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Abstract We developed a neural network model that can account for major elements common

to human focal seizures. These include the tonic-clonic transition, slow advance of clinical semiology

and corresponding seizure territory expansion, widespread EEG synchronization, and slowing of

the ictal rhythm as the seizure approaches termination. These were reproduced by incorporating

usage-dependent exhaustion of inhibition in an adaptive neural network that receives global

feedback inhibition in addition to local recurrent projections. Our model proposes mechanisms that

may underline common EEG seizure onset patterns and status epilepticus, and postulates a role for

synaptic plasticity in the emergence of epileptic foci. Complex patterns of seizure activity and bi-

stable seizure end-points arise when stochastic noise is included. With the rapid advancement of

clinical and experimental tools, we believe that this model can provide a roadmap and potentially

an in silico testbed for future explorations of seizure mechanisms and clinical therapies.

Introduction
Focal seizures have been recognized for more than 3000 years, with descriptions dating back to

ancient Mesopotamia (Worthington, 2005). Although focal seizures can present with a plethora of

behavioral manifestations that vary according to the affected cortical regions, there are several con-

sistent clinical and large-scale EEG features (Kotagal et al., 2008): propagation from a focal onset

location to large brain regions, widespread neuronal synchronization, a transition from tonic to clonic

activity, and a slowing pace of neuronal discharging prior to simultaneous seizure termination.

Our recent investigations, utilizing microelectrode array recordings in humans, identified neuronal

underpinnings of these common seizure features (Schevon et al., 2012; Smith et al., 2016). Based

on these findings and results from animal model studies (Trevelyan et al., 2006; Trevelyan et al.,

2007a; Trevelyan et al., 2007b; Wenzel et al., 2017; Wenzel et al., 2019), we proposed a dual

spatial structure for focal seizures consisting of a core region of seizing brain bounded by an ictal

wavefront surrounded by a passively reactive penumbra. What delineates the boundary of the ictal

core is the ictal wavefront, a narrow band of intense, desynchronized multiunit (tonic) firing that

marks the transition to seizure at a given brain location. Typically, this tonic firing structure is not

detectable in clinical EEG or band-limited local field potentials (LFPs). Evidence from human

(Schevon et al., 2012) and animal studies (Trevelyan et al., 2006; Trevelyan et al., 2007b) sug-

gests that collapse of inhibition is the key element causing ictal wavefront propagation, which leads
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to progressive seizure territory expansion. The slow pace of ictal wavefront propagation (<1 mm/

sec) corresponds to the slow evolution of the electrographic seizure and clinical semiology,

for example the classic Jacksonian march (York and Steinberg, 2011). As it advances, the ictal

wavefront generates fast-moving ictal discharges (Trevelyan, 2009; Smith et al., 2016), directed

inward towards the initiation point, at speeds two orders of magnitude higher than the wavefront

propagation (Smith et al., 2016; Liou et al., 2017). These fast-moving ictal discharges are the basis

of the well-recognized high amplitude field potential deflections that are the hallmark of electro-

graphic seizures. Thus, there are two types of moving waves that characterize seizures: fast, inward-

moving ictal discharges and the slow outward-moving wavefront of ictal recruitment.

To date, despite extensive prior work in computational seizure modeling (Soltesz and Staley,

2011), no theoretical study has shown how this dynamic topological structure can arise from basic

biophysical mechanisms. Phenomenological models, such as Epileptor (Jirsa et al., 2014;

Proix et al., 2018), have successfully utilized large-scale functional EEG features to reproduce the

large-area, apparently synchronized EEG activity that characterizes clinical seizure recordings,

although identifying smaller scale neurophysiological processes corresponding to each abstract vari-

able in these models can be challenging. Biophysical models have been used to explore the role of

specific neurophysiological processes responsible for seizure transitions, such as intracellular and

extracellular potassium dynamics (Cressman et al., 2009; Ullah et al., 2009), transmembrane chlo-

ride gradients (Buchin et al., 2016), and calcium-activated processes (Yang et al., 2005). However,

the evolving, wide-area dynamics that characterize the life cycle of a seizure remain difficult to

explain by any single biophysical mechanism. Moreover, given that seizures can simultaneously acti-

vate a multitude of pathophysiological processes across extensive interconnected brain regions, bio-

physical models may be limited to a fragmented or overly specific account of seizure dynamics.

Here, we describe a biophysically-constrained cortical network model designed to link the key

pathological cellular mechanisms that underpin seizures to their large-scale spatial structure. Inspired

by the spirit of phenomenological models, we adopt an approach with minimal assumptions, aiming

to show that complex spatiotemporal dynamics can arise from simple, generalizable, and experimen-

tally validated biophysical principles. Our modeling philosophy is to eschew model features that are

inessential or that do not contribute directly or dominantly to the phenomena being considered.

This allows us to identify basic mechanisms. In addition, while we, of course, build specific mecha-

nisms into our models, our aim is to highlight the underlying biophysical properties that lead to

pathology, so that the lessons learned are more general than the specific models. Using a targeted

parameter search, we demonstrate that maintaining the normal transmembrane chloride gradient is

critical for inhibition robustness, which is necessary for restricting seizure propagation. Our theory

provides a theoretical framework explaining the key clinical features widely observed in focal seizure

patients (Kotagal et al., 2008; Ebersole et al., 2014; Extercatte et al., 2015). We also test several

predictions arising from the model using our existing dataset of microelectrode recordings of spon-

taneous human seizures.

Results
We modeled the neocortex as a 2-dimensional neuron sheet (Bressloff, 2014). Model neurons are

pyramidal cell-like and contain two intrinsic conductances – leak and slow potassium – and two syn-

aptic conductances – excitatory (AMPA) and inhibitory (GABA-A). Neuronal mean firing rates are cal-

culated by passing the difference between membrane potentials and thresholds through a sigmoid

function. Model neurons incorporate spike-frequency adaptation mechanisms – neuronal firing

increases the spike threshold and activates an additional slow afterhyperpolarization (sAHP) conduc-

tance. Model neurons are recurrently connected by direct excitatory projections (Figure 1A). They

also inhibit each other indirectly through di-synaptic pathways via interneurons, whose dynamics are

simplified in this study (see Materials and methods for more information regarding interneuron sim-

plification). The effects of recurrent projections between model neurons are hypothesized to be dis-

tance-dependent, with the range of di-synaptic recurrent inhibition longer than the mono-synaptic

excitatory range, thereby making the spatial distribution of the effective synaptic weights from a

model neuron follows a ‘Mexican hat’ structure (Prince and Wilder, 1967; Coombes, 2005; Bressl-

off, 2014). In addition, our model includes a distance-independent recurrent inhibition pathway

(Figure 1A, part g), inspired by recent observation of large-scale inhibitory effects of focal seizure
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Figure 1. Model schematics and the comparison of patient recordings with model simulation results. (A) Model

schematic. Triangles: model neurons. Red solid arrows: excitatory recurrents with distance-dependent strength of

spatial kernel width sE . Dashed blue circles: inhibitory neurons. Dashed red-to-blue arrows: distance-dependent

Figure 1 continued on next page
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activity (Eissa et al., 2017; Liou et al., 2018). Biophysical parameters are set based on previously

reported values from recorded neocortical pyramidal neurons (Table 1). In its original form, the

model does not spontaneously seize. Instead model seizures are initiated by transient focal excit-

atory inputs. This model can be considered a model of a healthy neural circuit, with the degree of

resistance to seizure controlled by its parameters.

Throughout the manuscript, variations of the primary 2D rate model are introduced to provide

more in-depth assessment of key features. Simulation results of the primary model in a noise-free

environment are first presented and qualitatively compared to patient recordings (Figure 1). Next,

the model is simplified to 1-dimensional space to better illustrate physiological mechanisms that

account for the slow advancement of the ictal wavefront and the generation of fast inward traveling

waves (Figures 2 and 3). A corresponding 1-dimensional spiking model is subsequently shown in

Figures 4 and 5 to validate our rate-based approach and explore the effects of spike-timing depen-

dent plasticity on spontaneous seizure occurrence. Finally, the main model is revisited with the addi-

tion of background current noise to explain bi-stable seizure evolution endpoints and the origin of

complex spatial configurations of focal seizure activities (Figures 6 and 7). While such variations of

the primary model are used to more clearly illustrate key dynamical features, the dynamics pre-

sented here are common across model variations.

Comparison between patient microelectrode recordings and model
simulation results
Figure 1B shows a 96-channel Utah microelectrode array recording from a patient experiencing a

typical spontaneous neocortical-onset seizure (Source data 1). The human recording demonstrates a

slow, progressive advancement of seizing neuronal activity from the left to right side of the array-

sampled area (Figure 1B, left, orange arrows). This seizure recruitment was led by the ictal wave-

front, which passed through the microelectrode-sampled brain region over the course of a few sec-

onds. Following the brief period of tonic firing marking the passage of the ictal wavefront, the

neurons, now inside the ictal core, transitioned to repetitive bursting (Figure 1B, right). Bursts prop-

agated sequentially in space from the ictal wavefront back toward the internal domain, constituting

fast-moving ‘inward traveling waves’ (Figure 1B, right, the blue arrow). Figure panel 1C shows simi-

lar activity patterns generated by our model. In the model, a self-sustaining tonic-firing region was

established by a transient focal external stimulus (the red star in Figure 1C). The key dynamics seen

in the human recordings were reproduced by the model, including the slow-marching wavefront

(Figure 1C, right, orange arrows) and the subsequent fast inward traveling waves (Figure 1C, right,

the blue arrow). Figure 1—video 1 shows the full spatiotemporal evolution of this model seizure,

and data from the Utah microelectrode arrays can be found online (Source data 1).

Figure 1 continued

di-synaptic recurrent inhibition with spatial kernel width sI , which accounts for 1� g of the total recurrent

inhibition. The remaining fraction g of the inhibition is distance independent and represented by the blue hues

around model neurons. Interneuron membrane potentials are not explicitly modelled. (B) Microelectrode array

recordings from Patient A. The red shaded area in the cartoon panel represents the clinically identified seizure

onset zone. Orange arrows indicate the seizure propagation direction. The left column shows the spatiotemporal

dynamics of multiunit activity in a slow timescale. The right column is a fast timescale zoom-in of the left bottom

panel. Evolution of multiunit activity in a slow/fast timescale is estimated by convolving the multiunit spike trains

with a 100/10 ms Gaussian kernel respectively. Left-to-right seizure recruitment was seen 3 s after the seizure onset

(the orange arrow). Once recruited (left bottom panel), fine temporal resolution panels (the right column) showed

right-to-left fast waves arose at the edge of the seizure territory (the blue arrow) and traveled toward the internal

domain (fast inward traveling waves). (C) 2D rate model simulation results. Figure conventions adopted from B.

The red star indicates where the seizure-initiating external current input was given (Id = 200 pA, duration 3 s,

covering a round area with radius 5% of the whole neural sheet). Evolution of the neuronal activities within the

green rectangle are shown in the panels. Notice the slow outward advancement of the seizure territory and the

fast-inward traveling waves.

The online version of this article includes the following video for figure 1:

Figure 1—video 1. Full evolution of the model seizure shown in Figure 1C.

https://elifesciences.org/articles/50927#fig1video1
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Stages of focal seizure evolution
To further dissect the main seizure dynamics, the 2-dimensional model was reduced into a simplified

one-dimensional version (Figure 2). In this model, a transient excitatory input triggers the establish-

ment of a localized, self-sustaining tonic firing region near the bottom of the space, marking the

onset of the model seizure (Figure 2A, green diamond). The seizure territory initially expands bidi-

rectionally until all neurons near the bottom of the space are recruited, at which point it can only

expand towards the top. Meanwhile, firing rates at the center of the seizure territory slowly

decrease. The ’activity bump’ eventually collapses and transitions spontaneously into repetitive neu-

ronal bursting, marking the transition from the ictal-tonic to the ictal-clonic stage (Figure 2A, green

star). Repetitive neuronal bursting occurs sequentially according to its distance from the ictal wave-

front, forming the fast inward traveling waves (Figure 2B). In comparison to the slowly expanding

ictal wavefront, the fast inward waves travel two orders of magnitude faster (Figure 2B, ratio = 170).

This ratio approximates that previously reported in human recordings, that is average speed

0.83±0.14 mm/sec for ictal wavefront expansion (Schevon et al., 2012) versus post-recruitment ictal

discharge traveling speeds of 26±24 cm/sec (mean±s.d.) (Smith et al., 2016; Liou et al., 2017). As

Table 1. Rate model parameters.

Neurons are modelled analogous to neocortical pyramidal neurons in terms of cell capacitance, leak

conductance, and membrane time constant (Tripathy et al., 2014). Maximal synaptic conductances

during seizures have been reported in the range of a few hundreds of nS (Neckelmann et al., 2000).

Chloride clearance (Deisz et al., 2011), buffer (Marchetti, 2005), and seizure-induced sAHP conduc-

tance (Alger and Nicoll, 1980) are modeled according to the reported ranges. Spatially non-local-

ized recurrent projections (g) are considered in this study (Liou et al., 2018). All rate models are

based on this standard parameter set. Any further parameter adjustment is reported in figure

legends.

Parameters unit

C 100 pF

gL 4 nS

�gE 100 nS

�gI 300 nS

EL -58 mV

EE 0 mV

EK -90 mV

fmax 200 Hz

b 2.5 mV

tE 15 ms

tI 15 ms

tf 100 ms

f0 -45 mV

Df 0.3 mV/Hz

tCl 5 second

Vd 0.24 pL

½Cl�in:eq 6 mM

½Cl�out 110 mM

tk 5 second

Dk 0.2 nS/Hz

sE 0.02 Normalized spatial scale

sI 0.03 Normalized spatial scale

g 1/6
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Figure 2. Stages of focal seizure evolution in a 1D rate model. (A) Spatiotemporal evolution of a model seizure in one-dimensional space (EL=-57.5

mV). Horizontal axis: time; vertical-axis: space. Seizure dynamics is partitioned into the following distinct stages: pre-ictal, ictal-tonic, ictal-clonic, pre-

termination, and post-ictal. Green box: seizure-provoking input (Id=200 pA). Green diamond: establishment of external-input-independent tonic-firing

area. Green star: tonic-to-clonic transition. Green arrow: annihilation of the ictal wavefront. Green triangle: seizure termination. (B) Temporal zoom-in

from Panel A during the ictal-clonic stage. Seizure territory further subdivided. Red square bracket: the ictal wavefront. Purple square bracket: the

internal bursting domain. Thus, the top/bottom of the space corresponds to outside/inside of the seizure territory. Note that the fast-moving traveling

waves move inwardly. Speed: 1.36 normalized space unit per second. Propagation speed of the ictal wavefront: 0.008 normalized space unit per

second, for a traveling wave:wavefront speed ratio of 170. (C) Intracellular chloride concentration and sAHP conductance as a function of spatial

position during the ictal-clonic stage, corresponding to the activity depicted in panel B. Note the distinct spatial fields of the two processes near the

ictal wavefront. (D) Impaired chloride clearance allows seizure initiation and speeds up seizure propagation. Gray lines: the expansion of border of the

seizure territory versus time. End of the lines: seizure termination, either spontaneous (tCl�5 seconds) or after meeting the neural field boundary (tCl�6

seconds). (E) Activation of the sAHP conductance leads to the tonic-to-clonic transition. Duration of ictal-tonic stage monotonously decreases as the

sAHP conductance increases. Red triangle: persistent tonic stage without transition. (F) The seizure-permitting area in tCl and DK parameter space.

Blue/red: onset failure/success.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Stages of focal seizure evolution in a 1D spiking model.

Figure supplement 2. Effects of input triggers on model seizure dynamics.

Figure supplement 3. Targeted parameter search of seizure territory expansion.

Figure supplement 4. Stages of focal seizure evolution in a generalized model of exhaustible inhibition.

Liou et al. eLife 2020;9:e50927. DOI: https://doi.org/10.7554/eLife.50927 6 of 27

Research article Computational and Systems Biology Neuroscience

https://doi.org/10.7554/eLife.50927


the seizure nears termination, the ictal wavefront dissipates (Figure 2A, green solid arrow), marking

the beginning of the pre-termination stage. Bursts become less frequent and begin to spread out

and weaken. After the last burst propagates across modeled brain region, the seizure terminates

abruptly (Figure 2A, green triangle). The key dynamics of each of these seizure stages are further

corroborated and validated in the corresponding 1-dimensional integrate-and-fire spiking model

(Figure 2—figure supplement 1), that includes threshold noise. The sequence of seizure stages is

not affected by duration, spatial extent, or intensity of the external seizure-provoking inputs as long

as they are adequate to trigger seizure onsets (Figure 2—figure supplement 2). Inputs that are

inadequate to initiate a seizure, yet are near enough to the threshold for seizure induction, may trig-

ger short-runs of ’after-discharges’ (Figure 2—figure supplement 2A).

Figure 3. Pre-termination stage shows ‘slowing-down’ dynamics. (A) Model seizure, pre-termination stage, zoomed-in from Figure 2A. The horizontal

axis is shared with Panel B. The local neuronal population dynamics marked by the dotted green line is further shown in Panel B. Notice that in a space-

time diagram a traveling wave is a slant band whose slope is its traveling velocity. (B) Quantification of the local neuronal population dynamics marked

by the dotted green line in Panel A. Peak firing rate decreases, interburst intervals prolong, traveling wave speed decreases, and burst width decreases

as the model seizure approaches termination. Neural activity within a region of 0.05 normalized distance centered at the dotted green line is used to

calculate traveling wave speed. Burst width is calculated by first treating f tð Þ during each burst (100 ms temporal window) as a distribution and then

estimate its standard deviation. (C–F) Patient B shows similar trends of neural dynamics at pre-termination stage. Peak firing rate decreased (C)

interburst interval increased (D), traveling wave speed decreased (E), and burst width increased (F). Spearman’s correlation coefficients: -

0.62 (n=35, p<0.001), 0.64 (n=93, p<0.001), -0.34 (n=93, p=0.002), 0.78 (n = 93, p<0.001) for C-F respectively.
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Figure 4. Subtypes of seizure onset pattern can arise from different distributions of recurrent inhibition. (A) LVFA

onset (EL=-60mV, g=1/6, b=1.5 mV). Upper subpanel: raster plot of the spiking model. Horizontal axis: time.

Vertical axis: space. Shaded red zone: Id=80 pA. Green and purple dashed lines indicate where the simulated

LFPs, shown in the lower subpanel, are read out. LVFA is associated with large DC shift of the LFP, corresponding

to seizure onset and ictal wavefront invasion. Periodic LFP discharges emerge after ictal wavefront passage (blank

region: 20-second simulation result skipped for visualization). (B) Rhythmic onset (EL=-60mV, g=1/2, b=1.5 mV).

Upper and middle subpanels inherit the conventions of panel A. At seizure onset, waves are generated and travel

outwardly (shaded red area, Id=80pA). They are associated with rhythmic LFP discharges and precede the fast

activity. Inward traveling waves emerge after wavefront establishment (after the blank interval). Lower subpanel:

comparison of speeds between outward and inward traveling waves. Traveling wave speeds are measured locally

at the location indicated by the purple dashed line, with each dot’s X-coordinate as the time of local firing rate

Figure 4 continued on next page
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Physiology of the ictal wavefront
The slow propagation of the modelled ictal wavefront results from two sequentially activated pro-

cesses: usage-dependent exhaustion of inhibition and upregulation of adaptation currents

(Figure 2C). These are modeled as intracellular chloride accumulation and sAHP conductance activa-

tion, respectively.

In modeled seizures, surround inhibition initially blocks the outward advance of the ictal wave-

front. The sequence of events in the transition to seizure is depicted in Figure 2B–C. As the ictal

wavefront approaches (Figure 2B, red bracket and Figure 2C, black arrow), intracellular chloride

starts to accumulate just ahead of it (brown arrow) due to strong feedforward inhibition projected

from the ictal core. Intracellular chloride accumulation causes the chloride reversal potential to

become less negative, which compromises the strength of GABA-A receptor-mediated inhibition

(Materials and methods, Equation 3). As the chloride reversal potential becomes less negative, inhi-

bition is eventually overcome, causing neurons to transition from the resting to the tonic-firing state

as they join the ictal wavefront. Intense neuronal firing subsequently activates the sAHP conductance

(Figure 2C, blue arrow) (Materials and methods, Equation 4), which mediates a hyperpolarizing

potassium current that curbs neuronal excitability. Consequently, the tonically firing neurons in the

ictal wavefront transition into repetitive bursts alternating with periods of silence, forming the peri-

odic inward traveling waves described above. The sequence of intracellular chloride accumulation

followed by the activation of sAHP thus mediates both the slow propagation of the ictal wavefront

and the periodic, inward fast traveling waves that characterize the ictal core.

The robustness of inhibition and the amount of adaptation conductance both control the degree

to which the model is prone to seize. Model cortices in which neurons can pump out chloride quickly

are resistant to seizure invasion. As shown in Figure 2D, speeding up chloride clearance (low tCl)

results in a slower ictal wavefront propagation speed, shorter seizure duration, and therefore a

smaller seizure territory (also see Figure 2—figure supplement 3). Ultimately, if chloride can be

pumped out fast enough, the model is unable to form self-sustaining seizures (Figure 2D, tCl� 3

sec). The adaptation conductance (DK ) also curbs seizures by preventing the establishment of an ictal

core and hastening seizure termination. As shown in Figure 2E, increasing the sAHP conductance

results in earlier tonic-clonic transitions, earlier seizure termination, and therefore a smaller seizure

territory. For high levels of the sAHP conductance, seizure initiation fails (Figure 2E, DK � 0.25 nS/

Hz). Figure 2F shows the region in the parameter space of tCl and DK that permits the formation of

an ictal core. Additional series of parameter searches are summarized in Figure 2—figure supple-

ment 3. In general, inhibition, which can be strengthened by low intracellular equilibrium chloride

concentration ( Clin:eq
� �

), high chloride buffer capacity (Vd;Cl), and fast chloride clearance (tCl), restrains

ictal wavefront propagation. Factors that amplify adaptation currents, including sAHP conductance

(DK ), low reversal potential of potassium (EK ), and fast sAHP activation (tK ), play a less significant

role in modulating the wavefront propagation speed. Instead, they facilitate transitions of seizure

stages. In a parameter regime with robust inhibition and strong adaptation, the ictal core cannot be

established, making the models resistant to the seizure-provoking insults.

Figure 4 continued

max. Dot size corresponds to F-test p-value (significance level: 0.001) and color represents the direction of

propagation. Outward waves (n=34) travel at a significantly lower speed than inward waves (n=23) (U-test,

p<0.001). (C) Rhythmic seizure onset recorded from Patient B. Upper subpanel: averaged LFP recorded from the

microelectrode array. Lower subpanel: traveling wave direction (dot color) and speed (Y-coordinates), estimated

according to the spatiotemporal distribution of multiunit spikes. The seizure started with periodic LFP discharges

before fast activity emerged. As the seizure evolved, traveling wave direction switched (dot color: orange to

purple) and the speed increased (U-test p<0.001, n = 67 versus 49), analogous to the outward-to-inward switch

predicted in Panel B.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Local environment determines seizure onset, propagation and termination patterns.
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Ictal wavefront annihilation and the pre-termination stage
Previously, based on analysis of human multiscale recordings, our group proposed that dissipation

of the ictal wavefront is a key event preceding wide-area, simultaneous seizure termination

(Smith et al., 2016; Liou et al., 2017). This process is also evident in the model seizures. As the sei-

zure territory expands, the ictal wavefront in the model encounters increasingly stronger inhibition

ahead of itself. Such stronger inhibition is a result of non-localized recurrent inhibition (the global

part of Equation 5 in Materials and methods) becoming progressively activated as more cortical

areas are recruited into the seizing territory. The dynamics thus function as a spatial integrator, with

strength of inhibition proportional to the extent of the area that has been invaded. Consequentially,

Figure 5. Connectivity induced by spike-timing dependent plasticity may promote emergence of seizure foci. (A) Raster plot of a provoked model

seizure with LVFA onset pattern. Figure conventions are inherited from Figure 4A. Red shaded area indicates the epileptogenic input Idð =200 pA for 3

seconds). Stochastic background input: ss=20 pA, ls=0.1, ts=15 ms. The vertical axis is normalized spatial scale and aligned with Panel B and C. The

green dashed line indicates where the simulated LFP, shown in the lower subpanel, is calculated. (DK=0.05 nS, b=1.5 mV) (B) Changes in recurrent

excitatory connectivity strength, WE , induced by STDP after the provoked model seizure (rows correspond to postsynaptic labels, columns to

presynaptic). Left subpanel: the DWE matrix. Right subpanel: neuronal projection bias calculated from the DWE matrix (see Materials and methods).

The location, size, and direction of the triangles represent the position of the neuron, magnitude and direction of the neuron’s projection bias

respectively. (C) A spontaneous seizure after seizure-induced synaptic plasticity (Id=0 pA). Several large amplitude LFP discharges, shown in the lower

subpanel, precede the seizure onset. These LFP discharges are generated by the centripetal traveling waves seen in the raster plot. (D) LFP discharges

recorded immediately before Patient A’s seizure onset. Discharges are marked by triangles of different colors. Evolution of the associated multiunit

firing pattern is shown in Panel E. (E) Multiunit firings constitute traveling waves (10 ms kernel) before LVFA seizure onset. Note that the right half of the

array detected multiunit firings earlier than the left half, which is opposite to the expansion direction of the ictal core (left to right). (F) Estimated

traveling wave direction and speed. Gray circle: 10 cm/sec.
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seizure propagation gradually slows as the wavefront expands. Once the propagation speed is inad-

equate to escape from sAHP-induced suppression, the wavefront is annihilated, and the seizure tran-

sitions into the pre-termination stage (Figure 2A green arrow and Figure 3).

The pre-termination stage of a model seizure (Figure 3A) shows four characteristic trends:

decreasing peak firing rate, increasing inter-burst intervals, decreasing inward traveling wave speed,

Figure 6. Consistent inward traveling wave direction can emerge from white noise. (A) Simulation results of a spatially bounded, two-dimensional rate

model under a noise free condition. The epileptogenic stimulus was provided at the center of the round field (Id=200 pA, 3 second, stimulation radius

= 0.05). Seizure territory slowly expands (the top row, left to right, 10 seconds per frame) and evolves in stages. The 1st column shows the tonic stage

during which the firing rate within the seizure territory stays largely constant (20 ms per frame vertically). The 2nd and 3rd columns show the clonic and

pre-termination stages, respectively. Because the neural sheet is symmetric and noise-free, all inward traveling waves meet exactly at the center. (B)

Simulation protocol as in panel A but with spatiotemporally white noise with diffusion coefficient 200 pA2/ms is injected uniformly over the whole neural

sheet. The confluence point of inward traveling waves during the clonic stage deviates from the center (middle column). Complex, asymmetric traveling

wave generation is observed during the pre-termination stage (right column). (C) Locations of confluence points, quantified from Panel B. The upper

row: confluence point locations of 6 consecutive inward traveling waves (marked in yellow). The lower subpanel: evolution of the confluence point

locations. During the clonic stage (n=120), confluence points significantly deviate from the center (signed-rank test for both x and y coordinates, p

<0.001) and drift slowly (auto-correlation coefficients: �x 1ð Þ=0.82, �y 1ð Þ=0.83; both p < 0.001.). (D) Traveling wave direction estimated at the center

(radius = 0.05). White noise generates a consistent traveling wave direction during the clonic stage once the confluence point drifts away from the

center. Circular auto-correlation �� 1ð Þ during the ictal clonic stage: 0.97, p<0.001, n = 120. However, traveling wave direction becomes more variable

during the pre-termination stage: �� 1ð Þ=0.09, p=0.5, n = 65.

The online version of this article includes the following video and figure supplement(s) for figure 6:

Figure supplement 1. Increasing traveling wave direction variability as Patient B’s seizure approached termination.

Figure 6—video 1. Full evolution of the model seizure shown in Figure 6A.

https://elifesciences.org/articles/50927#fig6video1

Figure 6—video 2. Full evolution of the model seizure shown in Figure 6B.

https://elifesciences.org/articles/50927#fig6video2

Liou et al. eLife 2020;9:e50927. DOI: https://doi.org/10.7554/eLife.50927 11 of 27

Research article Computational and Systems Biology Neuroscience

https://elifesciences.org/articles/50927#fig6video1
https://elifesciences.org/articles/50927#fig6video2
https://doi.org/10.7554/eLife.50927


and increasing burst width (Figure 3B). These ‘slowing-down’ trends match clinical observations as

well as microelectrode recordings from epilepsy patients (Figure 3C–F, Source data 2; Source data

3; Source data 4). Increased duration of the silent period following each burst (Figure 3D) allows

more time for recovery of inhibition strength, as more chloride can be removed from the intracellular

space to restore the transmembrane chloride gradient. Recovered inhibition then attenuates burst

intensity (Figure 3C), slows the speed of the inward traveling waves (Figure 3E), and desynchronizes

the neuronal population (Figure 3F).

Generalized model for exhaustible inhibition
Although pathological intracellular chloride accumulation is an appealing candidate mechanism for

usage-dependent exhaustion of inhibition, other mechanisms have been proposed such as depolari-

zation block of inhibitory neurons (Ahmed et al., 2014; Meijer et al., 2015), and other pathways

that may not be limited to cortical neuronal structures may also exist. We hypothesized that any

mechanism that compromises inhibition strength, operates over a time scale of seconds and is trig-

gered by intense inhibition usage is a possible candidate mechanism for the slow expansion of both

the seizure territory and the pre-termination dynamics. To confirm our hypothesis, we modeled a

generalized inhibition exhaustion process instead of using the chloride accumulation assumption

Figure 7. Emergence of spiral waves, status epilepticus, and seizure termination induced by globally synchronizing inputs. (A) Spiral wave

formation. Model parameters and figure conventions are inherited from Figure 6B. The top snapshot shows the ical-clonic stage, then several spiral

waves emerged after ictal wavefront annihilation (the upper row of snapshots). Spiral waves demonstrate complex interactions. Some spiral centers

survived and persisted indefinitely (the lower row). (B) Movement of spiral wave centers, quantified from Panel A. In this simulation, one spiral wave

eventually dominated the whole field and never terminated. (C) A globally synchronizing pulse with adequate amplitude and duration (Id=200pA, 30

ms) forced the spiral-wave seizure to terminate. The pulse was given at the time of the left lower sub-panel in Panel A. Each subpanel is aligned with

the lower row of Panel A for comparison. (D) As C, but with inadequate amplitude (Id=100pA) to terminate the seizure. (E) Results of the pulse

synchronization study. Color code: maximal firing rate across the neural network within 3 s after the pulse.

The online version of this article includes the following video for figure 7:

Figure 7—video 1. Full evolution of the model seizure shown in Figure 7.

https://elifesciences.org/articles/50927#fig7video1
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(Materials and methods, Equation 8). All evolutionary stages of focal seizures and their characteristic

dynamics were reproduced using this generic process (Figure 2—figure supplement 4).

Distribution of recurrent inhibitory projections determines seizure
onset patterns
We have thus far shown that minimal, neurophysiologically based assumptions can account for the

complex spatiotemporal evolution of focal seizures. Next, we replaced rate-based units in our one-

dimensional model with integrate-and-fire neurons (Table 2). LFP-like signals were read out using a

computationally validated approximation based on empirical cortical circuit configurations and

somatodendritic orientations (Mazzoni et al., 2015). Briefly, local synaptic currents are summed,

with the contributions from inhibitory synaptic currents scaled up and delayed in time (see Materials

and methods). This allowed us to compare the LFP-like signals generated from the model with LFPs

from clinical recordings.

Results from the spiking model provide insights into the mechanisms of different focal seizure

onset patterns. Low-voltage fast activity (LVFA) is the most common focal seizure onset pattern, with

rhythmic discharges or slow rhythmic oscillations seen less frequently (Perucca et al., 2014). In our

model, seizure onset patterns are determined by the relative strength between local and global

recurrent projections (Figure 4 and Figure 4—figure supplement 1). When recurrent projections

Table 2. Spiking model parameters.

Parameters are chosen as described in the legend of Table 1. Time constant of spike timing depen-

dent plasticity is chosen according to previously reported data (Bi and Poo, 1998; Song et al.,

2000).

Parameters unit

C 100 pF

gL 4 nS

gE 100 nS

gI 300 nS

EL -57 mV

EE 0 mV

EK -90 mV

f0 2 Hz

b 2.5 mV

tref 5 ms

tE 15 ms

tI 15 ms

tf 100 mV

f0 -55 mV

Df 2.5 mV

tCl 5 Second

Vd 0.24 pL

½Cl�in:eq 6 mM

½Cl�out 110 mM

tk 5 Second

Dk 0.04 nS

sE 0.02 Normalized spatial scale

sI 0.03 Normalized spatial scale

g 1/6

tSTDP 15 ms
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favor strong localized inhibition, seizure onset is characterized by a localized tonic-firing area, result-

ing in focal LVFA (Figure 4A, 5:1 ratio of local versus global recurrent inhibition, Materials and meth-

ods, Equation 5). The onset pattern shifts to rhythmic discharges when the distribution of recurrent

inhibition favors spatially non-specific projections (Figure 4B, 1:1 ratio of local versus global recur-

rent inhibition, Materials and methods, Equation 5). Under this latter condition, inadequate local

inhibitory restraint allows ictogenic perturbations to spread quickly outward in the form of traveling

waves, generating rhythmic discharges as typically observed in the LFP bands.

Our model further predicts that various LFP patterns may coexist during a single seizure episode,

depending on regional variances in the distribution of recurrent connectivity (Figure 4—figure sup-

plement 1). Also, our model predicts that outward traveling waves move at a lower speed than

inward traveling waves because inhibition outside the ictal wavefront is initially intact (Figure 4B). In

agreement with our prediction, as shown in Figure 4C, a similar dependence of traveling wave

speed on the direction relative to the ictal wavefront has been observed in human

recordings (Source data 2; Source data 3; Source data 4; Smith et al., 2016; Liou et al., 2017).

Seizure-induced network remodeling and spontaneous seizure
generation
Seizures have been shown to remodel neural networks (Scharfman, 2002; Elger et al., 2004; Lenck-

Santini and Scott, 2015). We therefore incorporated synaptic plasticity into our model to study how

seizures affect network connectivity and, subsequently, seizure dynamics. We subjected the excit-

atory synaptic projections in our 1D spiking model to spike-timing dependent plasticity (STDP, Mate-

rials and methods, Equation 6-7). During a provoked seizure (Figure 5A), inward traveling waves,

because of pre-before-post potentiation in STDP, selectively enhanced excitatory projections from

the periphery to the internal domain of the ictal core, in accordance with the predominant traveling

wave direction (Figure 5B, left). This newly created spatial bias of excitatory projections therefore

follows a centripetal pattern (Figure 5B, right, see Materials and methods, section Spike-Timing

Dependent Plasticity for quantification of spatial biases of synaptic projections). Such strengthening

of centripetal connectivity can predispose the neural network to more seizures by funneling back-

ground neural activity into its center. Furthermore, as shown in Figure 5C, a background input which

is non-ictogenic in a naı̈ve network may now provoke seizures in the remodeled network by evoking

centripetal traveling waves, which can exhaust inhibition strength at the center of the increased cen-

tripetal connectivity. Subsequent seizures are therefore prone to be triggered from the same loca-

tion, and their associated inward traveling waves can further reciprocally strengthen this centripetal

connectivity.

Results from seizures generated by our model after the network remodeling described above

predict that epileptiform discharges preceding LVFA seizure onset travel toward the seizure center,

rather than away from it (Figure 5C). Such centripetal traveling waves have been observed in the

microelectrode recordings of spontaneous human seizures (Source data 1) immediately before the

onset of an LVFA seizure (Figure 5D–F, compared to Figure 1B). In particular, large-amplitude epi-

leptiform discharges with associated multiunit bursts were present just prior to seizure onset,

spreading from right to left (Figure 5E–F). This is the same direction as the rapidly traveling inward

waves of ictal discharges, and opposite to the direction of seizure expansion (Figure 1B).

Variability of traveling wave direction under noisy conditions
We next return to the primary 2D rate model to examine the effects of background noise on the spa-

tiotemporal dynamics of seizures. Under the noise-free condition considered up to this point, a sei-

zure evoked at the center of the neural sheet expands with a perfectly circular ictal wavefront

(Figure 6A and Figure 6—video 1). All inward traveling waves in this case are directed in a centripe-

tal pattern uniformly towards the center point, with no directional preference within the ictal core

(Figure 6A and Figure 6—video 1). However, ictal EEG discharges recorded from epilepsy patients

clearly demonstrate stable preferred traveling wave directions (Smith et al., 2016; Liou et al., 2017;

Martinet et al., 2017). Although preferred directions can arise from pre-existing spatial asymmetry

(Figure 1—video 1), our simulation of a seizure occurring at the round, symmetric environment indi-

cates that the traveling wave direction bias may also occur due to random fluctuations in back-

ground neural activity (Figure 6—video 2).
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It might seem that adding random perturbations to our model would make inward traveling

waves flip randomly, which would further contradict in vivo observations of a consistent preferred

direction in the ictal-clonic stage (Figure 6—figure supplement 1; Smith et al., 2016; Liou et al.,

2017; Martinet et al., 2017). Instead, our model shows that uniformly distributed, spatiotemporally

white noise can create a long-lasting, preferred inward traveling wave direction without any require-

ment for spatial asymmetry or inhomogeneity of the neural sheet (Figure 6B, also see Figure 6—

video 2). After the tonic-to-clonic transition in the model, background noise first randomly creates a

bias of the confluence point where the inward traveling waves meet (Figure 6C). Once established,

the bias persists and, due to the low pass property of the neural sheet, it can only slowly drift, result-

ing in a sustained traveling wave direction preference lasting until the pre-termination stage. After

wavefront annihilation, traveling wave directions randomly fluctuate and flip (Figure 6D). Such vari-

able wave directions mimic human seizure recordings, where an increase in the variability of wave

directions and ‘flip-flop’ direction reversals are present before seizure termination (Figure 6—figure

supplement 1; Trevelyan et al., 2007a).

Spiral wave formation, status epilepticus, and synchronization-induced
termination
The complex topology of inward traveling waves after ictal wavefront annihilation suggests a candi-

date scenario that can lead to persistent seizure activity (Figure 7A). We repeated the simulation

shown in Figure 6B under the same level of background current noise. Three out of ten repeated

simulations showed failure of spontaneous seizure termination. The persistent seizure scenario is

characterized by the formation of spiral waves that emerge after wavefront annihilation (Figure 7A)

and exhibit complex interactions (Figure 7B). In the example shown, one spiral wave eventually

dominated the space, self-attracted, and persisted indefinitely, resulting in model status epilepticus

(Figure 7B and Figure 7—video 1). The coexistence of endpoints corresponding to spontaneous

seizure termination or status epilepticus under background current noise suggests bistable dynamics

of seizure evolution (Kramer et al., 2012).

Sustained spiral-wave activity, that is status epilepticus in our model can be terminated by a glob-

ally projecting excitatory input that is adequately strong to briefly activate the whole neural sheet at

once (Figure 7C–E and Figure 7—video 1). Within hundreds of milliseconds, the spiral waves spon-

taneously terminate without going through pre-termination slowing of the discharge pace.

Discussion
We have presented a biophysically constrained computational model of seizures that, despite being

limited to a reduced set of neural properties, reproduces many key aspects of human focal seizures.

We showed that the collapse of inhibition strength ahead of the ictal wavefront, followed by the

emergence of hyperpolarizing currents, accounts for the slow expansion of the ictal core, the tonic-

to-clonic transition, and the experimentally observed generation of inward traveling waves. These

features are closely aligned with properties of human seizures that were previously described using

combined clinical EEG and microelectrode recordings (Smith et al., 2016). The interplay of usage-

dependent inhibition exhaustion and adaptation, which drives wavefront propagation during early

stages of the seizure life cycle, also characterizes seizure-prone versus seizure-resistant tissues. Our

study supports the idea that recurrent inhibition that is spatially non-specific terminates seizures, cre-

ating the slowing frequency of discharging and increased traveling wave variability during the pre-

termination stage. Additionally, the model demonstrates that distinct seizure onset patterns can

result from topologically variant recurrent inhibitory projections. The inclusion of STDP in the model

results in progressive, localized pathological enhancement of excitatory connectivity, reducing sei-

zure threshold in the model and enabling spontaneous seizure generation. Our results on plasticity

emphasize the importance of the discovery and modeling of rapid inwardly directed traveling waves

(Smith et al., 2016; Liou et al., 2017), as these may induce plasticity that increases susceptibility to

future seizures. Finally, the model provides candidate scenarios for both spontaneous seizure termi-

nation and ongoing status epilepticus, based on stochastic events following dissipation of the ictal

wavefront.

The spatial seizure topology inferred from human multiscale recordings (Schevon et al., 2012;

Smith et al., 2016) and explicitly reproduced in the computational model described here has not
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previously been studied in its entirety. The propagation of the ictal wavefront is often invisible to

standard EEG, and even to wideband microelectrode recordings (Schevon et al., 2012). In contrast,

the fast-moving inward traveling waves manifest as field potential discharges, forming the classic

EEG signature of seizures (Smith et al., 2016; Martinet et al., 2017). Due to the speed at which

these discharges travel (up to 100 cm/sec) (Liou et al., 2017), they appear to be synchronized across

large brain areas, leading to suppositions of large-area network origin (Kramer et al., 2010;

Jirsa et al., 2014; Khambhati et al., 2016). Our model demonstrates that these spatiotemporal

dynamics can result from well-established neuronal processes occurring at the level of localized cellu-

lar interactions. Further, persistent traveling wave direction preferences can result from random fluc-

tuations in background neural activity. A caution applies, however, in interpreting effects that occur

near the boundary of the neural sheet, as this area may be artificially hyperexcitable in the model

due to reduction in the maximal inhibitory conductances.

Without modification by STDP, the network is reminiscent of a healthy, non-epileptic brain – it

maintains a non-trivial baseline firing rate, does not spontaneously seize, but can be provoked into a

full-blown seizure. Varying the external stimulus’ strength produces a range of responses from post-

stimulation depression, short-run after-discharges, to full-blown seizures. In this sense, perhaps the

most straightforward real-world interpretation of the external stimuli in our simulations is the focal

electrical zap given during intra-operative cortical mapping. The suprathreshold stimuli are therefore

analogous to the electrical shock given during convulsive therapies (Spellman et al., 2009). More

generally, the stimuli are qualitatively equivalent to any factor that cause a neighborhood of neurons

to depolarize, such as anoxic depolarization caused by local ischemia (Somjen, 2001) or discharges

triggered by transcranial magnetic stimulation (Lisanby et al., 2003). Accordingly, responses to the

external stimuli, in return, may reveal the network’s intrinsic propensity to seize.

Both modern in vitro brain slice studies (Trevelyan et al., 2007b) and in vivo human recordings

(Schevon et al., 2012) support the classical hypothesis of surround inhibition (Prince and Wilder,

1967), which motivated the Mexican-hat pattern of connectivity and the usage-dependent

exhaustible inhibition mechanism employed in our study (Eissa et al., 2017; Liou et al., 2018). Theo-

retically, massive GABAergic activity provoked by ictal events can overwhelm chloride buffering and

clearance mechanisms. The collapsed transmembrane chloride gradient compromises the strength

of surround inhibition, leading to seizure onset and propagation (Lillis et al., 2012; Alfonsa et al.,

2015). Indeed, excitatory effects of GABAergic transmission have been found in brain slices taken

from epilepsy patients (Cohen et al., 2002). The paradoxical excitatory effects of GABA in epilepsy

patients may be attributed to clearance defects, as tissues from temporal lobe epilepsy

(Huberfeld et al., 2007) and tumor-associated epilepsy patients (Pallud et al., 2014) both showed

reduced KCC2 for chloride extrusion. Experimentally knocking down KCC2 also leads to epileptiform

discharges (Zhu et al., 2005), and an in-vitro fluorescence study showed that chloride accumulation

preceded seizure onset (Lillis et al., 2012). In agreement with previous studies, our model suggests

that tissues with slow chloride clearance are seizure-prone. Inhibition robustness is critical for pre-

venting, restraining, and shaping focal seizures.

The tonic-clonic transition has previously been theorized to arise from intrinsic neuronal processes

such as sAHP (Beverlin et al., 2012). In our model, we further explore the hyperpolarizing current’s

role throughout a seizure’s life cycle, including controlling seizure onset, mediating tonic-clonic tran-

sition, and participating in the evolution of pre-termination seizure activities. Clinical studies have

confirmed the importance of sAHP in prohibiting epileptic activity. Mutations of KCNQ2 and

KCNQ3 channels, which contribute to sAHP currents, are associated with familial neonatal epilepsy

(Tzingounis and Nicoll, 2008).

We adopt a simplistic approach to ionic dynamics during seizures. Ion concentrations are held

constant except intracellular chloride, which is modelled as the mechanism underpinning usage-

dependent exhaustion of inhibition. This model’s approach, however, should not be misinterpreted.

Other than chloride, significant ionic shifts, including sodium, potassium, calcium, hydrogen and

etc., have also been observed during peri-ictal periods (Raimondo et al., 2015). The tortuosity of

extracellular space further complicates the picture, as ions may distribute unevenly due to diffusion

limits (Syková and Nicholson, 2008). Dysregulation of neuronal excitability due to extracellular

potassium accumulation, for example, has been proposed a candidate mechanism of seizure initia-

tion (González et al., 2019). A potential extension of this model may include multiple ion species

and their regional variance.
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In our model, spontaneous seizure termination is caused by progressive build-up of inhibition,

which is used to model the widespread effect of focal seizures (Burman and Parrish, 2018;

Liou et al., 2019). This widespread inhibition has not been extensively described, but nevertheless

has been demonstrated in both an acute animal seizure model (Liou et al., 2018) and in a computa-

tional model validated with human microelectrode recordings (Eissa et al., 2017). Experimentally,

calcium imaging has confirmed seizure-induced cross-areal activation of PV(+) interneurons,

for example in visual cortex in response to a focal seizure triggered in somatosensory cortex

(Wenzel et al., 2017; Liou et al., 2018). Anatomically, such widespread inhibition may be mediated

by long-distance, cross-areal projections that preferentially project to inhibitory interneurons in their

target circuits (Zhang et al., 2014; Sun et al., 2019). In addition, focal seizures may depress brain-

wide activities via disrupting subcortical structures (Feng et al., 2017) and ascending activation sys-

tems (Blumenfeld, 2012). Large-scale non-neural mechanisms that are not specifically modelled in

our study may also contribute to seizure termination. For example, global hypoxia secondary to sei-

zure-induced cardiopulmonary compromise may activate ATP-sensitive potassium channels in pyra-

midal neurons in a spatially non-specific way (Ching et al., 2012), thereby terminating seizures by

building resistance ahead of the ictal wavefronts and generating termination dynamics, analogous to

the global recurrent inhibition effect modelled in our study. In other words, the global inhibition

assumption may be interpreted as a hypothesis that, as a seizure territory enlarges, principle neurons

tend to hyperpolarize and are therefore progressively harder to recruit, with the specific neurological

mechanisms varying between patients.

In this study, we simplified inhibitory interneurons to reduce model parameter space. This should

not be misinterpreted as implying that we mean to diminish the role of interneuron dynamics in sei-

zure evolution. Recent studies have shown that interneurons may participate in seizure initiation

(Librizzi et al., 2017), and their depolarization block can be critical for seizure propagation

(Eissa et al., 2017). However, complex inhibitory interneuron dynamics, as shown in our study, may

not be required for the replication of key features of seizure dynamics.

The biophysical processes proposed here are certainly not the only mechanisms causing seizure

evolution. Instead, they should be considered as representative candidates, with the suggestion that

other mechanisms should share the features of the ones we have proposed. Processes that produce

similar effects on network dynamics and that operate over the same time scales may also contribute

to the generation of seizure dynamics, as exemplified by our phenomenological model, in which the

general variable z controls local effectiveness of inhibition rather than the transmembrane chloride

gradient. For example, in addition to intracellular chloride accumulation, depolarization block of

GABAergic neurons may serve a similar role in contributing to the breakdown of inhibition

(Meijer et al., 2015). Similarly, aside from hyperpolarizing currents, intense neuronal bursts can inac-

tivate sodium channels, quickly reducing neuronal excitability in a couple of seconds

(Fleidervish et al., 1996). Additional depressing mechanisms, including excitatory synaptic deple-

tion (Beverlin et al., 2012) and inhibitory cell recovery (Ziburkus et al., 2006) may collectively con-

tribute to tonic-clonic transitions, slowing, and termination. However, key similarities in seizure

dynamics observed across different brain regions and pathological conditions suggest that some

mechanisms may be universally present, and these are primary candidates for physiological pro-

cesses underlying seizure evolution. Developing therapies targeting at these mechanisms could

therefore achieve broad spectrum anti-seizure effects.

Our model demonstrates that the spatial distribution of recurrent inhibition can shape neural net-

work dynamics, explaining the variance of focal seizure onset subtypes. Seizures manifesting with

focal low voltage fast activity, a positive predictor of seizure freedom following resection of the focus

(Alarcon et al., 1995), occurred in the setting of relatively strong local inhibition in our model. In

contrast, relatively weak local inhibition allows seizure-related activity to spread quickly in the form

of periodic outward traveling waves moving ahead of the ictal wavefront (Figure 4B). These outward

traveling waves result in the EEG appearance of rhythmic discharging at seizure onset. Previous stud-

ies have proposed that this ‘hypersynchronous’ seizure onset pattern depends on long-range cortical

connections (Perucca et al., 2014; Weiss et al., 2016), or increased surrounding tissue excitability

(Wang et al., 2017). Our model instead highlights the role of localized inhibition and demonstrates

that both types of electrographic onset signatures can arise from focal sources, depending primarily

on how the ictal foci are established.
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The model predicts that physiological plasticity mechanisms (STDP in this model) can be hijacked

by pathological seizure dynamics (Mehta et al., 1993). The fast inward traveling waves during each

seizure create self-enhancing pathological centripetal connectivity, resulting in the emergence of

pre-ictal large amplitude LFP discharges that manifest as centripetally propagating waves. Such sin-

gle or repetitive sharp waves are often seen just prior to LVFA seizure onsets in clinical recordings

(Lee et al., 2000) and were also present in one of our human microelectrode recordings

(Figure 5D–E). We also reported similar spatial attraction of bursts in a rodent model during interic-

tal periods (Liou et al., 2019). Our model therefore offers a theoretical explanation that synaptic

plasticity results in spatial rewiring which increases seizure susceptibility and manifests as interictal

discharges or herald spikes that travel towards the site of eventual seizures. This model prediction

has potential implications in clinical seizure management. If patterns of interictal discharge traveling

waves could be used to reduce uncertainty about the location of subsequent seizures, they could be

used as a valuable seizure prediction and diagnostic tool. Furthermore, preventing or reversing trav-

eling wave-induced spatial rewiring may break the pathological, self-enhancing loop, eventually

leading to slowdown or reversal of seizure progression.

It has been proposed that seizure evolution has bistable endpoints, and that failure of seizure ter-

mination can be a stochastic event (Kramer et al., 2012). In the presence of noise, the cortex may

become trapped in the spiral wave scenario leading to an indefinitely persistent seizure, that is status

epilepticus. Animal experiments, both in brain slice (Huang et al., 2004) and in vivo (Petsche et al.,

1974; Huang et al., 2010) have shown that spiral waves can develop in acute seizure models. Multi-

electrode array recordings have also revealed spiral epileptiform discharges during feline picrotoxin-

induced seizures (Viventi et al., 2011). Such spiral waves have yet to be detected in humans, where

they may serve as a marker of risk for status epilepticus.

Our model predicts such spiral waves may be terminated by a brief synchronizing input. In agree-

ment with this prediction, synchronization has been shown to promote seizure termination in status

epilepticus patients (Schindler et al., 2007). Analogously, spiral waves also develop during ventricu-

lar fibrillation, a fatal form of cardiac arrhythmia. Delivering a brief pulse that widely activates cardio-

myocytes at once has been the standard therapy to rescue such patients. This suggests that a

stimulation strategy involving wide, synchronous excitatory input delivery may be an effective

approach for seizures characterized by spiral waves.

Although microelectrode recording plays an important role in validating our model, the key

dynamics which are commonly seen behaviorally and observed in macroelectrode recordings, in our

opinion, provides an equal, if not more important, support the generality of this model. The question

therefore arises why relatively few human microelectrode recordings have demonstrated the exis-

tence of ictal wavefronts. Our model, indeed, provides a straightforward explanation – a

microelectrode array not only needs to be positioned at a region that is recruited into the seizure

territory but also needs to be close enough to the onset spot. Otherwise, the seizure could have

evolved into its pre-termination stage, during which the seizure activity is still slowly propagating but

the wavefront has been annihilated.

Finally, this model is not built to exactly duplicate the microelectrode recordings. Hyper-tuning

the model parameters, in our opinion, is not fruitful as seizure dynamics vary significantly even within

the same patient from one episode to another. Instead, we focus on how the cellular neurophysio-

logical principles generate the key spatiotemporal dynamics in a larger scale. Similar bottom-up

approaches have also been adopted to study the effects of network connectivity on seizure initiation

and subtypes (Wang et al., 2017; Jacob et al., 2019). Alternatively, seizure EEG and ECoG data-

bases have allowed a top-down, machine learning-based approach (Karoly et al., 2018). The avail-

ability of macroelectrode data might reduce patient selection biases. However, making mechanistic

inference based on LFP-derived signals is challenging because of their limited resolution and sensi-

tivity to geometric configurations (Einevoll et al., 2013). In our perspective, the two mutually com-

plementary approaches are both indispensable in order to fully understand seizure dynamics.

Conclusions
We found that a surprisingly small number of well-understood, biophysically informed neuronal pro-

cesses can explain the complex, large-scale spatiotemporal evolution of focal seizures. Our reduc-

tionist approach provides insights into generalizable principles underlying complex seizure

dynamics, without the need to replicate the seizing brain neuron by neuron. The model’s seizures
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are notably consistent with both clinical semiology and microelectrode array recordings of human

seizure events, including the morphology of the ictal wavefront, distinct stages of pre-recruitment,

post-recruitment, and pre-termination, wide-ranging ictal and interictal discharges, development of

a fixed, chronic seizure focus, spontaneous seizure termination, and status epilepticus. These paral-

lels provide evidence that the topological pattern of a slowly propagating ictal wavefront with rhyth-

mic inward fast traveling waves should be considered the fundamental topology of neocortical focal

seizures. Additional investigation is needed to describe the potential impacts of subcortical involve-

ment, cross-hemisphere interaction, and cross-regional propagation.

Materials and methods

Data collection and processing
Electrophysiology data were obtained from patients with pharmacoresistant focal epilepsy undergo-

ing invasive EEG monitoring at Columbia University Medical Center as part of their clinical care, and

who were additionally enrolled in a study of microelectrode recordings of seizures (Schevon et al.,

2008; Waziri et al., 2009; Schevon et al., 2012). The Columbia University Medical Center Institu-

tional Review Board approved the research (protocol number: AAAB-6324), and informed consent

was obtained from participants prior to surgery. Only data from patients whose microelectrode

array-sampled cortical area were recruited into the ictal cores were included in the current study

(two patients, four seizures) (Schevon et al., 2012; Smith et al., 2016). Data from patients who

developed generalized seizures or whose array-sampled cortical area lack intense, phase-locked mul-

tiunit bursts or propagating ictal wavefront (ictal penumbra) was excluded from this study (five

patients). Data processing algorithms have been previously published. Briefly, multiunit spikes were

extracted from Utah array recordings by filtering the raw data between 300 and 3000 Hz and detect-

ing threshold crossings (�4 s.d.) (Quiroga et al., 2004). Multiunit firing rate was calculated by

convolving multiunit spike trains with Gaussian kernels (10 ms for fast dynamics and 100 ms for

examining expansion of seizure territory). All calculations were performed using in-house software

(Matlab, Mathworks, Natick, MA).

Rate model
A spatially homogeneous one-dimensional neural field is evenly discretized into 500 populations.

Within each population, a principle neuron, described by the following conductance model, is used

to approximate population dynamics:

C qV
qt
¼
P

i gi Ei�Vð Þþ I (1)

where V is membrane potential and C is cell capacitance. Four types of conductances (g) are mod-

elled: leak (gL), glutamatergic synaptic (gE), GABAergic synaptic (gI ), and slow afterhyperpolarization,

sAHP, (gK ) conductances. Ei represents each conductance’s reversal potential. Neurons receive

external current inputs, I, coming from outside the neural network. The inputs are divided into

deterministic, Id, and stochastic parts, Is. The stochastic part may be spatiotemporally white or col-

ored, with the latter generated by Ornstein-Uhlenbeck processes with amplitude ss and time and

spatial filter constants, ts and ls; respectively. Each population’s mean firing rate, f , is calculated by

passing the difference between the principle neuron’s membrane potential, V , and its firing thresh-

old, f, through a sigmoid function, f vð Þ ¼ fmax
1þexp �v=bð Þ, where v¼ V �f. b controls slope of the sigmoid

function, and fmax is the population’s maximal firing rate. The firing threshold is dynamic with its

steady state value linearly dependent on f with coefficient Df,

tf
qf

qt
¼ f0�fð ÞþDff (2)

where f0 represents the principle neuron’s baseline threshold.

The reversal potential of GABAergic conductance (gI ) depends on the principle neuron’s trans-

membrane chloride gradient. Specifically, ECl is calculated according to Nernst equation,

ECl ¼ �26:7 log
Clout½ �
Clin½ � mV. Intracellular chloride concentration is determined by two counteracting
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mechanisms: chloride current influx and a clearance mechanism with first-order kinetics (Zhu et al.,

2005),

q Cl½ �in
qt
¼� ICl

VdF
þ

Cl½ �in;eq� Cl½ �in
tCl

(3)

where ICl is chloride flow through GABA-A receptors, ICl ¼ gCl V �EClð Þ, Vd is volume of distribution

of intracellular chloride (Marchetti, 2005; Vladimirski et al., 2008), F is Faraday’s constant, tCl is

the time constant of the chloride clearance mechanism (Deisz et al., 2011), and Cl½ �in:eq is the equilib-

rium intracellular chloride concentration. The steady state of the sAHP conductance, gK , is also line-

arly dependent on firing rate via DK and evolves according to first-order kinetics,

tK
qgK
qt
¼�gK þDK f (4)

with tK is significantly larger than the time constant for threshold adaptation (of order seconds;

Table 1).

Inhibitory interneurons are simplified in this study. Their membrane potential dynamics is not spe-

cifically modeled, and they react instantly and with a monotonic dependence on their synaptic inputs

and only project to their corresponding excitatory neurons at the same location. With the help of

these instantly reacting interneurons, model neurons are computationally equivalent to emitting

both excitatory and inhibitory synaptic projections to each other. Notice that there is no long-range

projecting interneurons required (Figure 1A; Bressloff, 2014; Dayan and Abbott, 2001). Recurrent

excitation, gE; is computed by first convolving the normalized firing rate, A ¼ f

fmax
, with a spatial ker-

nel,
Rþ¥
�¥ A x� s; tð ÞKE sð Þds, where KE is a zero-mean Gaussian of variance s2

E. The results are also tem-

porally filtered to model synaptic delay (single exponential with time constant tE) and then

multiplied by the strength of recurrent excitation, gE
�
. Recurrent inhibition is calculated analogously

and can be partitioned into spatially localized and non-localized parts

KI ~ 1�gð ÞG 0;s2

I

� �

þgU (5)

where G is a Gaussian, U is spatially uniform over the whole neural field and g controls the relative

contribution of each component. Recurrent inhibition extends wider than recurrent excitation

(sI>sE). All models are simulated with dt=1 ms. All the model simulation codes are available

at https://github.com/jyunyouliou/LAS-Model (Liou, 2019; copy archived at https://github.com/eli-

fesciences-publications/LAS-Model).

Spiking model
2000 neurons with membrane potentials modeled as in Equation 1 are evenly distributed along a

bounded one-dimensional space. Spikes are emitted stochastically with instantaneous firing rate,

f ¼ f0exp
V�f
b

� �

, where f0 is a parameter and b quantifies the ’uncertainty’ of action potential thresh-

old. Numerically, spikes are generated by a Bernoulli process within each time step. If a spike is

emitted, the average membrane potential at the spike-emitting time step is taken to be the average

of the pre-spiking membrane potential and the peak of the action potential (+40 mV). After a spike,

the membrane potential is reset to 20 mV below the pre-spike membrane potential. During the fol-

lowing refractory period (tref ), membrane potentials are allowed to evolve but spiking is prohibited

by setting f ¼ 0. In analogy with Equation 2, the threshold increases by Df immediately after a spike,

and it exponentially decays with time constant tf. Chloride dynamics, sAHP conductance, and recur-

rent projections are modeled as described in the previous section.

Spike-timing dependent plasticity (STDP)
For simulations of one-dimensional spiking models in which network remodeling is considered,

recurrent excitation is subject to spike-timing dependent plasticity (STDP) (Song et al., 2000; Bi and

Poo, 1998). The recurrent synaptic weight matrix, WE, is partitioned into two parts:

WE ¼WC �WP (6)

where WC is the convolution matrix of the Gaussian excitatory kernel (KE), WP is a matrix
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representing synaptic weight adjustment according to the STDP rule, and � represents element-

wise multiplication (Toyoizumi et al., 2014). Every entry of WP is initiated at 1. After each model sei-

zure, the plastic part of the synaptic projection from neuron b to a, namely, the entry WP;ab; is

updated according to the STDP rule,

DWP;ab ¼WP;abþh
R

�a tð Þ�b tþ sð ÞKSTDP sð Þds (7)

where � represents the spike trains (delta-functions at the time of the spikes), h is the learning rate,

and KSTDP is an asymmetric exponential kernel with time constant tSTDP. The learning rate is set so

that a single seizure episode maximally changes synaptic weights by 1/3. The STDP-induced connec-

tivity change is reported as DWE, and the resultant connectivity is analyzed according to its spatial

property. Projections from neuron b are divided spatially into two parts: those going to neurons at

one side (WE;ab in which a) and those going to the other side (a). The spatial projection bias of neuron

b is defined as the difference between the summation of these two parts,
P

a<bWE;ab�
P

a>bWE;ab,

summed over the index a.

Local field potential (LFP)-like signal readout in the integrate-and-fire
spiking model
LFP-like signal is modeled by the reference weighted sum proxy method (Mazzoni et al., 2015).

Briefly, LFP is modeled as being proportional to a linear combination of excitatory and synaptic cur-

rents, IE � aII , where a = 1.65 and IE is temporally delayed by 6 ms, as suggested by Mazzoni et al.

Synaptic current contributed by neighboring cells decays exponentially with spatial constant sLFP =

0.025 (unit: normalized spatial scale).

Generalized model of exhaustible inhibition
The generalized model of exhaustible inhibition is modelled analogously to the rate model except

for equation 3. Instead of specifically considering transmembrane chloride dynamics, an abstract

dynamic variable, z, is used to quantify the effectiveness of inhibition: gI x; tð Þ  zgI x; tð Þ. The variable

z summarizes numerous factors that may contribute to inhibition effectiveness, including chloride

gradient, interneuron excitability, short-term plasticity, etc. It is modelled by first-order kinetics

tz
qz
qt
¼ z¥� z (8)

where its steady state, z¥, depends on the intensity of inhibition usage, z¥ ¼H gI:th� gIð Þ, where H is

a Heaviside step function. When inhibition is strong (above gI:th), its effectiveness decreases expo-

nentially with time constant tz.

Two-dimensional model
The 2-D rate model is a based on a bounded, circular-shape two-dimensional space. The simulation

neural network is generated from a 50 by 50 partitioned square space and then removing the popu-

lation that falls outside the round boundary (100 by 100 for high video quality in Figure 1—video 1

and Figure 1). Recurrent connections are calculated by two-dimensional Gaussian convolution in a

direct generalization of the 1D case. A round space is used to avoid inhomogeneous boundary

effects along specific directions.

Quantifying seizure activity in model and patient recordings
For rate models, the duration and spatial involvement of a model seizure is defined as the convex

hull constructed from space-time points at which population neuronal firing rate is more than 10% of

the maximal firing rate, Conv x; tð Þ:f x; tð Þ>0:1fmaxð Þ. Successful seizure onset is defined as when the

provoked seizure activity (f>0:1fmax) lasts more than 5 seconds without any requirement of excitatory

current input from outside the neural network. Seizures are partitioned into the following stages:

pre-ictal, ictal-tonic (after successful seizure onset), ictal-clonic (after emergence of repetitive burst-

ing activity), pre-termination (after disappearance of all tonic-firing regions), and post-ictal (after all

neural population firing rates drop below 0.1 fmax ). Transitions between stages are identified

visually.
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Traveling wave velocities are calculated by least squares linear regression (Liou et al., 2017). For

patient data, velocity is inferred by regressing multiunit spike timings against their spatial informa-

tion (significance level = 0.05). For rate models, timings of firing rate peaks are regressed (signifi-

cance level = 10
�3). Circular standard deviation (20-second window) is used to quantify traveling

wave directional variability (Berens, 2009).

Spiral waves centers are identified by finding phase singularity points (Iyer and Gray, 2001). At a

given time t, the instantaneous phase,  x; tð Þ, of a population is determined by the state of the mem-

brane potential – threshold plane.  x; tð Þ ¼ angle V x; tð Þ � Vm xð Þ þ i f x; tð Þ � fm xð Þð Þð Þ. Vm xð Þ and fm xð Þ

are the median voltage and threshold throughout the whole seizure episode at location x. Singular

points are found by looking for a closed-path, l, that circulates the immediately surrounding points,

where
H

l
r � dl ¼ �2p.
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