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Abstract
Neuronal responses characterized by regular tuning curves are typically assumed to arise

from structured synaptic connectivity. However, many responses exhibit both regular and

irregular components. To address the relationship between tuning curve properties and

underlying circuitry, we analyzed neuronal activity recorded from primary motor cortex (M1)

of monkeys performing a 3D arm posture control task and compared the results with a neu-

ral network model. Posture control is well suited for examining M1 neuronal tuning because

it avoids the dynamic complexity of time-varying movements. As a function of hand position,

the neuronal responses have a linear component, as has previously been described, as

well as heterogeneous and highly irregular nonlinearities. These nonlinear components

involve high spatial frequencies and therefore do not support explicit encoding of movement

parameters. Yet both the linear and nonlinear components contribute to the decoding of

EMG of major muscles used in the task. Remarkably, despite the presence of a strong linear

component, a feedforward neural network model with entirely random connectivity can repli-

cate the data, including both the mean and distributions of the linear and nonlinear compo-

nents as well as several other features of the neuronal responses. This result shows that

smoothness provided by the regularity in the inputs to M1 can impose apparent structure on

neural responses, in this case a strong linear (also known as cosine) tuning component,

even in the absence of ordered synaptic connectivity.

Author Summary

Relationships between the activity of single neurons and experimental parameters are
often characterized by functions called tuning curves. Regular tuning-curve shapes are typ-
ically assumed to arise from structure in the synaptic inputs to each neuron. We found
that the activities of neurons in primary motor cortex during an arm posture task exhibit
both a regular component that fits a well-known tuning curve description, and heteroge-
neous irregular components that do not. Such complex components are often assumed to
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reflect residual noise. However, both the regular and irregular components are needed to
optimally decode the commands that guide the muscles used in the task. We then asked
what type of input structure was needed to generate neuronal responses with both regular
and irregular elements. We constructed and analyzed a mathematical model, based on
known physiology of the relevant brain regions that replicates the full spectrum of
recorded neuronal responses. Surprisingly, the synaptic connectivity in this model is
completely random.

Introduction
The dependence of neuronal responses on stimulus- or movement-related parameters is often
characterized by tuning curves. A natural assumption is that a smooth, regular tuning curve
reflects structured, orderly input to a neuron. However, neuronal responses inevitably involve
a degree of irregularity, even when responses are averaged across trials. Do such irregularities
simply reflect noise in the inputs, or might they suggest something more complex such as
unstructured input? Here we address this question using data recorded from primary motor
cortex (M1) during an arm posture task, augmented by a neural network model of M1 neurons
and their inputs.

Interpreting neural activity during arm movements is difficult because motor and sensory
activity as well as limb biomechanical variables all change simultaneously. In this study, we
focus on the often ignored task of actively maintaining arm posture. Arm posture control is a
natural behavior without the dynamic complexity of time-varying movements. It is therefore
well suited to address the nature of neuronal tuning curves and their relationship to input. To
reveal fine-scale tuning curve structure, we employed a task with 54 different arm postures,
consisting of 27 target positions with two forearm rotation angles.

Previous studies of arm posture control [1–3] concluded that neuronal responses in M1
vary as linear functions of hand position, which, by a change of coordinates, is equivalent to
cosine tuning. The finding of broad, singly peaked tuning curves in both motor and visual
areas led to proposals suggesting that both are generated by similarly structured cortical micro-
circuit [4, 5]. The M1 tuning curves we extract have a strong linear component, in agreement
with previous studies, but we also find sizable and significant nonlinear elements. We examine
the quality of the fit of linear tuning curve models across the entire population of tuned neu-
rons, we analyze the nonlinear components in detail, and we determine how both linear and
nonlinear elements contribute to the accuracy of inferring EMGs fromM1 neuronal activity.
Finally, we construct a neural network model of M1 activity driven by target-position related
inputs that accurately replicates the data. Surprisingly, the synaptic connectivity in this model
is completely unstructured, in fact, random. This model shows that the presence of a strong
regular and, in this case, linear component in the tuning of a population of neurons does not
necessarily imply structured connectivity.

Results
During a continuous target-to-target reach and hold task in a virtual reality setup, monkeys
maintained static arm posture at one of 27 targets in 3D space (Methods). They were trained to
perform this task with their forearm at a pronated or supinated angle (Fig 1). To study posture
control, we analyzed single-unit activity during a 200 ms period near the end of the target hold
epoch when firing rates are approximately constant (S1B Fig). The responses of 81% (411/510)
of the recorded neurons are tuned across the 54 arm postures (27 target positions times 2
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forearm rotation angles; ANOVA, p< 0.01; statistical significance was also verified using the
non-parametric Kruskal-Wallis test with identical results). Various tests established that arm-
posture tuning did not arise from hand jitter (S1 Text).

Tuning of the neuronal responses
The responses of each neuron, for a particular forearm angle, are summarized by a set of 27
mean firing rates, one for each hand position (Fig 2). To study the relationship between firing
rate and hand position, we fit spatial linear tuning curves [2] to the responses of all the tuned
neurons (N = 411; Methods), separately for pronation and supination. Neurons with perfectly
spatial linear tuning would fire at rates that increase linearly when the hand is held at different
positions along a Preferred Position (PP) vector and are constant across locations in planes
orthogonal to this vector. During pronation, the response of the neuron shown in Fig 2A is
well fit by a linear tuning curve (Fig 2C). However, this is one of only 9 neurons with R2 > 0.9
for the fit to linear tuning. Across the population of tuned neurons, the distribution of R2 values
for the spatial linear tuning fit is broad (Fig 3B). We pooled the R2 distributions from both fore-
arm angles because they are not significantly different (Wilcoxon rank-sum test, p = 0.56) and,
in fact, there is only a small reduction in goodness of fit if the PP vectors for each neuron are
required to be the same for both forearm angles (Methods, Eq 3). The R2 distribution has a
median of 0.52, and its breadth indicates that neurons range from being well fit to poorly fit by
a linear tuning curve.

We tested whether the deviations of the data from the linear fit are due to noise by generat-
ing artificial data with perfectly spatial linear tuning, using the model parameters obtained by
fitting the real data, and including noise extracted from the real data (resampled 1,000 times;
Methods). We calculated mean responses for these artificial data and re-fit them to the linear
tuning curves. The resulting distribution of R2 values is skewed towards 1 (Fig 3C), with a
median of 0.75, indicating significantly better fits than those for the real data (Wilcoxon rank-
sum test, p< 10−46). Generating Poisson spike trains with rates given by the generated linear
tuning curves over the same number of trials as the real neurons yielded similar results. We
also studied whether the observed neuronal responses had linear structure above chance level
by generating another artificial dataset constructed from randomly generated responses drawn
across the same range of firing rates as the real neurons. Noise traces extracted from the data
were added to these responses. When fit to the linear tuning curve, this resulted in significantly
worse fits than for the real data, with an R2 distribution (Fig 3A) skewed towards zero with a
median of 0.12. These analyses indicate the linear model is not a complete description of the
tuning curves extracted from the data, but that the linear component is significantly larger
than what would be expected from a random mapping between hand position and firing rate.

Fig 1. Monkeys controlled a cursor in a standard virtual-reality setup, where they held one of 27
targets in 3D space, with their forearm pronated or supinated.

doi:10.1371/journal.pcbi.1004910.g001
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Fig 2. Examples of neuronal response functions. Colored plots showmean firing rates as function of 3D
target position. Sphere radius is proportional to the confidence in the mean (SEM normalized by the mean), a
smaller radius means lower confidence. The PP vector from the linear tuning-curve is plotted as an arrow.
Left panel for pronation, right for supination. Below, mean firing rates ± SEM plotted as function of target
positions projected onto PP vector. Gray line shows firing rates expected by linear tuning-curve, and its R2

(star denotes a significant F-test, p < 0.01). A-D.Neuron with one of the best fits to the linear tuning-curve in
our dataset. Target positions perpendicular to the PP vector have almost equal firing rates. E-H.Neuron
exhibiting spatial bimodality. I-L. Neuron with a spatially local response.M-P. Neuron with most common form
of nonlinearity with high spatial frequencies (neighboring targets have large differences in firing rates).

doi:10.1371/journal.pcbi.1004910.g002
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Fig 3. A. Distribution of R2 values for fit of linear tuning-curve to uniformly random artificial responses
(median = 0.15), with addition of noise traces from real data (repeated 1,000 times). Almost all fits were not
significant (F-Test, p < 0.01), denoted by light gray bars.B. Same as A but for real data, including the
responses for all tuned neurons (N = 411) for both forearm rotation angles, significant fits (F-Test, p < 0.01)
are denoted by dark blue (median = 0.52). C. Same for the artificial spatial linear control dataset. Distribution
(median = 0.76) significantly different from that for real data (Wilcoxon rank-sum test, p < 10−27). D.
Distribution of complexity measure across (normalized) response functions. Blue for the real neuronal
responses, other colors for matched spatial linear, smooth nonlinear, and uniformly random control datasets,
all with added real noise traces. Means (plotted on x-axis) significantly different for controls than for real data
(t-test, p < 10−40 for the closest distribution). E. PC variances of the response functions across 54 conditions,
and PC variances of noise traces sampled from the data (resampled 1,000). Variance explained by first 12
PCs of data is above variance of first noise PC, and variance of first 36 PCs of data is above the mean noise
variance. The 99% confidence interval of the mean of the variance of the noise traces is indicated by the
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The neuronal responses deviate from spatial linearity in myriad ways. Some are bimodal,
with high firing rates in two regions of space and low firing rates for the targets in between (Fig
2E). Other neurons have spatially localized tuning, responding to only one or two adjacent tar-
get locations (Fig 2I). Still others display more complex nonlinear spatial patterns, either on
top of a linear component (Fig 2M) or without one (Fig 2N). Strikingly, most of the responses
exhibit high spatial frequencies, with large differences in firing rates between neighboring tar-
gets in a seemingly unsystematic manner. This causes a zigzag pattern in the projected
responses (Fig 2D, 2G, 2O and 2P). Such “salt and pepper” tuning does not support the explicit
encoding of motor parameters (hand position, joint angles, etc.) by single neurons, because
these should vary systematically with changes in hand position.

We quantified the spatial irregularity of each neuron’s responses using a complexity mea-
sure, based on the distribution of firing rate differences between all pairs of neighboring targets
(Methods). The resulting distribution of spatial complexities across the real neurons (Fig 3D)
covers values that are significantly larger than for linear and "regular" nonlinear (threshold-lin-
ear, exponential, sigmoidal; with added noise as described above) artificial datasets, yet signifi-
cantly smaller than for an artificial dataset constructed from random responses. Stated another
way, the real responses contain more power at high spatial frequencies than conventional
parametric linear and nonlinear tuning curves, but not as much as expected for completely ran-
dom tuning (Fig 3D).

Because the neuronal responses are not well described by standard parametric tuning curves
(e.g. threshold-linear, exponential, sigmoidal, etc.), we used principal component analysis
(PCA) to quantify their shapes non-parametrically. We also performed PCA on noise traces
resampled from our data to implement a procedure developed by Machens et al. [6] for sepa-
rating signal from noise (Methods). The first 12 PCs of the full data each account for more vari-
ance than the 1st PC of the noise (Fig 3E; 99% confidence interval, bootstrap). Using this strict
threshold, we find that the responses occupy 12 of the possible 54 dimensions, with the rest
assumed to be noise. If, instead, we take the mean of the noise variance across all of its PCs as
the noise threshold, the responses are 36 dimensional. These results do not depend on whether
or not the data is normalized (Methods). We also performed PCA on the separate pronation
and supination data sets, obtaining in each case 12 or 20 dimensions above the maximal or
mean noise thresholds, respectively. Regardless of where in the range from 12–36 the exact
dimensionality lies, it is much higher than the 3 dimensions expected for linear tuning, and it is
presumably sufficiently high to allow these neurons to control the arm muscles required for
this task.

To study the signal variance in the data, we subtracted away the noise variance and com-
pared the resulting cumulative explainable variance to that of the artificial linear dataset,
which is described by only 3 PCs (Fig 3F). The difference between these curves reveals the

thickness of the gray line, and is smaller than the round markers. F. PCA of response function of both forearm
angles (27 conditions each). Percent cumulative explainable variance as function of PC number, computed
by subtracting the noise variance from total variance of the real data. In gray, the variance of purely spatial
linear control (without noise).G.R2 values for fit of PCs to linear tuning-curve, for real data (red), purely
spatial linear (gray and squares), or real noise traces (dashed gray and x’s). For real data and linear control
only first 3 PCs have a significant fit to linear tuning-curve. Mean R2 for fit of each of noise PCs, across the
1,000 resamples is plotted, showing chance level for fitting noise to linear tuning-curve. H. 1st PC vector of
real data plotted in the same format as the neuronal responses (Fig 2A and 2C); here color denotes the PC
coefficient. This PC vector is the most spatially linear and represents one dimension of the spatial linear
component. I. Same for 4th PC vector. This PC vector is highly nonlinear and is part of basis representing the
nonlinear structure of responses. (See the first 20 PC vectors in S3 Fig). J. R2 distribution for the “model”
formed by representing each response function by the first 12 PC vectors (median = 0.84).K. Same as H
when using the first 20 PC vectors (median = 0.95).

doi:10.1371/journal.pcbi.1004910.g003
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contribution of the heterogeneous nonlinear components. The first 3 PCs of the real responses
roughly describe the linear component described above (F-Test, p< 0.01, Fig 3G, Fig 3H). The
4th and higher PCs (Fig 3I) provide a basis for the heterogeneous nonlinear structure found in
the responses (S3 Fig).

How much better can a general model describe the neuronal responses than the linear tun-
ing curves? To answer this question we used the non-noise PCs to construct nonlinear “mod-
els” of the neuronal responses and compared these with the data. Using only 12 PCs, results in
a dramatically improved description relative to the linear fit, with 93% of neuronal responses
having an R2 > 0.52 (the median value for the linear tuning curve fit) and a median R2 of 0.84
(Fig 3J). Using 20 PCs produces an excellent fit for every neuron (median = 0.95; Fig 3K).

Decoding EMG
To investigate the relationship between position-dependent tuning of M1 neurons and arm
muscle activity, we studied how the EMG of the primary muscles used in the task could be
decoded fromM1 activity. To obtain sufficiently accurate measurements of EMG activity, we
used the mean EMG (averaged over a time window, trials, and 6 days; Methods) recorded at 18
arm postures (9 targets times 2 forearm rotation angles; Fig 4A) rather than the full 27. Like the
neuronal activities, the EMG of all 5 muscles had a significant nonlinear component, with 3 of
the muscles significantly fit by a linear tuning curve as well (F-test, p< 0.01). To reconstruct
these EMGs fromM1 activity, we used single-trial neuronal firing rates combined from neu-
rons recorded across different days (pseudo-simultaneous population activity; Methods). This
is a reasonable strategy because the EMGs were averaged over trials and days as well. However
we expect this to limit our ability to decode the EMG because using the mean EMG and
pseudo-population activity breaks single-trial correlations.

We performed decoding using 1,000 different random cross-validation splits of the data
into training and test sets (C.V. repetitions) each consisting of 18 test trials (one per arm pos-
ture). We obtained the best performance in cross-validation tests by using optimal subset selec-
tion [7] in which the linear decoder is constructed with a LASSO algorithm [8]. This selects the
optimal subpopulation of neurons for decoding each muscle, rather than using all of the neu-
rons to decode all of the EMGs (Methods). This has the additional benefit of providing infor-
mation about how the signals that affect different muscles are distributed across the M1
population (S2 Text).

We first determined how well the EMGs could be decoded using the full neuronal responses
(see Methods). The decoding predictions using the neural activity capture the nonlinear struc-
ture in the EMG even on a single-trial basis, outperforming the fit of the EMG to a linear tuning
curve, which is based on themean EMG values. The latter is the best that could be accom-
plished from the neurons if they had purely spatially linear responses and no noise. We
assessed decoding performance using the full responses and also different response compo-
nents separately, by dividing the data into distinct spatially linear and nonlinear components.
To make this split, each single-trial firing rate was expressed as the sum of its underlying mean
linear component (the value predicted by the linear tuning curve), the mean nonlinear compo-
nent (the total mean firing rate minus the linear component), and a noise fluctuation for that
trial (Methods; S4D Fig). We then constructed spatially linear and nonlinear datasets by keep-
ing either the linear component and the noise or the nonlinear component and the noise, and
we repeated our decoding procedure twice, using one or the other of these datasets.

Predicted EMG for the test trials of one C.V. repetition are compared with data for each
muscle in Fig 4A. Using the full data, the median correlation coefficient between the decoded
and actual EMG signals across the 1,000 C.V. repetitions is 0.81 (Fig 4B), and decoding errors
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Fig 4. A. EMG as function of arm posture in same format as the neuronal responses (Fig 2). EMGs were fit to the extended linear
tuning-curve (Methods, Eq 3), the PP vector in 3D plots, gray line in 2D plots, and R2 in gray, reflect this fit. Dotted red line shows EMG
values predicted by linear decoder on held-out test data from one repetition of cross-validation, with its R2 and correlation coefficient in
red. B. Distributions of decoding correlation coefficients between predicted and real EMG values for the test trials of each cross-
validation, over all muscles. Box plot shows median, 25% and 75% percentiles, whiskers cover ~ 99% of distribution, dots are outliers.
Decomposition of responses into linear and nonlinear datasets described in text (and S3D Fig). C. Distributions of decoding errors (real
EMGminus predicted) for all test trials and all muscles. The Linear and Full datasets’ curves partially overlap. D. Decoding correlation
coefficients, like in B., as a function of number of PCs that data is projected on to. PCs were learned on training data only, and
normalized and trial-averaged before PCA. E. Same as D., for S.D. of decoding error.

doi:10.1371/journal.pcbi.1004910.g004
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are distributed around zero with a standard deviation of 13% of the min/max range of the
EMG (Fig 4C). The decoding accuracy using only the linear component (median CC = 0.73, S.
D. decoding error = 14%; Fig 4B and 4C) is somewhat worse than decoding using the full data,
and decoding using only the nonlinear components is slightly worse still (median CC = 0.62, S.
D. decoding error = 16%; Fig 4B and 4C). Chance level, as quantified by a shuffle control,
resulted in a median correlation coefficient of 0.01, and decoding errors with a standard devia-
tion of 29% (Fig 4B and 4C). Thus, the EMG could be decoded far above chance level using
either the linear or nonlinear datasets, and the nonlinear component contributed to the accu-
racy of the full decoding.

In a second approach, we decoded the EMG using increasingly complex nonlinear datasets
by projecting the data onto increasing numbers of PCs of the neuronal responses (as described
previously). As PCs representing nonlinear structure are added, the decoding accuracy
improves, achieving the maximal (median) correlation coefficient with 7 PCs (Fig 4D) and the
minimal (standard deviation) decoding error with 14 PCs (Fig 4E). These results confirm that
nonlinear tuning contributed significantly to the information about muscle activity contained
in the recorded M1 responses.

Non-separable interaction between hand position and forearm angle
We now address the impact of forearm angle on hand-position tuning, starting by looking for
two simple effects, an additive shift and a multiplicative gain change between the two forearm
angles. To examine a possible linear shift, we computed the baseline firing rate for each neuron,
defined as the lowest firing rate across targets. The distribution of baseline firing rate differ-
ences (S.D. = 4.3 spike/s) was significantly greater than what would be expected purely from
noise (bootstrap control; S.D. = 1.4 spikes/s; F-test for variances, p< 10−48), indicating a signif-
icant additive shift between the firing rates for the two forearm angles. To look for gain
changes, we examined the range of the firing rates across all targets for the two forearm rota-
tion angles. Again, the distribution of gain differences (S.D. = 8.7 spikes/s) was significantly
broader than for the bootstrap control (S.D. = 3.3 spikes/s, F-test for variances, p< 10−31),
indicating a gain change.

If baseline shifts and gain changes were the only impact of forearm rotation, the correlation
coefficient between the firing rates of any neuron across the two forearm angles would differ
from 1 only due to noise effects (Methods). Instead, we found that the distribution of correla-
tion coefficients between responses for pronation, and supination is broad (Fig 5B,
median = 0.54) and very different from the distribution expected solely from noise (Fig 5C,
median = 0.93, bootstrap of the medians, p< 10−64). On the other hand, most of these correla-
tion coefficients are positive, and their distribution is not at all like that for correlation

Fig 5. A. Distribution of correlation coefficients between pronation and supination for shuffle control, created
by computing correlation coefficient between each pronation response function and supination response of
1,000 other neurons (with replacement), median = 0. B. Same for responses of real (tuned) neurons,
median = 0.54.C. Same, for a bootstrap control, median = 0.93, drastically different than for real data
(Bootstrap of the medians, p < 10−64).

doi:10.1371/journal.pcbi.1004910.g005
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coefficients between random pairs of responses (Fig 5A). Thus, the shapes of the hand-position
tuning curves change as a function of forearm angle beyond a baseline shift and gain change,
but not as much as if the tunings in these two cases were unrelated. This suggests that the inde-
pendent task variables (the joint angles constrained by target position, and the forearm rotation
angle) are non-separable at the level of M1, and thus they appear to have undergone nonlinear
mixing.

A random feedforward model replicates the data
In order to further understand the data, we searched for a minimalistic neural network model
with biologically realistic constraints that could give rise to the empirical results. The nonlinear
component of the responses we have studied appears quite random, but the presence of a
strong linear component would seem, at first sight, to rule out a model based purely on random
target-related inputs to M1 neurons. There is, however, a complication because physiological
constraints impose a degree of smoothness on the tuning curves, and a random set of responses
might exhibit a degree of regularity, including linearity, purely because of smoothness. To
address the degree to which smoothness constraints impose a linear component on responses
to random inputs, we constructed a model in which M1 neurons are driven by inputs convey-
ing information about target location.

In the model, target position is represented by a population of neurons that have Gaussian
receptive fields (one dimension of which is illustrated in Fig 6A) centered on particular
3-dimensional preferred target locations. This is consistent with the properties of parietal reach
area neurons [9–11], but this population could also correspond to neurons in premotor cortex.
The model input neurons have receptive fields with different preferred target locations and, at
first, they have the same widths. Later, we extend the model to include more realistic heteroge-
neity in input receptive field widths.

Each target generates a Gaussian “bump” of activity across the population of input neurons.
Each M1 neuron is connected to a random selection of 10% of the input neurons. As a result,
each M1 neuron received about 330 inputs that are active somewhere in the workspace and
about 50 active inputs at each target location. These inputs are multiplied by random synaptic
weights (Methods) and the result is summed to produce the total input for each neuron. The
response of each model M1 neuron is then computed by passing its total input through a
threshold-linear firing-rate function. The threshold for this response function depends on a
threshold parameter that, in this initial model, is set to the same value for all M1 neurons to
match the mean coding level of the real neurons (0.85). The coding level is the fraction of condi-
tions that cause a neuron to respond either at a level significantly different from 0 (p< 0.01, t-
test, Bonferonni corrected) or� 5 spikes/s.

Once the coding level is set, this first-round model has only a single free parameter, the
input tuning curve width (our model fits are not sensitive to other features of the model, such
as the total number of input-layer neurons, and the number and strength of synapses per M1
neuron). This width determines the smoothness of the M1 responses and this, in turn, controls
the tradeoff between spatial-linearity and complexity (Fig 6B). Wider input receptive fields
lead to increased smoothness and spatial linearity, whereas narrower fields increase spatial
complexity. For a receptive field width corresponding to a visual angle of 12°, the model M1
responses have the same mean complexity measure as the real neurons (Fig 3D). Interestingly,
this width is consistent with the values reported for parietal cortex neurons [9, 12].

Surprisingly, this simple random model does a good job of matching both the linear and
nonlinear components of the real neurons, (S5 Fig, compare to Fig 2). Even though we only
used the mean complexity and mean coding level of the data to set the 2 parameters of the
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Fig 6. A. Feedforward neural network model for arm posture control. Visual inputs conveying target position are represented by array of
3D Gaussian units (here illustrated in 1D). For given target position (blue arrow) population response is a Gaussian bump (blue dots).
Inputs representing intended forearm rotation angle are carried by second population of input neurons, each having a random preference
for either pronation or supination, the population of responses for a pronation condition is shown in blue. The shape of their tuning curves
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model (the input tuning-curve width and the M1 threshold), the entire complexity measure
distribution for the model responses is very similar to that of the real neurons (Fig 6C). In addi-
tion, the distribution of R2 values for the fit to the linear tuning curve is similarly broad (Fig
6D). Thus a feedforward model receiving input with structured tuning through random synap-
ses can account for both the spatially linear and nonlinear components without any explicit
tuning of its synaptic connections (i.e. with purely random connectivity).

The 15% undershoot in the standard deviation of the linear tuning curve R2 distribution
(Fig 6D) for the two-parameter model can be improved by extending the model slightly. In the
extended model, each M1 neuron is assigned a threshold to match the coding level of one of
the real neurons (randomly chosen), and the input receptive field widths are drawn indepen-
dently from a uniform distribution parameterized by a mean and range (Methods). We chose
the mean and range of the tuning curve width distribution to obtain the best match between
the model and data for the mean and standard deviation of the linear tuning curve R2 distribu-
tion (Fig 6D).

The neuronal responses of the enhanced model match the real data extremely well (Fig 6C–
6J). The fraction of variance explained by the PCs of the model data matches the general shape
seen for the real data, although the nonlinear components of the model are represented slightly
more uniformly across its PCs (Fig 6E). This shows that the model responses capture approxi-
mately the same dimensionality as the real data. In addition, the first 3 PCs of the model neu-
rons capture the spatial linear component as they do for the real data (Fig 6F). We also checked
whether the M1 model could reproduce the recorded EMG activity. To do this, we added a set
of linear readouts to the model (Fig 6A, bottom) and adjusted the weights of these readouts to
fit the EMGs, using the decoding scheme used for the real neurons (described above). Relative
to the small number of muscles, the neurons form an overcomplete basis. As a result, using the
noise-free model neurons decodes the EMGs almost perfectly. For a fair comparison to the per-
formance of the real data, we added noise samples to the model neurons, resampled from the
real data (Methods). Decoding the EMGs using the model neurons with noise produced decod-
ing correlation coefficients (median CC = 0.82 for the model vs. 0.81 for the data; Fig 6I) and
decoding errors (S.D. = 12% of EMG range vs. 13%, respectively; Fig 6J) comparable to that of
the real neurons. These decoding results provide additional confirmation that the model M1
neurons capture the dimensionality and frequency content of the real neurons.

for intermediate angles were not sampled in our task; they are drawn as lines only for illustration. Presynaptic parietal or premotor
responses are modeled as a multiplicative interaction of the two input streams from a subset of “nearby” inputs from each (to maintain
tuning). Each M1 response function receives a random set of 10,000 presynaptic inputs, but only a small fraction of these are active at any
target. These are mixed through random connectivity J and passed through a threshold-linear nonlinearity. The EMG for each muscle is
obtained from a linear combination of a subpopulation of such M1 neurons. These synaptic weights are the only ones in the model that
require adjustment. B.Mean ± S.D. of response function complexity (left vertical axis) and R2 of fit to the spatial linear tuning-curve (right
vertical axis) of model-generated responses (2-parameter model), as a function of the Gaussian width parameter for the visual inputs.
This single parameter accounts for the higher spatial-linearity (wider Gaussian inputs) or higher spatial complexity (narrower Gaussian
inputs) found in different response functions in the population. Arrows mark the mean values for the real data. C. Distribution of response
function complexity for real data (blue, re-plotted from Fig 3D, mean = 0.49), and for the model-generated responses for the 2-parameter
model (teal dashed line, mean = 0.49) and for 4-parameter model (solid line, mean = 0.46). Although only the mean of the data distribution
was used for fitting, the model reproduces the entire shape of the data distribution well.
D. Distributions of R2 values for fits to the linear tuning-curve for real data (mean = 0.5, S.D. = 0.22;
re-plotted from Fig 3B), 2-parameter model (mean = 0.4, open circle, S.D. = 0.19), and 4-parameter model (mean = 0.49, S.D. = 0.23). E.
Fraction of total variance explained of the PCA of the (54 conditions) real (adapted from Fig 3E) and model generated response functions.
F. R2 values for fits of PCs to linear tuning-curve for the data- (Fig 3G) and the model-generated responses.G. Distribution of correlation
coefficients between the pronation and supination responses for each neuron for the data (Fig 5B; mean = 0.48, S.D. = 0.31) and the
model (mean = 0.51, S.D. = 0.28). This result involves no additional parameter fitting. H. Distributions of differences in gain for each
neuron across forearm angles for the data (S.D. = 8.7 spikes/s) and the model (S.D. = 8.4 spikes/s). We scaled response of each model
neuron for both forearm angles to match the range of firing rates of a randomly chosen real neuron without using any forearm angle
information in this scaling. I. EMG decoding correlation coefficients using the real data (Fig 4B) and the model response functions. J.
Same for the distributions of decoding errors (Fig 4C).

doi:10.1371/journal.pcbi.1004910.g006
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To model the effects of forearm rotation angle, we let the input neurons that drive the
model M1 neurons depend on forearm angle as well as on target location (Fig 6A, top right).
The forearm angle dependence involves multiplying the Gaussian function of target location
for each neuron by a factor, chosen independently for each input neuron, that takes a different
value for pronation or supination, with the values chosen randomly (tuning of the forearm fac-
tor could have any shape for intermediate values, since these were not sampled in our task).
Thus, the forearm angle inputs act as a gain modulation of the visual inputs consistent with
responses found in premotor cortex [13] and eye-position gain field modulation of visual
responses in parietal cortex [12, 14]. With forearm angle included in this way, the correlations
between the model neuronal responses for pronation and supination are extremely similar to
those for the real neurons (98% similar in the mean and S.D. of the two distributions; Fig 6G),
without any additional parameters or fitting. The distributions of differences in gain across
forearm angles are also very similar (S.D. for the data = 8.7 versus for the model = 8.4 spikes/
sec, Fig 6H). These results are a consequence of the random nonlinear interaction of visual tar-
get and forearm angle signals at the input stage of the model, suggesting a mechanism that may
underlie the non-separable mixing in M1 discussed above.

Discussion
Cosine tuning has played a dominant role in discussion of the tuning of M1 responses during
reaching movements [15–18] but, due to many conflicting findings, this approach has fallen
out of vogue [19–23]. During arm posture control, we found that M1 neuronal responses show
a heterogeneity of irregular nonlinear responses that includes high spatial frequencies (Fig 2),
in addition to the linear (cosine-tuned) component described previously [1–3]. Due to this
complex nonlinear component, it is unlikely that any reasonable coordinate choice could lead
to a simple parametric description of these responses. This is in contrast to the long-standing
tradition of using parametric tuning curves and encoding models to describe neuronal
responses. Despite its irregularity, the nonlinear response component contributes to decoding
the EMG of the major muscles used during arm posture control (Fig 4).

It is natural to assume that regular neuronal responses imply structured (and in network
models, learned) input synaptic connectivity [24–26]. However, we found that random connec-
tivity could reproduce the data (Fig 6C–6J), with regularity, in particular linearity, arising from
smoothness. This smoothness stems from assumptions about the nature of the inputs to M1,
assumptions that are consistent with the known physiology of the target-position coding
regions [9, 12]. Importantly, this smoothness was not imposed by limits on the resolution pro-
vided by the task (as an extreme example, a task with only two targets would unavoidably pro-
duce linear tuning) or by the analyses we performed [27, 28]. Despite its simplicity and small
number of adjustable parameters, the model accounts for not only the linear (Fig 2A) and non-
linear (Fig 3D) components, but also their distributions across the neuronal population (Fig 6).
This is a rare example in which both the regularity and the diversity of a population of neural
responses have been replicated by a neural network model. More generally, the model provides
support for the idea that some neural circuits use random connectivity to generate rich and
high-dimensional representations, and produce their outputs by tuning only their output syn-
aptic weights [29–32].

Firing rates were constant during posture control and feedback did not have a measurable
effect on the neuronal responses (S1 Text). This implies that the population has either relaxed
into fixed points or is dominated by the (target position and intended forearm angle) inputs
external to M1. Either way, any internal recurrent inputs from other M1 neurons cannot gener-
ate the tuning to arm posture, which is why we focused on a feedforward network architecture.
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Recurrent dynamics are likely to play an important role in howM1 generates time-varying
movements, such as reaching [33, 34]. Such recurrent connections are unlikely to be random
and may require synaptic modification [35].

A number of influential theoretical models of M1 function have taken a normative engineer-
ing-inspired approach [36–40]. By combining the equations of motion of a model arm with
putative population M1 responses with features such as cosine tuning, these models can
account for many psychophysical features of arm movements. The normative approach has
helped clarify the relationships between the arm’s biomechanics and resulting movement vari-
ables, and has highlighted the caution necessary in interpreting the correlations between move-
ment variables and neuronal responses. However, as has long been acknowledged [36], due to
the considerable dimensionality reduction fromM1 to muscles, biomechanical properties do
not generally suffice to constrain models of cortical computation. The model we have presented
here does not attempt to be a general model of M1 function, but it does incorporate representa-
tions in the inputs to M1 that are consistent with known physiology and neuronal properties
that are biologically realistic. We believe that understanding M1 computation will require
models that integrate neural constraints, in addition to constraints imposed by the periphery.

The idea that sensory inputs are mapped to motor commands through a series of sequential
coordinate transformations has received a lot of attention [41–45]. In this view, sensory repre-
sentations lead to kinematic representations and only finally to joint torques and muscle activ-
ity. However, many daily actions require combinations of task demands, involving hand
position, arm posture, endpoint and segmental forces. Therefore, intended endpoint forces, for
example, must sometimes be represented by the inputs to M1 and not only by its outputs. In
general, the sensorimotor system must be able to process parallel sensory and intentional sig-
nals, each ultimately shaping the activity of the same muscles. Our experiment involved
demands on both hand position and forearm rotation angle, a degree of freedom that does not
affect hand position. The neural responses show an interaction between these two independent
inputs that is non-separable (i.e. cannot be decomposed into a sum or product of functions; Fig
5). This suggests that these signals are already mixed nonlinearly before the level of M1. Most
encoding models introduced in the M1 literature, whether linear [46–48] or nonlinear [49, 50],
produce separable functions. In this view, M1 responses are an example of nonlinear mixed-
selectivity [32], representations that have been shown to have considerable computational
power in tasks requiring nonlinear combinations of multiple parameters [51]. We incorporated
this finding into our model by basing the inputs to the model M1 neurons on the multimodal
visual and arm-posture-dependent receptive fields found in premotor cortex [13, 52–56] and
posterior parietal cortex [57–62]. The model places the idea that such multimodal activity
reflects the multiplexing of several sensorimotor parameters [63, 64] within the context of a
class of basis-function network models [65–67]. In this view, the multimodal responses found
in parietal and premotor cortex may be evidence for the nonlinear mixing of parallel task vari-
ables, in addition to sequential sensorimotor transformations. Because of this basic feature of
its construction, our model predicts that during experiments with additional concurrent task
demands, M1 responses should show non-separable interactions across all task dimensions.
This can be tested experimentally, by, for example, repeating our experiment with two different
load conditions at the hand, in addition to varying hand position, and forearm rotation.

Posture control could, in principal, be implemented by a simple “on-off” cortical signal that
causes ongoing spinal feedback to maintain current muscle activation levels. Even a transiently
tuned cortical motor command could activate ongoing spinal control [68]. In contrast to these
possibilities, we found that most M1 neurons are tuned even 1–1.8 seconds after a target is
reached and posture is held constant. By using a powerful decoding algorithm, some of the hand
jitter during the target hold epoch could be predicted [69]. However, having found no
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correlations between firing rates and hand jitter suggests that such signals are weak and that the
ongoing M1 responses primarily represents a feedforward (intentional) motor command, with
ongoing corrections executed by sub-cortical feedback loops. This is in contrast to the strong and
fast feedback corrections seen in M1 in response to large unexpected perturbations of the arm
[70].

The muscle activations required for a motor task are typically nonlinear functions of task
parameters. In principle, M1 neurons could encode task parameters linearly and only down-
stream spinal cord circuits would generate the required nonlinearities. Alternatively, the
required nonlinearities may already be present in M1 responses, which could then be read out
in a purely linear manner by spinal cord circuits (an idea we incorporated into our model; Fig
6A). Obviously, these are two extremes, and the truth probably lies between them. Neverthe-
less, our data show that the nonlinearities needed for correct muscle activation are already
present in the M1 responses, and these can be read out linearly to produce the recorded EMGs
(Fig 4). In a series of studies, Miller and colleagues found an invariant relationship between M1
and EMG activity by decoding EMGs in a variety of reaching and grasping tasks [71–73]. In
our study, by first studying the statistical structure of the population of response functions (Fig
3) and then combining analyses of encoding with decoding (Fig 4B–4E), we showed that the
full structure of the M1 responses, both the spatial-linear component and heterogeneous non-
linear components, contribute to creating the EMG. This diversity provides a basis with high-
dimensionality (Fig 3E), providing enough dimensions in neural space to span the space of
independently controllable muscles of the arm. By using the subset selection algorithm, we
found that specific subpopulations of M1 neurons more optimally control individual muscles,
or groups of muscles. These subpopulations partially overlap (S4A–S4C Fig), consistent with
the gross topography found in M1 [74].

Neural representations involve a compromise between two incompatible demands: accuracy
and noise tolerance. M1 arm-posture related responses, situated between the noise tolerant prop-
erties of regular (linear) tuning curves and the high degree of accuracy provided by irregular tun-
ing, provide an example of such a compromise. An interesting prediction of the model, related to
this observation, involves the increased motor accuracy associated with foveating a target. The
presentation of a visual target initiates a saccade that brings it to the fovea [75], improving target
localization [76]. By what mechanism does the resulting increased in visual acuity benefit motor
execution? The dependence of M1 response complexity on the width of the target-position inputs
in our model (Fig 6B) suggests an answer. Because foveal receptive fields are narrower [10], fixat-
ing the target should bias the smoothness-randomness tradeoff of M1 neurons towards random-
ness, increasing response complexity with higher spatial frequencies and resulting in more
accurate motor commands. This prediction can be tested experimentally by comparing M1 neu-
rons while arm posture is maintained at a visual target viewed peripherally versus foveally.

Methods
Two monkeys (Macaca fascicularis; PK—4.3 kg male, and BR—3.4 kg female) were trained in
our behavioral task, in a standard 3D virtual reality setup (Fig 1). They controlled a cursor by
active LED markers attached to their right hand, measured by a motion capture system (Phoe-
nix Technologies, sampled at 100 Hz), while their left arm was comfortably restrained. An
opaque panel concealed their arms from view.

Animal care was in accordance with the National Institutes of Health guidelines and was
approved and supervised by the Hebrew University committee on animal experiments. The
animals were housed in groups of four in an open playroom that included trees, toys, and
enrichment. Surgery involved the use of standard anesthetics (Kamacaine, Medetomidine,
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Ketamine, and Isoflurane), antibiotics (Cefazoline), and analgesics (Carprofen) that were
administered pre-, during, and post-operatively as needed. Throughout the experiments, the
animals were carefully monitored 7 days a week (i.e. including rest days), and after conclusion
of the experiments were retired to a primate shelter park.

Neural & EMG recording
After training, a chronic 96 microelectrodes array with 1.5 mm electrodes (Blackrock Microsys-
tems) was implanted in the arm area of contralateral rostral M1 (S1A Fig) using the surgery pro-
tocol described elsewhere [77]. Single-unit action potentials were sampled at 30 kHz and sorted
using an automatic adaptive spike-sorting algorithm with human adjustment (Blackrock Micro-
systems). Spike waveforms were inspected visually offline and, due to the large neuronal yield,
only very well isolated single units were included. A firing-rate stability analysis was performed
in a semi-supervised manner using a Hidden-Markov Model that segmented even subtle changes
in firing rate. Only neurons with firing rate that was stable throughout the recording session and
had at least 1 spike/minute were included in the analysis. Therefore our inclusion criteria was
based only on recording quality, and introduced no task specific selection bias. We included 378
neurons frommonkey PK, 132 neurons frommonkey BR. After verifying that the dataset from
each monkey produces equivalent results (S2 Fig), we report all 510 neurons together.

Electromyography (EMG) was recorded on 6 days from monkey PK, from the Anterior Del-
toid, Biceps, Triceps, Flexor Carpi Radialis, Extensor Carpi Ulnaris, using double-differential
surface electrodes with pre-amplifiers x 20 (Motion Lab Systems). The raw EMG signals were
down-sampled, rectified, and root-mean squared (20 ms window), and normalized per muscle
for each day.

Behavioral task
Monkeys made continuous, instructed-delay, target-to-target reaching movements between 27
targets in 3D space. On each trial, after reaching the target and receiving a drop of food reward
(275 ms later), the monkeys had to maintain the static position of their hand at the target and
their current forearm angle for another 750–1,500 ms (target hold epoch). After successfully
reaching the target, any deviation from the target would cause the trial to fail and the screen to
go blank for 1–2 seconds. This target hold epoch was before any of the sensory cues of the
upcoming trial, including the next target, had appeared. The monkeys were trained to perform
the task with their forearm in either the pronated (palm-down) or supinated (palm-up) pos-
tures (Fig 1), and these were instructed in alternating blocks of 25 trials. The cursor’s graphics
were the same in both forearm angles, and in this way we dissociated the kinematics of the cur-
sor from the biomechanical state of the arm. The 27 targets were arranged in a virtual cube (3 x
3 x 3), where the distance between the 2 furthest targets was 12.1 cm. This distance was a signif-
icant portion of the full range of motion for these monkeys, as the lengths of their upper limbs
were 23.3, 21 cm from shoulder to wrist for monkeys PK and BR, respectively. Target radii
were 1.7 cm for monkey PK (and 2 cm on some control days), and 2.5 cm for monkey BR.
Data was analyzed from 38 recording days for monkey PK and 10 recording days for monkey
BR. On nine control days of monkey PK’s experiment and when recording the EMG, only 9
targets (the corners and center of the virtual cube) were presented.

Data analysis
We analyzed the data during a 200 ms period in the target hold epoch, which was 1,025–1,775
ms after reaching the target (750–1,500 ms after the reward), and 50 ms before the first instruc-
tion of the next trial (S1B Fig). The time ranges are due to an experimental design with
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randomly variable intervals. Both firing rates and hand position were most stable during this
period. Firing rates were calculated by averaging over this 200 ms time window and mean firing
rates over trial repetitions to the same condition (target position and forearm rotation angle).
There was a mean of 14 trial repetitions, per condition, per day, giving a sizeable sample to esti-
mate the underlying firing rates.

Spatial linear tuning. To measure the linear component of the spatial structure of each neu-
ronal response, we fit them to the linear tuning curve described previously [2] using multiple
linear regression:

r linearðxÞ ¼ a0 þ a1x1 þ a2x2 þ a3x3 ð1Þ

where the mean firing rate of each neuron, r linearðxÞ, at the mean hand position (binned by tar-
gets) x = (x1, x2, x3) is a linear function of the position, with regression coefficients a0, a1, a2, a3.
If we define the Preferred Position Vector as PP� (a1, a2, a3), we can write this equation equiv-
alently in polar coordinates as:

r linearðxÞ ¼ a0 þ kPPk � kxk � cosφPP;x ð2Þ

where φPP,x is the angle (in radians) between the mean hand position and the PP vector. The
PP vector points in the direction in space along which the firing rate increases linearly, and its
norm, ||PP||, is the slope of this linear modulation. According to this model, the firing rates at
hand positions in each plane orthogonal to this vector should be equal.

To quantify the linear dependence of the firing rates on the full arm posture (i.e. forearm
rotation angle in addition to hand position), we additionally fit each neuron to two other equa-
tions. An Extended spatial linear tuning curve fits all 54 conditions with one PP vector but
allows different baseline firing rates for each of the two forearm angles,

rextendedðxÞ ¼ a0 þ kPPk � kxk � cosφPP;x þ a4yf ð3Þ

where θf is the angle of forearm rotation. A third equation accounts for the forearm rotation
angle exerting a multiplicative, instead of an additive, effect,

rmultiplicativeðxÞ ¼ a0 þ gðyfÞ � kPPk � kxk � cosφPP;x ð4Þ

where g is defined to be 1 when θf = p and a value determined by fitting when θf = s, for prona-
tion and supination, respectively.

Extracting and quantifying hand jitter. We detected hand jitter by finding instantaneous
hand speeds that exceeded the median of the distribution of maximal jitter speeds per trial
(2.48 cm/s), and then found the beginning of each hand jitter using an algorithm developed by
Amos Arieli [78]. Each trial could have between zero to several jitters. Different choices of the
threshold, which slightly changed the number of jitters included in this analysis, had no signifi-
cant effect on the results. Mean 3D directions were calculated from the hand jitter segments
using orthogonal regression and were distributed in all directions in 3D space. Using multiple
linear regression, we fit the instantaneous firing rates to the velocity using the multiplicative
velocity tuning curve [48]:

rðt � tÞ ¼ b0 þ b1 � k _xk þ b2 � k _xk � PD0 � x ð5Þ

where the mean firing rate, r, with a lead/lag of τms to the beginning of the hand jitter, is a lin-
ear function of the hand’s speed, k _xk, and direction of movement, x (in Cartesian units), and ‘

denotes transpose. PD is the preferred direction—the normalized vector of the direction-spe-
cific regression coefficients—and b2 is its norm. For each neuron we calculated the firing rates
in 100 ms windows, repeating the fitting procedure from neuronal activity leading behavior by
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300 ms, to lagging behavior by 100 ms, in 10 ms increments. This was done for each forearm
angle separately, and we report the maximal R2 for each neuron across all temporal lags. We
repeated this analysis with either the full firing rates or the firing rate fluctuations (i.e. minus
the mean rate for that condition).

Principal component analysis of the neuronal responses. Principal component analysis
(PCA) [79] was applied to the responses of the significantly tuned neurons for the full 54 con-
ditions response functions, and then again for each of the forearm rotation angles separately
(27 conditions). We calculated PCA for 376 neurons, after excluding 35 tuned neurons from
control days with only 9 targets so as not to introduce a bias at the targets they were not
sampled.

We used the method described by Machens [6] to calculate an upper bound on the variance
of the residual noise by calculating the PCA for noise trace estimates sampled directly from the
data. Briefly, let the single-trial firing rate of the i-th neuron in the c-th condition for the k-th
trial be denoted ri(k, c). After averaging over the trials for each condition, its response function
is riðcÞ, where the bar denotes the average over trials. The residual noise estimates were created
by sampling two different single-trial firing rates randomly for each condition, subtracting
them, and normalizing:

Z iðcÞ ¼
1ffiffiffiffiffiffi
2K

p ðriðk; cÞ � riðl; cÞÞ ; k 6¼ l ð6Þ

where there are K trials for this condition, and the bar denotes that this is an estimate of the
average noise trace (over trials) for that neuron and condition. Subtracting two single-trials
removes the shared underlying signal component, leaving a noise fluctuation that is from the
same noise distribution. Z iðcÞ can be conceived as the residual noise trace remaining from aver-
aging over a finite number of trials. Clearly as K ! 1; Z iðcÞ ! 0. We then calculated the
PCA separately for this dataset of noise traces, which produces an upper bound on the variance
explained by the noise in the data. For the complete derivation of this method see the supple-
mentary materials of [6]. We repeated this procedure 1,000 times (each repetition choosing a
pair of single trials k 6¼ l for each neuron and each condition) to calculate bootstrap estimates
of the 99% confidence intervals for the variance of the noise.

To control for the potentially disproportionate effect of neurons with large firing rate
ranges, we repeated the analysis by first normalizing each response function (mean subtraction
and normalizing their range to 1). Only significantly tuned neurons were used for the PCA
analysis to avoid magnifying neuronal noise by normalization. To control for neurons with
high firing-rate variance, alternatively, we pre-processed the single-trial firing rates with the
variance-stabilizing transformation for the Poisson distribution [80], which replaces ri(k, c)

with its square root
ffiffiffiffiffiffiffiffiffiffiffiffiffi
riðk; cÞ

p
. The un-normalized data and both of these normalizations pro-

duced essentially the same results.
Complexity measure. In order to measure the complexity of each neuron’s response func-

tion non-parametrically, we calculated the discrete derivative (Lipschitz continuity) between
the mean firing-rate at each target, rðxkÞ, and at each of its closest targets, rðxlÞ. We defined the
complexity measure for that i-th response function, as the standard deviation over these values:

complexityðiÞ ¼ stdev
jrðxkÞ � rðxlÞjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðxk � xlÞ2
q j8 k; l; s:t:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðxk � xlÞ2

q
¼ Dmin

8><
>:

9>=
>; ð7Þ

where, k and l are pairs of targets with the minimal distance Dmin. We used the normalized
responses (with range 1, described above), in order to compare neurons with different firing
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rates. We compared the distribution of this complexity measure across the real neuronal
responses to a purely spatial-linear control dataset (firing rates generated from the fitted linear
tuning curve parameters, of each neuron) and several nonlinear controls, which passed the spa-
tial-linear response through an additional nonlinearity (threshold-linear, exponential, or sig-
moidal). We matched the range of firing rates of these controls to those of the real neurons and
added noise traces (as described above). The complexity measure was calculated for 1,000
resamples of the noise traces, and the mean distribution for each control was reported.

Joint angle tuning curves. The five arm joint angles relevant to this task, shoulder abduc-
tion/adduction, shoulder flexion/extension, shoulder rotation, elbow flexion/rotation and fore-
arm rotation, (both monkeys kept their wrist in a stereotyped posture throughout the task) can
be divided into 4 that are determined by hand position, which we denote by the vector θ(x),
and the forearm rotation angle θf. While the monkeys did not have a single stereotyped elbow
swivel angle across the entire workspace, elbow swivel was consistent as a function of the target
position held, and hence is considered a member of θ(x).

We first consider tuning curves in which the average firing rates can be expressed as

rðx; yfÞ ¼ hðθðxÞÞ þ gðyfÞ ð8Þ

where h and g are arbitrary functions. The difference between the response functions (based on
hand position) across the 2 forearm angles is

rðx; yf ¼ pÞ � rðx; yf ¼ sÞ ¼ gðyf ¼ pÞ � gðyf ¼ sÞ � C

where p and s stand for pronation and supination, and C is constant that does not depend on
hand position. The correlation coefficient between each neuron’s pair of responses should only
deviate from 1, due to noise because

corrðrðx; yf ¼ sÞ; rðx; yf ¼ sÞ þ CÞ ¼ 1 ð9Þ

If instead we assume a multiplicative interaction for the encoding of the forearm rotation
with the other joint angles,

rðx; yfÞ ¼ hðθðxÞÞ � gðyfÞ ð10Þ

where h and g are again arbitrary. In this case, the response functions (based on hand position)
will be scaled by a gain as a function of forearm angle,

rðx; yf ¼ pÞ � rðx; yf ¼ sÞ ¼ hðθðxÞÞ � ðgðyf ¼ pÞ � gðyf ¼ sÞÞ

and again there is no change in response function shape,

corrðhðθðxÞÞ � gðyf ¼ pÞ; hðθðxÞÞ � gðyf ¼ sÞÞ ¼ 1 ð11Þ

These equations simply make explicit the repercussions of the fact that forearm rotation is
independent of hand position and therefore independent of the joint angles that are con-
strained by it. The extended and multiplicative spatial linear tuning curves (Eqs 3 and 4) are
non-parametric versions of each of these types of models (Eqs 8 and 10, respectively).

Decoding EMG. Using single-trial neural activity, we decoded the mean EMG of the five
muscles we recorded (Fig 4A). The EMG was decoded in 18 conditions (9 targets per forearm
rotation angle) by using the neural activity of N = 131 neurons that had at least 15 repetitions
for each of these specific conditions. Pseudo-simultaneous population activity was created by
concatenating randomly sampled single-trials from each neuron from the same condition.
That is, to create one vector of pseudo-simultaneous population activity for the condition c,
each neuron contributed a single-trial firing rate of one trial from that condition. Some of
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those firing rates may have been recorded simultaneously by chance, but on average most were
not, effectively averaging out any single-trial (“noise”) correlations. This is a reasonable choice
because we decodedmean EMG that averaged out single-trial correlations too. Decoding was
carried out in a cross-validated scheme: for each repetition (“fold”) of cross-validation, 14/15th

of the data (T = 252 trials) were randomly chosen for training and the remaining 1/15th (T = 18
trials) for testing. This was done in a balanced design, such that each test dataset included
exactly one repetition for each condition. Cross-validation was repeated 1,000 times.

The linear decoder is an N x 5 matrixW of weights such that

Y ¼ R0 �W ð12Þ

where R is the N x Tmatrix with each column equal to the population activity for one pseudo-
simultaneous trial, R’ is its transpose, Y is the T x 5 matrix of the mean EMG activity of the 5
muscles. We initially estimated the linear decoders using theMoore-Penrose Pseudoinverse
(since our case is under-determined):

W ¼ pinvðR0 Þ � Y ð13Þ

An approach that uses all the neurons for decoding can produce suboptimal performance on
cross-validated data. We achieved improved decoding performance by using the LASSO algo-
rithm [8], which selects an optimal subset of neurons. This learning algorithm is a regularized
version of least squares estimation, that minimizes the decoder’s L1-norm in addition to the sum
of squared residuals, leaving a smaller number of regressors with nonzero weights. The LASSO
estimate is found by solving the following (quadratic programming) optimization problem:

W ¼ argminW

1

2

XT

t¼1
ðyt �

XN

i¼1
rtiWiÞ2 þ l

XN

i¼1
jWij

� �
ð14Þ

This algorithm was repeated for the EMG of each muscle separately, allowing a distinct opti-
mal subpopulation for each muscle. yt is the EMG activity of the given muscle on trial t, rti is
the firing rate of i-th neuron on that trial, andW is now a weight vector. The meta-parameter λ
weights the relative importance of decoding accuracy (left term) versus the regularization
(right term) and was selected as the value that minimized the mean squared error on a 5-fold
cross-validation of the training data alone. The neural data was mean-centered, where the
means were learned only from the training data and likewise for the intercept.

Decoding performance was quantified by the distribution of prediction errors: real EMG
minus predicted value, for each of the 18 test trials, each repetition of cross-validation, and for
each muscle. In addition, we computed the (Pearson) correlation coefficient between the series
of EMG values for the 18 test trials and their respective prediction values. The distribution of
correlation coefficients is over the repetitions of cross-validation and muscles.

Decomposition of single-trials into linear vs. nonlinear components. To compare the decod-
ing performance of the nonlinear and the linear components separately, we decomposed the
neural activity into 2 distinct datasets. Each single-trial firing rate, ri(k, c), for the i-th neuron
on the k-th trial in condition c, was decomposed into a sum of its underlying mean spatial-lin-
ear component (the value predicted by the tuning curve at that hand position), rlineari ðcÞ, the
mean nonlinear component (the total mean firing rate minus the spatial-linear component),
rnonlineari ðcÞ, and that trial’s noise fluctuation, ηi(k, c), as defined above:

riðk; cÞ ¼ r lineari ðcÞ þ rnonlineari ðcÞ þ Ziðk; cÞ

This is illustrated in S4D Fig for one example neuron’s response. To create the dataset com-
prised of purely spatial-linear components plus single-trial noise, we subtracted from each
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single-trial firing rate the mean nonlinear component for that condition (S4D Fig, bottom
panel)

r lineari ðcÞ þ Ziðk; cÞ ¼ riðk; cÞ � rnonlineari ðcÞ ð15Þ

This is identical to taking the spatial-linear tuning curve’s predicted value for that condition
and adding the trial’s noise. Equivalently, subtracting from each single-trial firing rate its
respective spatial-linear component, creates a dataset of purely nonlinear components plus sin-
gle-trial noise (S4D Fig, top panel)

rnonlineari ðcÞ þ Ziðk; cÞ ¼ riðk; cÞ � r lineari ðcÞ ð16Þ

This is identical to taking the residuals (from the fit to the spatial-linear tuning curve) and
adding that trial’s noise fluctuation. We repeated the decoding procedure (described above)
twice, using each of these datasets as inputs separately. Our decomposition relies on identifying
the responses with a significant fit to the spatial-linear component, we therefore repeated this
analysis with either p< 0.01 or p< 0.05 thresholds.

Feedforward neural network model. To discover what are minimal biologically realistic con-
straints that could give rise to our data, we built and analyzed a feedforward neural network
model (Fig 6A). We assumed that visual information about target position is represented by an
array of 3D Gaussian input units, consistent with the known receptive field properties of parie-
tal reach area neurons [9–11]. The response of the j-th visual input unit at target position x is
given by

vjðxÞ ¼ a0 � exp � 1

2
ðx � μjÞ0 � Σ�1

j � ðx � μjÞ
� �

ð17Þ

where μj is the center of this unit’s receptive field, a0 is a normalization that was set such that
the population response at each target would sum to 1, and Σj is a diagonal matrix of variances,
σ2
j . While in reality there may be neurons with non-spherical receptive fields, we started with

this assumption to see what minimal structure is necessary to account for the diversity of M1
responses. In such an array target position is encoded by neuron identity, and each target
results in a population response that is also a Gaussian bump. Since visual acuity is much
higher than motor precision, we simulated 1,000,000 visual input units (which tiled space 100
x 100 x 100) to avoid any discretization artifacts. We had their centers, μj, extend 3 times past
the furthest target positions used in our task (in both directions and along each spatial dimen-
sion), to avoid boundary effects.

Intended forearm rotation angles θ were modeled as an additional set of input units, gk(θ),
each randomly preferring pronation or supination and each with a uniformly random slope,
such that for a pronation preferring neuron for example

gkðyÞ �
(

U ½1; 2�; if y ¼ pronation

U ½0; 1�; if y ¼ supination
ð18Þ

where U denotes a uniform distribution over the indicated range. The distributions are
reversed for a supination preferring neuron. Since we only sampled forearm rotation at two
points, we did not make any assumptions about these neurons’ tuning for intermediate values
of θ (although we depicted them graphically as lines in Fig 6A). Alternatively, we modeled
intended forearm rotation angle inputs by a 1D array of Gaussians as well, which produced
similar results. The presynaptic inputs into M1, f Pn , were modeled as (premotor or parietal)
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neurons that multiplicatively mixed the two input streams.

f Pn ðx; yÞ ¼ vjðxÞgkðyÞ ð19Þ

This construction assures that the neurons exhibit the tuning that depends on both visual
targets and arm posture found in many premotor [13, 52–56], and posterior parietal areas [57–
62].

Finally, our model M1 neurons were modeled as each receiving a random combination of
10,000 such inputs mixed through random connectivity, and passed through a threshold-linear
nonlinearity

f M1
i ðx; yÞ ¼

X
n
Jinf

P
n ðx; yÞ � �i

h i
þ

ð20Þ

where Jin is the random connection between the n-th presynaptic neuron and the i-th M1 neu-
ron, ϕi, is its threshold, and the square brackets denote the threshold-linear function. Each ele-
ment Jin is chosen independently and randomly from a uniform distribution between 0 and 1.
Because the model tries to capture tuning curve shape and not absolute firing rates, only the
shape of the distribution of the random connections described by Jmatters, not their
magnitude.

In the first model we used (Fig 6C and 6D, S5 Fig), the input tuning widths and threshold
were all set the same values, so the model depends on only 2 parameters. The threshold ϕ was
set to insure that the coding level of the model matched that of the real neurons (0.85). The
coding level is defined as the fraction of conditions that causes a neuron to respond, which we
took as being either significantly different than 0 spikes/s (p< 0.01, t-test, Bonferonni cor-
rected), or at least 5 spikes/s. The visual Gaussian width σ was chosen (visual angle of 12°) as to
produce response functions with a mean complexity measure that fit the value for the real data.

In the enhanced version of our model (Fig 6C–6J), the threshold for each model neuron was
chosen independently so that its responses matched the coding level of a randomly assigned
real neuron. In addition, the visual tuning-curve widths were chosen randomly independently
for each input neuron from a uniform distribution with a mean σM with a range σR

s � U sM � sR

2
; sM þ sR

2

h i
ð21Þ

σM and σR were fit by grid search (σM 2 [20,120], σR 2 [0,200]) and nonlinear optimization
over the multi-objective optimization problem of trying to match the real neurons’mean com-
plexity measure and the mean (0.5) and standard deviation (0.22) of their R2 distribution for
the linear tuning curve. There is a continuous range of values for which this version of the
model is near optimal, and we simply chose one set of values for producing Fig 6C–6J.

In order to use the model neurons to decode the EMG, we followed the same decoding
scheme used for the real neuronal responses, as described above. Since the model generates
mean responses, to generate single-trials we added noise as follows. First, we created noise sam-
ples by subtracting randomly chosen pairs of single-trial firing rates, for each condition, from
each real neuron:

ZiðcÞ ¼ riðk; cÞ � riðl; cÞ ; k 6¼ l ð22Þ

This is similar to the noise traces defined above but without the normalization (Eq 6). These
noise samples were resampled from the data to match the number of trials per condition of the
real dataset. Next, we created a lookup table of these noise samples across all the real neurons,
where each row contains all the noise traces associated with the original mean firing rate, riðcÞ,
from which it was generated. Finally, single-trials firing rates were generated for each model
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neuron by adding noise samples extracted from the lookup table, by choosing the firing rate
closest to the model neuron’s mean firing rate, at that condition. We chose to assign noise sam-
ples from the real to model neurons by using the mean rates as the lookup in order to capture
the signal dependence of neuronal variability.

Supporting Information
S1 Fig. A. Chronic electrode array after insertion (for monkey BR; same location was used for
monkey PK). C.S. = Central sulcus, A.S. = Arcuate sulcus. B.Mean ± S.D. of hand speed during
the reaching movements to the target and the target-hold epochs, for each forearm posture.
The 200 ms window analyzed in this study is denoted in red. Time is relative to task events;
MB = Movement Beginning, and FC = Forearm rotation angle Cue (first sensory cue of next
trial). Wide gray bar overlays the period where trials had random length intervals. Note that
the hand speed is extremely low during target hold, yet not identically zero, because the hand
was held freely in space. The larger variance before movement beginning is during the reaction
time, and the larger variance during movement is due to averaging over reaches of different
amplitudes. C.Mean ± S.D. of maximal hand jitter speed per trial, as a function of target posi-
tion, and for each forearm posture. The hand jitter was uniform across targets (Multiple com-
parisons, using ANOVA, p> 0.01).D. Distribution of R2 values for fitting single trial firing
rate fluctuations to hand jitter using the velocity tuning-curve, median = 0.12. Values with a
significant fit (F-Test, p< 0.01) are in dark gray, while the rest are in light gray. Fitting to all
tuned neurons (N = 411) and the optimal R2 for each neuron across all leads/lags (of firing rate
to behavior) and forearm angles is presented. E. Same as D for control that shuffled single-trial
firing rate fluctuations relative to their respective jitter movements, median = 0.11.
(TIF)

S2 Fig. A. Distributions of R2 values for fit of linear tuning-curve for all tuned neurons (same
as Fig 3B), separately from each monkey (means = 0.54 and 0.5, for monkeys BR and PK,
respectively). B. Distributions of complexity measure of the (normalized) response functions
(same as Fig 3D), separately for each monkey (means = 0.5 and 0.49, for monkeys BR and PK,
respectively).
(TIF)

S3 Fig. The first 20 PCs of the 54-condition PCA (Fig 3E), in the format of the neuronal
responses (Fig 2).
(TIF)

S4 Fig. A. Percent of neurons selected for decoding each muscle, with distributions over cross-
validation repetitions. Medians = 49%, 43%, 43%, 48%, 44%, for the forearm extensor, flexor,
biceps, triceps, and deltoid, respectively (grand total median = 44%). B. Same as A., for percent
of neurons selected for decoding any single muscle, any pair of muscles, etc., in each cross-vali-
dation repetition. Medians = 30% selected for any single, 27% for any pair, 24% for triples, 15%
for quadruples, and 5% of neurons selected for decoding all 5 muscles. C.Matrix of mean cor-
relations between decoders for each pair of muscles (only significant correlation coefficients
were used, p< 0.01, Bonferroni corrected), averaged over cross-validation repetitions. This
matrix can be viewed as an effective connectivity of the output projections of M1 to the mus-
cles, during arm posture control.D. Illustration of decomposition of single trials into spatial
linear and nonlinear components. Left, an example response function in blue in the 2D format
(same as Fig 2C) but with mean firing rates drawn as residuals of spatial linear tuning-curve.
Orange dots are randomly selected single-trials. Top left, magnifies one condition (c) showing
the decomposition of a single trial (t) into the sum of: (i) mean spatial linear component, (ii)
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mean nonlinear component, (iii) single-trial noise fluctuation. Top right, example of the result-
ing purely nonlinear component with single-trial noise; note that there is no remaining linear
component. Bottom left, same for the resulting purely spatial-linear component with single-
trial noise.
(TIF)

S5 Fig. 4 example response functions generated by the 2-parameter version of the neural
network model following the same format as Fig 2. Examples were chosen to highlight the
spatial-linearity and various forms of nonlinearity seen in Fig 2.
(TIF)

S1 Text. Tuning is not the result of hand jitter.
(PDF)

S2 Text. Subpopulations for decoding EMG.
(PDF)
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