnÞ is equal to the variance of the off-diagonal elements of O=MTM. Therefore,

Tr C2 = lim
Q/N

1

Q2
Tr
�
MMT

�2
= lim

Q/N

1

Q2
Tr
�
MTM

�2
= lim

Q/N

1

Q2
Tr O2 (Equation 12)
= lim
Q/N

1

Q2

�
Q
�
Omm

�
+QðQ� 1Þ

D
O2

mn

E�
=
D
O2

mn

E
=VarðOmnÞ:

Thus,

VarðvmgmÞzPVarðOmnÞ=P
�
Tr C2

�
:

We define the signal-to-noise ratio

SNR=
hvmgmi2

VarðvmgmÞz
M2ðfð1� fÞ � d=2Þ2

PðTr C2Þ : (Equation 13)

For the case of a fixed coding level, Tr C=M fð1� fÞ. We can therefore write

SNRz
ðTr CÞ2

�
1� d

2fð1� fÞ
�2

ðTr C2ÞP =
dimðmÞ,ð1� DÞ2

P
: (Equation 14)

Unsupervised Learning of Mixed-Layer Inputs
To study unsupervised learning in the presence of heterogeneous input-layer activity, we calculated the error rate of the clas-

sifier before and after an unsupervised learning period consisting of 1,000 presentations of random input patterns. During this

learning period, but not during the calculation of error rate, synaptic weights and the thresholds of mixed-layer neurons are

modified.

The activity of the jth input channel is drawn from a Gaussian distribution with mean 0 and variance s2j , with sj uniformly distributed

between 0.25 and 1.75. We define a variable uijðtÞ for each connection, with uijð0Þ= 1. When an input pattern sðtÞ is presented, uij is

updated according to

uijðtÞ= ð1� aÞuijðt � 1Þ+aðsjðtÞÞ2; (Equation 15)

with a= 0:01 and t = 1,2, .1,000. The variable uijðtÞ thus estimates the variance of input channel j. Synaptic weights are set equal

to JijðtÞ= ðuijðtÞÞ�1=2.

To update neuronal thresholds, we initially set qið0Þ to be identical for all i, leading to heterogeneous coding levels across neurons

(the initial value is chosen so that the average coding level is 0.1). When an input pattern is presented, thresholds are updated ac-

cording to
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qiðtÞ=

8><>:
qiðt � 1Þ+ h if neuron i is active; and

qiðt � 1Þ � h
ft

1� ft
otherwise;

(Equation 16)

with h= 0:01. This learning rule ensures that each neuron approaches a target coding level of ft = 0:1.

Supervised Learning of Mixed-Layer Inputs
We compared classification performance when input-layer to mixed-layer connections were chosen from a standard Gaussian dis-

tribution to performance when they weremodified by Hebbian learning. Since the learning rule does not constrain the sign of the syn-

aptic weights, we did not require the elements of J to be positive. To implement Hebbian learning, each input pattern sm is associated

with a target mixed-layer pattern tm. The synaptic weights are then set according to

J=
X
m= 1

P

ðtm � fÞðsmÞT : (Equation 17)

Target patterns are either random binary patterns with coding level f or patterns that mix input and valence. For the latter case, target

patterns are generated by setting

tm =QðJ0s
m + Jvv

m � qtÞ: (Equation 18)

qt is chosen so that each mixed-layer neuron is active for a fraction f of the target patterns. J0 is a M3N matrix with entries drawn

independently from a zero-mean Gaussian distribution with variance 1=N, while Jv is aM-dimensional vector with entries drawn inde-

pendently from a zero-mean Gaussian distribution with variance 100.

Calculation of Input-Current Dimension
If the input patterns have zero mean, then hm = Jsm has zero mean. The ði; jÞ th element of the covariance matrix of the input currents is

therefore

Cij =
D
hm

i h
m

j

E
=
�ðJi,s

mÞðJj,s
mÞ�= Ji

D
smðsmÞT

E
ðJjÞT ; (Equation 19)

where Ji is the ith row of J and the average is taken over input patterns for a fixed weight matrix. If the input patterns are also uncor-

related, hsmðsmÞT i= I, and the above expression leads to C= JJT . This is the case we analyze.

To compute the input-current dimension, we calculate

dimðhÞ=
�PN

i = 1li

�2
PN

i = 1l
2
i

; (Equation 20)

where flig are the eigenvalues of C, and therefore

dimðhÞ= ðTr CÞ2
Tr C2

: (Equation 21)

If Cii is a random variable representing the diagonal elements of C and Cij the off-diagonal elements, then

dimðhÞ= MhCiii2D
C2

ii

E
+ ðM� 1Þ

D
C2

ij

E= MhCiii2

hCiii2 +VarðCiiÞ+ ðM� 1Þ
��

Cij

�2
+VarðCijÞ

�: (Equation 22)

The averages are taken over the population of mixed-layer neurons. Thus, the dimension is determined by the mean and variance of

the distributions of Cii = Ji,Ji and Cij = Ji,Jj across the population.

Homogeneous Weights

We first consider the case where the rows of J each have K nonzero elements, at random locations. At these locations, Jij = 1. Thus,

Cii =K and Tr C=MK. For isj, Cij � HypergeomðN;K;KÞ, and Cij =Cji. This yields

hCiii=K
VarðCiiÞ= 0
�
Cij

�
=
K2

N
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VarðCijÞ=K2

N

	
1� K

N



N� K

N� 1
: (Equation 23)

Thus,

dimðhÞ= M K2

K2 + ðM� 1Þ
	
K4

N2
+
K2

N

	
1� K

N



N� K

N� 1


: (Equation 24)

When M;N[K this simplifies to

dimðhÞ= 1

1

M
+
1

N

 
1+

ðK � 1Þ2
N

!: (Equation 25)

In the limit of a large expansion, when M[N[K,

dimðhÞ= N

1+
ðK � 1Þ2

N

: (Equation 26)

Homogeneous Weights with Homogeneous Inhibition

We now suppose that all neurons receive inhibition proportional to the summed activity of the input layer. This is equivalent to adding

a negative offset to all weights. Let J= J+ + J�, where J+ is determined as above for homogeneous weights and J�ij = � a. Using the

results of the previous section leads to

hCiii=Kð1� aÞ2 + ðN� KÞa2
VarðCiiÞ= 0
�
Cij

�
=
K2

N
� 2Ka+Na2
	

VarðCijÞ=K2

N
1� K

N



N� K

N� 1
: (Equation 27)

When a=K=N, the row sums of J are equal to zero and excitation and inhibition are ‘‘balanced.’’ In this case, hCiii=Kð1� ðK=NÞÞ and
hCiji= 0. Hence

dimðhÞ=
M K2

	
1� K

N


2

K2

	
1� K

N


2

+ ðM� 1Þ
	
K2

N

	
1� K

N



N� K

N� 1


: (Equation 28)

When M;N[K this simplifies to

dimðhÞ= 1

1

M
+
1

N

: (Equation 29)

Heterogeneous Weights

Now we suppose each nonzero element of J is drawn from a distribution so that Jij � w, where w is a random variable. In this case,

hCiii=K
�
w2
�

��

VarðCiiÞ=K w4

�� �w2
�2�

: (Equation 30)
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For a given isj, the number of nonzero elements in the sum
PM

k = 1JijJik is again distributed as HypergeomðN;K;KÞ. Also, the individ-

ual nonzero elements have mean hwi2 and second moment hw2i2. This leads to�
Cij

�
= hwi2K

2

N
;

VarðCijÞ=K2

N

	�
w2
�2

+ hwi4
	
� 1+

	
1� K

N



N� K

N� 1




: (Equation 31)

Thus, the dimension is

dimðhÞ= M K2hw2i2

Khw4i+KðK � 1Þhw2i2 + ðM� 1ÞK
2

N

�
hw2i2 + hwi4

	
� 1+

K2

N
+

	
1� K

N



N� K

N� 1



: (Equation 32)

When M;N[1, this simplifies to

dimðhÞ= 1

1

M

 
1

K

hw4i
hw2i2 +

K � 1

K

!
+
1

N

0@1+
ðK � 1Þ2

N

 
hwi2
hw2i

!2
1A: (Equation 33)

In the limit of a large expansion, when M[N[K,

dimðhÞ= N

1+
ðK � 1Þ2

N

 
hwi2
hw2i

!2
: (Equation 34)

Heterogeneous Weights with Homogeneous Inhibition

Again, we assume J= J+ + J�, where J+ is determined as above for heterogeneous weights and J�ij = � a. Then,

hCiii=K
�
w2
�� 2Khwia+Na2
�� � � �2 �

VarðCiiÞ=K w4 � w2 � 4a w3

�
+ 4ahwi�w2

�
+ 4a2

�
w2
�� 4a2hwi2

�

2
�

Cij

�
=
K

N
hwi2 � 2Kahwi+Na2: (Equation 35)

To determine the variance of Cij =
P

kðJ+
ik � aÞðJ+

jk � aÞ, observe that the terms that contribute to the variance are those for which

either J+
ik or J+

jk are nonzero. We therefore define C0
ij =
P

k; nonzeroðJ+
ik � aÞðJ+

jk � aÞ as the sum over only these entries. This sum

can be decomposed into those indices for which both J+
ik and J+

jk are nonzero and those for which only one is nonzero. We denote

the number of these as n++
ij and 2ðK � n++

ij Þ, respectively. Given n++
ij ,D

C0
ij

��� n++
ij = n

E
= nðhwi � aÞ2 � 2aðK � nÞðhwi � aÞ
� � � 	 � � �

Var C0

ij

�� n++
ij = n = n 2ðhwi � aÞ2 �w2

�� hwi2 +
�
w2
�� hwi2

�2

+ 2a2ðK � nÞ

��
w2
�� hwi2

�
: (Equation 36)

Now, observing that n++
ij is distributed as HypergeomðN;K;KÞ, we use the law of total variance to find

VarðCijÞ=K2

N

	
2ðhwi � aÞ2

��
w2
�� hwi2

�
+
��

w2
�� hwi2

�2

+ 2a2

	
K � K2

N


��
w2
�� hwi2

�
+
�
hwi2 � a2

�2K2

N

	
1� K

N



N� K

N� 1
:

(Equation 37)

When a= ðKhwi=NÞ, inhibition balances excitation and hCiji= 0. In this case and in the limit of N[K,

hCiii=K
�
w2
�

��

VarðCiiÞ=K w4

�� �w2
�2�
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VarðCijÞ=K2hw2i2
N

0dimðhÞ= 1

1
M

 
1+

1

K

 
hw4i
hw2i2 � 1

!!
+
1

N

: (Equation 38)

Heterogeneous Weights with Heterogeneous Inhibition

Let us suppose that J� = JmJ
T
s , where the entries of Jm are homogeneous and equal to �a, while the entries of Js are drawn from a

distribution with mean hwIi and variance VarðwIÞ. This represents the case of global inhibition, with heterogeneous weights of the

connections from the input layer onto the inhibitory neuron but homogeneous weights of the connections from the inhibitory neuron

onto the mixed-layer neurons.

The average correlation between the input currents is�
Cij

�
=
K2

N
hwi2 � 2KahwihwIi+Na2

�
w2

I

�
: (Equation 39)

The value of a that minimizes this quantity is

a=
KhwihwIi
N
�
w2

I

� : (Equation 40)

Inserting this expression into Equation 39 leads to

�
Cij

�
=
K2hwi2

N

 
1� hwIi2�

w2
I

�!: (Equation 41)

Also, in this case the average variance is

hCiii=K
�
w2
�� Khwi2hwIi2

N
�
w2

I

� : (Equation 42)

Calculation of Mixed-Layer Dimension
For Gaussian patterns and a homogeneous coding level across the mixed-layer neurons, we can evaluate

Cij = hðmi � fÞðmj � fÞi= hmimji � f2 by determining the variance and covariance of the input currents. The input to neuron i is

Gaussian distributed with hhii= 0 and VarðhiÞ=
P

kJ
2
ik . This determines the threshold of neuron i through qi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2VarðhiÞ

p
erfc�1ð2fÞ.

The covariance of hi and hj is Covðhi; hjÞ= Ji,Jj. These quantities are sufficient to determine Cij using the approach described below.

We use this approach to calculate the dimension in the main text for the case of Gaussian patterns. For non-Gaussian patterns, we

compute the dimension by direct simulation.

Suppose hi;hj are zero-mean Gaussian random variables with variances s2i ;s
2
j and covariance r. We can evaluate hmimji=

hQðhi � qiÞQðhj � qjÞi by defining three auxiliary unit Gaussian random variables xi; xj, and y and writing hi;j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i; j � h2i; j

q
xi; j + hi; jy,

where hi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijr jsi=sj

p
and hj = signðrÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijr jsj=si

p
. The xi and y variables represent the independent and common components of

the input-current fluctuations, respectively. Then �
Qðhi � qiÞQðhj � qjÞ

�
=

0

=

Z
y

Dy
B@Z

xi

dxiP

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
i � h2

i

q
xi + hiy > qi


1CA
0B@Z

xj

dxjP
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
j � h2

j

q
xj + hjy > qj

�1CA
=

Z
y

Dy
1

4
erfc

 
qi � hiyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs2

i � h2
i Þ

p !
erfc

0BB@ qj � hjyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
�
s2
j � h2

j

�r
1CCA; (Equation 43)

where

Dy =dy
1ffiffiffiffiffiffi
2p

p e�y2=2:
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Homogeneous Weights

Whenweights are homogeneous, the correlation between the responses of a pair of mixed-layer neurons depends only on howmany

shared inputs they receive. The number of inputs shared by neurons i and j is distributed as n++
ij � HypergeomðN;K;KÞ. If inhibition is

absent, s2i =K and r= n++
ij , while if it is present, s2i =Kð1� K=NÞ and r= n++

ij � K2=N. These quantities and Equation 43 are sufficient

to evaluate the distribution of correlations and thus the dimension.

Heterogeneous Weights

For the case of heterogeneous weights, we obtain random samples from the distribution of Cij by generating random rows of J,

computing si, sj; and r, and using Equation 43 to compute hmimji. These random samples are used to estimate the mean and vari-

ance of the distribution.

Spatial Model of Mossy Fiber-Granule Cell Connectivity
Weadapted themodel described in Billings et al. (2014) to develop an anatomically realistic connectivity matrix betweenmossy fibers

and granule cells. In the model, connections are formed based on the distances between mossy-fiber rosettes and granule cells. We

extended the model beyond the 80 mm-diameter sphere in Billings et al. (2014) to cover a region containing all granule cells presyn-

aptic to a single model Purkinje cell.

A single Purkinje cell forms a large dendritic tree approximately 250 mm in diameter (Eccles et al., 1967). We therefore consider a

cylinder with diameter 250 mm, representing the unfolded granular-layer region containing granule cells that send parallel fibers to the

Purkinje cell. The length of the cylinder is chosen so that the number of granule cells containedwithin it is equal to the value of 209,000

reported to synapse onto a single Purkinje cell in rats (Harvey and Napper, 1991). Using a granule-cell density of 1:9,106 per mm3

(Harvey andNapper, 1991; Billings et al., 2014), the resulting length is 2; 240 mm,which agreeswith the typically reported parallel fiber

extent of 2;000� 3; 000 mm (Eccles et al., 1967; Albus, 1971). Here we have assumed that all parallel fibers that pass through the

Purkinje-cell dendritic tree form connections with it. Anatomical studies indicate that this is true for greater than half of parallel fibers

passing through a typical Purkinje-cell dendritic tree (Harvey and Napper, 1991).

Glomeruli containing mossy-fiber rosettes are placed within the cylinder using the procedure in Billings et al. (2014) which we now

describe. The density of mossy fibers is equal to the observed glomerular density of 6:6,105 per mm3 divided by the number of ro-

settes per mossy fiber. In the 80mm-diameter sphere of Billings et al. (2014), mossy fibers typically formed 2-3 rosettes, but anatom-

ical studies indicate that mossy fibers form on average approximately 20 rosettes in total (Eccles et al., 1967; Fox et al., 1967). We

assume that mossy fibers form 10 rosettes in the area we consider, but varying this number does not influence our qualitative results.

The value of 10 yields 7,257 unique mossy fibers in the region, consistent with previous estimates by Marr (1969), who estimated

7,000 (Tyrrell and Willshaw, 1992 estimated 13,000). For each mossy fiber, the first rosette is placed uniformly within the cylinder,

while subsequent rosettes are displaced relative to the previous rosette by a distance that is exponentially distributed in the x, y,

and z directions (the axis of the cylinder is oriented along the z direction). The average displacements are 2mm, 58mm, and 21mm

for the x, y, and z directions (Sultan, 2001; Billings et al., 2014), reflecting the anisotropic orientations of the paths of the mossy fibers.

Granule cells and their connections are formed using a procedure identical to Billings et al. (2014). Granule cells are placed uni-

formly within the cylinder according to the granule-cell density. Each forms connections with K = 4 mossy-fiber rosettes. The K con-

nected rosettes are those whose distances to the granule cell are closest to 15mm, representing the typical granule-cell dendritic

length. Granule cells are disallowed from forming multiple connections to a single mossy fiber via multiple rosettes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Results for dimension, error, and other quantities are first averaged over random input patterns for a fixed network architecture, then

over random network architectures. Unless otherwise noted, the standard error of the mean across network architectures for the

plotted quantities is smaller than the width of the marks.

DATA AND SOFTWARE AVAILABILITY

Software was written in the Julia (http://julialang.org) and Python (http://python.org) programming languages. Implementations

of algorithms used to compute quantities presented in this study are available at: http://www.columbia.edu/�ak3625/code/

litwin-kumar_et_al_dimension_2017.zip.
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