
THE IMPLICIT BIAS OF GRADIENT DESCENT ON
GENERALIZED GATED LINEAR NETWORKS

Samuel Lippl1, L.F. Abbott1, and SueYeon Chung1,2

1Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
2Center for Computational Neuroscience, Flatiron Institute, New York, NY
{sl4742,lfabbott}@columbia.edu,schung@flatironinstitute.org

ABSTRACT

Understanding the asymptotic behavior of gradient-descent training of deep neural networks is
essential for revealing inductive biases and improving network performance. We derive the infinite-
time training limit of a mathematically tractable class of deep nonlinear neural networks, gated linear
networks (GLNs), and generalize these results to gated networks described by general homogeneous
polynomials. We study the implications of our results, focusing first on two-layer GLNs. We then
apply our theoretical predictions to GLNs trained on MNIST and show how architectural constraints
and the implicit bias of gradient descent affect performance. Finally, we show that our theory captures
a substantial portion of the inductive bias of ReLU networks. By making the inductive bias explicit,
our framework is poised to inform the development of more efficient, biologically plausible, and
robust learning algorithms.

1 Introduction

Even after a task has been learned perfectly over a training set, learning typically continues to modify network parameters,
often indefinitely. Understanding the form of the infinite-time, asymptotic solution has important implications for
understanding the inductive bias of the network and improving its learning algorithm. For linear networks, y = 〈β, x〉,
Soudry et al. (2018) have shown that gradient descent for most common losses used for classification asymptotically
approaches a fixed margin classifier β with minimum L2 norm (or equivalently a maximum margin classifier with fixed
norm, that is, an SVM). Gunasekar et al. (2018b) extended this analysis to deep linear networks, showing that densely
connected linear networks converge to the SVM solution regardless of their depth.

The results of Soudry et al. (2018) and Gunasekar et al. (2018b) have been generalized to homogeneous nonlinear
predictors by Nacson et al. (2019) and Lyu and Li (2020). They demonstrate that gradient descent converges to a fixed
margin classifier that minimizes the L2 norm over all weights parameterizing the network. It remains unclear, however,
what effect this penalty on the weights has on the inductive bias of the network they parameterize.

To answer this question, we extend the approach by Gunasekar et al. (2018b) to a nonlinear class of networks, in which
β is a set of different predictors and the linear predictor for a specific input is selected by a context system. We assume
that β is constructed from homogeneous polynomials of a global pool of weights w and that the network learns by
gradient descent on w. Two interesting examples of such networks are gated linear networks (GLNs; Veness et al.,
2017) and what we call frozen-gate ReLU networks (FReLUs). Because we focus on families of gated predictors, our
approach covers certain models that escape the analysis by Nacson et al. (2019) and Lyu and Li (2020).

In this paper, we present several key findings.

• We derive and prove that gradient descent in GLNs asymptotically constructs a fixed margin solution with
minimum norm on the collection of context-dependent linear predictors β, but with two important modifications:
because all predictors are constructed from a shared set of weights, the norm of these vectors is minimized
subject to certain equivariance constraints. For the same reason, gradient descent operates on a set of weights
that are activated for multiple contexts and, as a consequence, the norm that β minimizes is different from the
usual L2 norm of an SVM.

ar
X

iv
:2

20
2.

02
64

9v
1

 [
st

at
.M

L
]

 5
 F

eb
 2

02
2

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

• Unlike prior work, we use the asymptotic limit of gradient descent to directly train SVMs that share the GLNs’
inductive bias. These models allow us to separately study how the equivariance constraints and gradient
descent’s implicit bias affect generalization.

• We then analyse the implicit bias of these GLNs in detail. Our analysis highlights that gradient descent
(without any explicit regularization) incentivizes higher similarity between predictors that share part of their
context and that this improves the GLN’s performance.

• Finally, we investigate the asymptotic learning behavior of ReLU networks by applying a similar approach
to FReLUs. We show that ReLU networks outperform GLNs in part because they can modify their context
throughout learning, whereas GLNs cannot.

Taken together, our results have implications for understanding learning in deep neural networks and draw a connection
between deep learning and SVMs that may inspire new and improved learning algorithms.

2 Gated Linear Networks

GLNs, like other deep neural networks, process their input through multiple layers of hidden units to compute their
output. However, while conventional deep neural networks attain expressivity through nonlinearities, a hidden unit
in a GLN computes its output without any nonlinearity. Instead, it attains expressivity by using different weights for
different regions of the input space.1

Consider an example: a two-dimensional input (Figure 1d) with two units in the first hidden layer (Figure 1a). The first
unit may use one set of weights to compute its output for x1 > 0, and a different set of weights to compute its output for
x1 ≤ 0 (as reflected by the two regions in Figure 1b and the two hyperplanes in Figure 1e). Similarly, the second unit
may choose its set of weights differently for x2 > 0 and x2 ≤ 0 (Figure 1c,f). As we combine multiple such hidden
units, the GLN becomes increasingly expressive. For example, if a single unit now reads out the two hidden units,
this readout will have learned a different linear predictor for all four quadrants (as reflected by the four hyperplanes in
Figure 1g).

More generally, a GLN learns a different weight vector, βγ , for each global context γ. Most inputs will not share this
global context, but will have the same local context for particular hidden units. This means that the GLN uses, and
therefore updates, overlapping sets of weights. For example, the bottom-right and top-right quadrant in Figure 1 share
the local context of the first hidden unit and therefore use and update the same weights for this unit. (Moreover, all
units in this example use the same set of weights for the second layer.) Compared to a shallow GLN using the same
partitioning of the input space (which will activate a non-overlapping set of weights for each context), we will see that
a deep GLN’s linear predictors are equivariant with respect to the local contexts they share, imposing architectural
constraints. These constraints change the network’s inductive bias by reducing the search space. In addition, we will
see that this equivariance changes the implicit bias of gradient descent.

This means that GLNs allow us to ask a fundamental question about gradient descent in deep networks: how do local
changes in the weights affect the inductive bias of the global network parameterized by these weights? GLNs are
conventionally trained using a local learning rule, where every hidden unit attempts to predict the output. However,
we are interested in them specifically because their particular parameterization allows us to exactly characterize their
asymptotic behavior under gradient descent.

3 Exact Asymptotic Behavior of Learning in Gated Linear Networks

3.1 Background: Learning in Linear Networks

To characterize the asymptotic behavior of learning in GLNs, we first turn to the asymptotic behavior of learning in
linear networks, as characterized by Soudry et al. (2018) and Gunasekar et al. (2018b). Soudry et al. were concerned
with gradient descent on a linearly separable dataset (x(n), y(n)) using the exponential loss exp(−y〈β, x〉), or a loss
that has a similar tail2 such as the cross-entropy ln(1 + exp(−y〈β, x〉)).

1Veness et al. (2017) motivate GLNs through opinion pooling. We omit this motivation in favor of a simpler (but equivalent)
description of the architecture. The motivation through opinion pooling also meant that they required their input to be scaled to
(0, 1), which usually amounted to a squashed version of the input (Veness et al., 2021). Since opinion pooling subsequently expands
these probabilities using the inverse sigmoid, this does not tend to be very different from the way we set up our GLNs.

2We call this class of loss functions exponential-like, see Definition B.10.

2

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

a

b c

d

1 2

e

1

2

f

22

21

12

11

g

Figure 1: Example GLN. a Sketch of the GLN’s structure. Every line represents a weight and units are linear. The
colors indicate different weights, which are chosen depending on the region in which the input is located, as illustrated
by panels b and c. For simplicity, we only use context-dependent weights for inputs to (not outputs from) the hidden
layer. d The input data with labels indicated by shading. e, f The two hidden units each learn two weight vectors (as
represented by the resulting hyperplanes). The weight is chosen depending on the context. g Output function. The
output combines both hidden units and therefore has weights in four different regions. Each weight (as represented by
the multicolored hyperplanes) is composed from two of the hidden units’ linear weights.

If, through gradient descent, the overall loss approaches zero, the linear predictor’s norm ‖β(t)‖2 must diverge. Thus,
all of the theorems we discuss (including ours) refer to the asymptotic direction that the weight vector converges to
(provided it converges to a fixed direction). In particular, if we define β̂ as the unit vector pointing in the same direction
as the asymptotically diverging vector β(∞), Soudry et al. (2018) show that β̂ is a maximum margin predictor, or
equivalently, that it is proportional to the solution of the optimization problem

min ‖β‖2, s.t. y(n)〈β, x(n)〉 ≥ 1. (1)

Using the Karush-Kuhn-Tucker (KKT) conditions (Karush, 1939; Kuhn and Tucker, 1951), this minimizing vector can
be written as

β̂ =
∑
n∈S

λny
(n)x(n), λn ≥ 0. (2)

Here, S is the set of data points for which the margin inequality is tight, i.e. S =
{
n|y(n)〈β, x(n)〉 = 1

}
. These are the

support vectors.

Gunasekar et al. (2018b) extend this result to deep linear networks for which the output can be written as 〈P(w), x〉,
where P is a polynomial mapping the weights w ∈ RP onto a linear predictor β ∈ RD. P and D are the number of
weights and the input dimension, respectively. For example, a densely connected linear network with two layers has
fw(x) = wT2 w1x, so P(w) = wT2 w1. They require that P is homogeneous, that is, P(αw) = ανP(w), where ν is the
degree of P (this excludes skip connections and bias units). For the example above, ν = 2. They prove that if w(t)

converges in direction to ŵ, ŵ is proportional to a solution of the optimization problem

min ‖w‖2, s.t. y(n)〈P(w), x(n)〉 ≥ 1. (3)

Whereas (1) directly minimizes the norm of the linear predictor, this problem penalizes the overall norm of internal
weights that parameterize that predictor. The fixed margin constraint, however, still operates on the linear predictor
P(w).

In contrast to the linear predictor, ŵ is not necessarily a global minimum of (3). Instead, stationarity is akin to a local
minimum in the context of minimizing a (potentially nonconvex) objective function, but additionally takes into account
the margin constraints. More specifically, stationarity requires that

ŵ = ∇wP(w)
∑
n∈S

λnynxn, λn ≥ 0, (4)

so the weights are still constructed from a nonnegative sum of support vectors. However, these support vectors
must be projected from the input space RD to the weight space RP . This is achieved by the polynomial’s Jacobian
∇wP(w) ∈ RP×D.

3

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

3.2 Extension to Generalized GLNs

In contrast to linear predictors and multi-layer linear networks, which are characterized by a single linear predictor,
GLNs are characterized by a different weight vector βγ for each global context γ. Each βγ is given by a polynomial
function of the weights w, and, if we leave out bias units beyond the first layer, this polynomial is homogeneous. Thus,
it may appear that we can extend the analysis by Gunasekar et al. (2018b) simply by applying their theorem to each
context-specific predictor βγ . However, predictors for different contexts are parameterized by an overlapping set of
weights, so this is not possible. This highlights the critical question we pose in our analysis: how do the shared weights
between different linear predictors affect the inductive bias of gradient descent?

Motivated by these considerations, we extend the previous analysis by considering a set of (global) contexts γ ∈ Γ, where
each context uses a different homogeneous polynomial Pγ to connect the global pool of weights to the context-specific
linear predictor. This means that our model

fw(x; γ) := 〈Pγ(w), x〉, (5)

depends on both the input x and the context γ. We call this class of functions Generalized Gated Linear Networks and,
in particular, it covers GLNs (without bias units).

We are then able to prove the following (see Appendix B.1 for assumptions and proof):

Theorem 3.1. Consider a dataset (x(n), y(n), γ(n)), where x(n) ∈ RD is the input, y(n) = {−1, 1} is the label, and
γ(n) is a global context. Then if w(t) converges to a fixed direction and the loss approaches zero, the limiting direction
ŵ is proportional to a stationary point of

min ‖w‖22, s.t. y(n)fw(x(n); γ(n)) ≥ 1. (6)

Here and throughout the article, ‖w‖22 denotes the sum of the squares of all the elements in all of the weight matrices of
the network. This stationary point ŵ is given by

ŵ =
∑
γ∈Γ

∇wPγ(w)
∑
n∈Sγ

λnynxn, λn ≥ 0, (7)

where Sγ is the context-specific set of support vectors. Just as in (4), we sum over this set of support vectors and project
it into the weight space RP . The stationary point ŵ is then given by the sum of these contextwise projections.

3.3 Proof Sketch

We provide here an outline of the proof of Theorem 3.1.3 Because this theorem is a relatively straightforward extension
of the theorems by Soudry et al. (2018) and Gunasekar et al. (2018b), we begin with an outline of their proofs.

3.3.1 Background: Sketch of Previous Proofs

Soudry et al. (2018) consider the loss function

L(β) =

N∑
n=1

exp(−yn〈β, xn〉), (8)

and gradient descent updates −ηt∇βL(β), where ηt > 0 is the learning rate. They then rely on two facts: that the
gradient descent updates converge to some limit direction and that early updates are eventually forgotten. These imply
that for large t, the weight direction approaches the limiting direction of the gradient descent updates.

Because

−∇βL(β) =

N∑
n=1

exp(−yn〈β, xn〉)ynxn, (9)

the weight exp(−‖β(t)‖2yn〈β̂, xn〉) will converge to zero as ‖β(t)‖2 increases. However, the weights of the data points
with the smallest margins, i.e. the support vectors, will converge to zero exponentially slower than all other data points.
Thus, the support vectors dominate the gradient’s direction and we can write

β̂ =
∑
n∈S

λnynxn, (10)

3A rigorous proof can be found in Appendix B.1.

4

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

which is (2). The individual values for λn are determined by the rate with which the loss of individual data points,
exp(−yn〈β, xn〉), approaches zero.

Gunasekar et al. (2018b) extend this result by decomposing the loss gradient for polynomial predictors into∇wL(w) =
∇wP(w)(−∇P(w)L(w)). The latter part, −∇P(w)L(w), corresponds to the gradient in the linear predictor. Even
though gradient descent is not performed on this linear predictor directly, the result of Soudry et al. (2018) generalizes:
if −∇P(w)L(w) converges to some limit direction, we can4 again infer that the support vectors will, at large times,
dominate this direction. This implies that we can approximate the loss gradient (and thus the weight directional limit)
as a sum of support vectors that is projected into the weight space by the Jacobian, as is given by (4).

3.3.2 Proof Sketch of Theorem 3.1

To extend these results to GLNs, we decompose the loss function into a sum over the losses specific to each context,

Lγ(w) =
∑

n:γ(n)=γ

exp(−yn〈Pγ(w), xn〉). (11)

The gradient can be decomposed similarly into

∇wL(w) =
∑
γ

∇wLγ(w). (12)

Extending the strategy of Gunasekar et al. (2018b) to a sum of loss functions, we asymptotically express w(t) as a
weighted sum of the individual limit directions,

w(t) ≈ ‖w(t)‖2
∑
γ

ξγ∇wPγ(w)(−∇Pγ(w)Lγ(w)). (13)

(The linear weights ξγ are necessary because the different components of the loss might be scaled differently.) The
contextwise gradients are again dominated by the support vectors and we can absorb ξγ into λn to arrive at (7).

4 Gated Linear Networks with Two Layers

Theorem 3.1 allows us to characterize the implicit bias of gradient descent. However, the minimized norm in this
theorem is that of the weights parameterizing the context-dependent linear predictors, not the predictors themselves.
To connect our results directly to the linear predictors, we consider a special case: GLNs of depth 2, with one output
neuron and one context for this output neuron. This means that we have two hyperparameters for our architecture: the
number of hidden units H in the first layer, and the number of contexts per hidden unit C. As a consequence, the global
context is given by γ ∈ {1, . . . , C}H . The GLN’s weights are given by

w = (w(1), w(2)), w(1) ∈ RH×C×D, w(2) ∈ RH , (14)
and the resulting linear predictors are

βγ =

H∑
h=1

w
(2)
h w

(1)
hγh
∈ RD. (15)

Throughout this exposition, we consider as a simple example H = C = 2, as in Figure 1.

As we noted in Section 2 and are now able to analyse in more detail, the parameterization of these networks affects
their inductive bias in two ways. First, it imposes architectural constraints on the resulting linear predictors βγ . This
manifests in an equivariance condition on neighboring predictors: the difference between two linear predictors is
invariant to the contexts they share. In the case of C = H = 2, this condition is given by

β21 − β22 = β11 − β12. (16)
As we can see, the two predictors on the left share the first unit’s local context and so changing this context does not
affect their difference. More generally (see Appendix B.2.1), this means that even though β specifies a set of CH linear
predictors, we can only choose (C − 1)H + 1 of them freely.

Second, whereas shallow networks minimize the L2 norm, gradient descent on deep GLNs implicitly minimizes a
different norm, which we call the GLN norm and denote by ‖ · ‖GLN. Importantly, this norm operates on the linear
predictors βγ instead of the underlying global pool of weights. We characterize ‖ · ‖GLN in Section 4.2. First, however,
we would like to illustrate why it is important to understand the difference between ‖ · ‖2 and ‖ · ‖GLN. To this end, the
next section illustrates that the ‖ · ‖GLN is not only more consistent with a GLN trained with gradient descent, but also
leads to better generalization on MNIST.

4Gunasekar et al. (2018a) prove this for the exponential loss and note that they expect the result to generalize to exponential-like
losses. We prove this generalization in Appendix B.3.

5

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

10%

20%

30%

S
V

M
 E

rr
o
r

10.0% 15.0%

GD−GLN Error

a

10%

20%

30%

10.0% 14.0% 18.0%

GD−GLN Error

In
co

n
si

st
e
n
cy

b

8.0%

12.0%

16.0%

20.0%

Shallow GLN Deep GLN
(GLN Norm)

Deep GLN
(L2 Norm)

Network Type

E
rr

o
r

o
n
 M

N
IS

T

c

10%

20%

30%

10 30 100

Nr. of Hidden Units

E
rr

o
r

o
n
 M

N
IS

T

d Training Size

500

1000

2000

Training

GD

SVM

Type of Deep GLN

GD−GLN

SVM−GLN

SVM−L2

Figure 2: Experiments on GLNs. a The error of the GD-GLN plotted against the error of the SVMs. The grey line
represents identical performance. b Inconsistency between the GD-GLN and the SVM plotted against the GD-GLN’s
error on MNIST. The grey line represents the inconsistency we would expect from a predictor with matched error rate,
but no further correlation with the network (see Footnote 6). c Performance of the best shallow and deep GLNs across
the number of contexts and (in the case of deep GLNs) hidden units. d Error of the SVMs and the GD-GLN plotted
against the number of hidden units. This plot depicts the networks with two contexts per hidden unit, see Figure 4 for
the networks with four contexts per hidden unit.

4.1 The GLN-Norm Improves Generalization Over the L2 Norm

Using our theorem, we can examine the impact of the architectural constraints on the deep GLN alone or together with
the resulting changes in implicit bias. We fit two support vector machines that respect the deep GLN’s architectural
constraints, minimizing either the L2 norm (SVM-L2) or the GLN norm (SVM-GLN) while maintaining a fixed margin.
Note that it is the second of these that reflects the full result of our theorem. Both optimization problems are convex, so
we can use convex optimization algorithms (Diamond and Boyd, 2016) and are guaranteed to find a global minimum.
In addition, we trained a GLN using gradient descent (GD-GLN) for 3200 steps in PyTorch (Paszke et al., 2019).

We trained all our models on MNIST (LeCun et al., 2010), which we turn into a binary classification problem by
grouping together the digits 0-4 and 5-9. Since we use full-batch convex optimization, we are restricted in the size of
our training data, using subsets of 500, 1000, and 2000 data points. To evaluate generalization, we use a validation
dataset with 12000 data points.

We consider GLNs with 10, 20, 50, and 100 hidden units and two or four contexts per hidden unit. We assigned contexts
by partitioning the input space using randomly sampled hyperplanes (as is illustrated in Figure 1), similar to Veness
et al. (2017). For every architecture, we used three random seeds to sample these hyperplanes. Figure 2 depicts the
mean and standard deviation across these three runs.5

Figure 2a compares the error of the GD-GLN with the SVMs that use the same contexts, number of hidden units, and
number of contexts per hidden units. SVM-GLN matches the GD-GLN in accuracy and even outperforms it slightly. In
contrast, SVM-L2 performs much worse and its performance is only weakly correlated with that of the GD-GLN with
matching hyperparameters.

Figure 2b depicts the proportion of the validation data for which the SVM predicts different labels than the GD-GLN
(inconsistency). If the GD-GLN had truly converged to the SVM-GLN, the inconsistency would be zero. Instead the
two predictors make inconsistent predictions on a substantial proportion (more than 10%) of the data. The inconsistency
tends to be lower than we would expect from two models with a matching error rate, but no further correlation (grey
line).6 It is also much lower than that between the SVM-L2 and the GD-GLN. Still, this result highlights a substantial
difference between the infinite-time predictor we derived and its finite-time counterpart (see Discussion).

Next, we looked at how different choices of depth and width interact with the implicit bias of gradient descent. Figure 2c
depicts the best-performing shallow and deep GLN (i.e. one and two layers) across all hyperparameters. This illustrates
that the architectural constraints paired with the L2 norm already allow the deep GLN to find better solutions than

5More details on the experimental setup can be found in Appendix A. Code to reproduce all experiments can be found at
https://github.com/sflippl/implicit-bias-glns.

6Suppose this error rate is p. Inconsistent labels mean that one model makes an error and the other does not. The probability of
this happening is 2p(1− p).

6

https://github.com/sflippl/implicit-bias-glns

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

the shallow GLN (which simply learns an SVM for each context). However, we again see that the SVM-GLN further
improves in performance over the SVM-L2. Isolating the effects that making the network deeper has on the functions it
can express, and on the solutions that gradient descent discovers in practice, would not have been possible without our
theory.

Finally, Figure 2d illustrates that the SVM-L2 performs much worse than the SVM-GLN for few hidden units in
particular. This panel also makes particularly apparent that the SVM-GLN tends to slightly outperform the GD-GLN
with the same hyperparameters. This is exactly what we would expect if the GD-GLN slowly converges to the
SVM-GLN and if its generalization performance improves throughout infinite training.

4.2 Understanding the GLN Norm

Having seen that it provides a useful inductive bias, we now turn to understanding the GLN norm. (15) makes apparent
that w only affects β through the auxiliary variable

ζhγh := w
(2)
h w

(1)
hγh

. (17)

For a fixed ζ, which choices of w minimize ‖w‖22? Intuitively, the L2 norm incentivizes us to distribute magnitudes
across parameters equally. Since ζh = w

(2)
h w

(1)
h , the two parameters should share the magnitude ‖ζh‖2 equally, i.e.

|w(2)
h | = ‖w

(1)
h ‖2 =

√
‖ζh‖2. (18)

This implies7 that

‖w‖22 =

H∑
h=1

‖w(1)
h ‖

2
2 + |w(2)

h |
2 ∝

H∑
h=1

‖ζh‖2, (19)

and thus

‖β‖GLN = min
ζ

H∑
h=1

‖ζh‖2, s.t. βγ =

H∑
h=1

ζhγh . (20)

This means that, when expressed in terms of ζ, the GLN norm takes on the form of a group lasso (Yuan and Lin, 2006).
Importantly, this norm is different from the L2 norm on ζ, which would involve summing up ‖ζh‖22 instead of ‖ζh‖2.
Because it computes the L2 norm of ζh, the GLN norm encourages the magnitude of this vector to be as small as
possible. But because it sums up the norm itself instead of its square, it also incentivizes setting entire components
ζh to zero, similar to how the L1 norm incentivizes setting single entries of a vector to zero. Put differently, the GLN
norm incentivizes sparsity in the components ζh. Because each component ζh encodes differences in the predictor
as a consequence of the different local contexts of the hidden unit h, this norm therefore encourages the set of linear
predictors to only learn differences between unit-specific contexts if this is actually useful.

We can further illustrate the difference between ‖ · ‖GLN and the L2 norm by considering the special case H = C = 2.
In this case,

‖β‖2GLN = ‖β‖22 + 1
2

∑
i,j

‖βij − βij‖2‖βij − βij‖2, (21)

where k denotes the local context opposite to k, i.e. k = 2 if k = 1 and k = 1 if k = 2. The GLN norm therefore
adds to the L2 norm a component that encourages neighboring predictors to be more similar. Without any explicit
regularization, the equivariant interactions of the GLN cause predictors that share parts of their global context (and thus
overlap in their weights) to become more similar to each other.

5 Frozen-Gate ReLU Networks

While we were motivated by understanding GLNs, Theorem 3.1 applies to other architectures as well. We apply the
theorem to a particular variation on ReLU networks that makes them generalized gated linear networks: frozen-gate
ReLU networks.

A single hidden unit in a ReLU network computes its activation as z = max(〈w, x〉, 0). That is, it first computes a
linear function and then sets any negative values to zero. For fixed weights, we can also implement this with a gated
linear predictor. More specifically, there are two contexts associated with the hidden unit, depending on the sign of
〈w, x〉. If 〈w, x〉 > 0, we use the weight w to compute the hidden unit. If 〈w, x〉 ≤ 0, we instead use a zero vector. The

7Technically, we have to check equivalence of the KKT conditions. We do so in Appendix B.2 and the same intuition applies.

7

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

S
V

M
 E

rr
or

5.0% 10.0% 15.0%
GD−ReLU Error

a

0.0%

5.0%

10.0%

15.0%

In
co

ns
is

te
nc

y
5.0% 10.0% 15.0%

GD−ReLU Error

b

5.0%

7.5%

10.0%

12.5%

GD SVM (HL) (LC) (RC) (GLN)
Training

E
rr

or
 o

n
M

N
IS

T

c

5.0%

10.0%

15.0%

10 30 100
Nr. of Hidden Units

E
rr

or
 o

n
M

N
IS

T

d Training Size

500

1000

2000

Type of Network

GD

SVM (Hidden Layer)

SVM (Learned Contexts)

SVM (Random Contexts)

Figure 3: Experiments on ReLU networks. a The error of the GD-ReLU plotted against the SVMs. The grey line
represents identical performance. b Inconsistency between the GD-ReLU and the SVMs plotted against the GD-ReLU’s
error on MNIST. The grey line represents the inconsistency we would expect from a predictor with matched error rate,
but no further correlation with the network (see Footnote 6). c Performance of the best ReLU networks as well as the
best deep GLN. To make sure the deep GLN does not have more parameters than the FReLU, we only use those GLNs
with two contexts and at most 50 hidden units. d Error of the SVMs and the GD-ReLU plotted against the number of
hidden units.

strategy of separating the gates in this way is similar to Lakshminarayanan and Vikram Singh (2020), who use it to
define a neural tangent kernel.

For fixed weights, this gated linear predictor is exactly equivalent to the ReLU network. However, we train it by
only changing the linear weights, freezing the gates that determine the context for each hidden unit. We thus call this
architecture frozen-gate ReLU networks (FReLUs). Throughout gradient descent, as the weights change but the contexts
remain fixed, the FReLU diverges from the standard ReLU network. To mitigate this divergence, we also consider
networks in which the weights are learned in the usual way for a period of time and then the gates are frozen to apply
the asymptotic analysis.

Using FReLUs as an approximation, can our theory shed light on the inductive bias of ReLU networks and how it is
different from that of GLNs? To investigate this, we first characterize the implicit bias of FReLUs. We then compare
FReLUs with ReLU networks trained with gradient descent.

5.1 The Implicit Bias of FReLUs

FReLUs are structured almost like GLNs, except that one of the two context-gated weight vectors is set to zero. It is
therefore not surprising that they also minimize a group Lasso norm. Specifically, for a given context γ ∈ {0, 1}H , we
can parameterize the resulting linear predictor as βγ =

∑
h:γh=1 ζh, where ζ ∈ RH×D is an auxiliary variable defined

similarly as in Section 4.2. FReLUs then minimize the norm

‖ζ‖FReLU :=

H∑
h=1

‖ζh‖2. (22)

Since the group Lasso encourages sparsity, this means that unless it would otherwise increase the network’s margin, ζh
will be low or set to zero. Since the ζh’s induce the kinks in the network’s separating hypersurface, this means that
gradient descent (again without any explicit regularization) encourages this surface to be as straight as possible.

5.2 Comparing ReLU networks and FReLUs

Can we use this insight to better understand generalization in ReLU networks trained with gradient descent? To
investigate this, we trained a ReLU network on the binary MNIST task using gradient descent (GD-ReLU). We trained
networks with 10, 20, 50, and 100 hidden units and used three random seeds for initialization. We then compared
each network to an SVM trained on ‖ · ‖FReLU using random contexts and a matching architecture (SVM-RC). This
network’s performance is already reasonably correlated with that of the matching GD-ReLU (Figure 3a). However, a
substantial proportion of its predictions do not match that of the GD-ReLU (Figure 3b), although they are still more
consistent than we would expect from an uncorrelated network with matching accuracy.

8

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

One reason that the SVM-RC may have a different inductive bias from the GD-ReLU is that the latter adapts its contexts.
To see if this can explain part of the disparity, we trained an SVM on ‖ · ‖FReLU using the context that GD-ReLU has
learned at the end of its training (SVM-LC). Indeed, this predictor generalizes better (Figure 3a) and is considerably
more consistent with the GD-ReLU (Figure 3b). However, an SVM trained on the hidden layer’s activation (SVM-HL)
still performs better (it even outperformed the GD-ReLU, Figure 3c) and is more consistent with the GD-ReLU. This is
not surprising as the SVM-HL has many fewer free parameters. Nevertheless, this highlights that there is a nontrivial
disparity between SVM-LC and GD-ReLU.

The fact that a FReLU with learned contexts outperforms one with random contexts indicates that learnable contexts
can be beneficial for a network. In particular, Figure 3c demonstrates that the SVM-LC outperforms a deep GLN of
similar size whereas a FReLU using random contexts does not (and is, in fact, slightly worse). Figure 3d shows that the
SVM-LC uniformly outperforms the SVM-RC for any number of hidden units.8 However, its disparity to the GD-ReLU
and the SVM-HL increases with increasing latent dimensions.

Our analysis demonstrates that the SVM-LC captures a substantial portion of the ReLU network’s inductive bias.
FReLUs therefore promise a new perspective on why ReLU networks generalize well: they can adapt their gating
function and use the resulting contexts as sparsely as possible. Still, the SVM-LC is also substantially different from the
GD-ReLU. This may be because of finite-time effects or because the fact that ReLU networks learn their weights and
gates in an entangled manner changes their inductive bias. We leave investigating this question (for example using the
results by Lyu and Li (2020)) to future work.

6 Discussion

In this article, we characterized the asymptotic behavior of gradient-descent training of Generalized Gated Linear
Networks. We used this theory to exactly characterize the norm minimized by a deep GLN and confirmed that
this allows us to train an SVM that captures its performance. This allowed us to tease apart the contributions of
architectural constraints and the implicit bias of gradient descent, demonstrating that the implicit bias is essential for
good generalization. We also confirmed that this allows us to capture a substantial portion of the inductive bias of ReLU
networks, attributing part of their generalization performance to the fact that they (a) learn their contexts and (b) use
them as sparsely as possible. This suggests that we might be able to take inspiration from ReLU networks to devise
context learning algorithms for GLNs. Conversely, a perspective that decomposes gradient-descent training in ReLU
networks into context and weight learning, may shed new light on their inductive bias.

Our experiments indicate our theory’s potential to help us understand the inductive bias of deep neural networks.
To realize this potential, we must address the fact that the infinite-time deep GLN still makes substantially different
predictions from its finite-time counterpart. This may be due to finite-time effects (Arora et al., 2019). Alternatively,
gradient descent and convex optimization may have converged to different subsets of the stationary points characterized
by our theory (Nacson et al., 2019).

Still, the fact that we can train an SVM that matches (and even outperforms) its corresponding deep GLN indicates
that our theory allows us to successfully disentangle the particular optimization procedure used from the inductive bias
it implements. This means that we can consider alternative learning algorithms that find the same stationary points,
but have other benefits, for example faster convergence, more efficient computations, or higher biological plausibility.
To this end, comparing the inductive bias of gradient descent to that of the local learning rule conventionally applied
to GLNs (for instance using the results by Ji and Telgarsky (2019)) may help us design new local learning rules that
generalize better. Finally, our framework connects networks trained with gradient descent to SVMs, which have formal
adversarial protections (Mangasarian, 1999; Gentile, 2003). This perspective may therefore allow us to learn more
robust networks, either by imposing the results of infinite-time training or by changing the inductive bias.

Acknowledgements

We thank David Clark, Tiberiu Tesileanu, and Jacob Portes for helpful comments on an earlier version of the manuscript.
We thank David Clark and Elom Amematsro for helpful discussions. Research was supported by NSF NeuroNex Award
(DBI-1707398), the Gatsby Charitable Foundation (GAT3708), and the Simons Collaboration for the Global Brain.

8Missing data points indicate that constraints could not be satisfied, or that the optimizer did not converge in the allocated number
of iterations (see Appendix A).

9

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

References
Agrawal, A., Verschueren, R., Diamond, S., and Boyd, S. (2018). A rewriting system for convex optimization problems.

Journal of Control and Decision, 5(1):42–60.
Arora, S., Cohen, N., Hu, W., and Luo, Y. (2019). Implicit Regularization in Deep Matrix Factorization. In Wallach, H.,

Larochelle, H., Beygelzimer, A., Alché-Buc, F. d., Fox, E., and Garnett, R., editors, Advances in Neural Information
Processing Systems, volume 32. Curran Associates, Inc.

Diamond, S. and Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization. Journal
of Machine Learning Research, 17(83):1–5.

Domahidi, A., Chu, E., and Boyd, S. (2013). ECOS: An SOCP solver for embedded systems. In European Control
Conference (ECC), pages 3071–3076.

Gentile, C. (2003). The Robustness of the p-Norm Algorithms. Machine Learning, 53(3):265–299.
Grant, M., Boyd, S., and Ye, Y. (2006). Disciplined Convex Programming. In Liberti, L. and Maculan, N., editors,

Global Optimization: From Theory to Implementation, pages 155–210. Springer US, Boston, MA.
Gunasekar, S., Lee, J., Soudry, D., and Srebro, N. (2018a). Characterizing Implicit Bias in Terms of Optimization

Geometry. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pages 1832–1841. PMLR.

Gunasekar, S., Lee, J. D., Soudry, D., and Srebro, N. (2018b). Implicit Bias of Gradient Descent on Linear Convolutional
Networks. In Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Garnett, R., editors,
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV).

Ji, Z. and Telgarsky, M. (2019). The implicit bias of gradient descent on nonseparable data. In Beygelzimer, A. and
Hsu, D., editors, Proceedings of the Thirty-Second Conference on Learning Theory, volume 99 of Proceedings of
Machine Learning Research, pages 1772–1798. PMLR.

Karush, W. (1939). Minima of functions of several variables with inequalities as side conditions. PhD Thesis, Thesis
(S.M.)–University of Chicago, Department of Mathematics, December 1939.

Kuhn, H. and Tucker, A. (1951). Nonlinear Programming. In Proceedings of the Second Berkeley Symposium on
Mathematical Statistics and Probability, pages 481–492. University of California Press.

Lakshminarayanan, C. and Vikram Singh, A. (2020). Neural Path Features and Neural Path Kernel : Understanding
the role of gates in deep learning. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H., editors,
Advances in Neural Information Processing Systems, volume 33, pages 5227–5237. Curran Associates, Inc.

LeCun, Y., Cortes, C., and Burges, C. (2010). MNIST handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2.

Lyu, K. and Li, J. (2020). Gradient Descent Maximizes the Margin of Homogeneous Neural Networks. In International
Conference on Learning Representations.

Mangasarian, O. L. (1999). Arbitrary-norm separating plane. Operations Research Letters, 24(1):15–23.
Nacson, M. S., Gunasekar, S., Lee, J., Srebro, N., and Soudry, D. (2019). Lexicographic and Depth-Sensitive Margins in

Homogeneous and Non-Homogeneous Deep Models. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 4683–4692. PMLR.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L.,
Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,
and Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Wallach, H.,
Larochelle, H., Beygelzimer, A., Alché-Buc, F. d., Fox, E., and Garnett, R., editors, Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc.

Pedersen, T. L. (2020). patchwork: The Composer of Plots.
R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foundation for Statistical

Computing, Vienna, Austria.
Saxe, A., McClelland, J., and Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of learning in deep linear

neural networks. International Conference on Learning Represenatations 2014.
Soudry, D., Hoffer, E., Nacson, M. S., Gunasekar, S., and Srebro, N. (2018). The Implicit Bias of Gradient Descent on

Separable Data. Journal of Machine Learning Research, 19(70):1–57.

10

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2020). OSQP: an operator splitting solver for
quadratic programs. Mathematical Programming Computation, 12(4):637–672.

Veness, J., Lattimore, T., Bhoopchand, A., Grabska-Barwinska, A., Mattern, C., and Toth, P. (2017). Online Learning
with Gated Linear Networks. arXiv. arXiv: 1712.01897.

Veness, J., Lattimore, T., Budden, D., Bhoopchand, A., Mattern, C., Grabska-Barwinska, A., Sezener, E., Wang, J., Toth,
P., Schmitt, S., and Hutter, M. (2021). Gated Linear Networks. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(11):10015–10023.

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67. eprint:
https://rss.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-9868.2005.00532.x.

11

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

A Experimental Setup

A.1 Training the Finite-Time Predictors

We train the models that use gradient descent with PyTorch (Paszke et al., 2019) and PyTorch Lightning (https:
//github.com/PyTorchLightning/pytorch-lightning) in Python 3.9. We train all models for 1600 steps with
a learning rate of 0.04 and for another 1600 steps with a learning rate of 0.01.

For the deep and shallow GLNs, we use orthogonal initialization (Saxe et al., 2014) for the weights and determine the
contexts using hyperplanes, following Veness et al. (2017). In particular, we randomly sample hyperplanes w ∈ RD in
the input space using a normal distribution with mean µ = 0 and standard deviation σ = 36. We randomly sample a
cutoff b ∈ R with mean µ = 0 and standard deviation σ = 9. The corresponding context function is then given by

C(x) =

{
1 if wTx− b ≥ 0,

0 if wTx− b < 0.

To generate a context function with more than two possible contexts, we compose multiple hyperplanes, mapping each
unique region produced by these multiple hyperplanes to its own context. Unlike Veness et al. (2017), we additionally
use a cutoff b that makes C balanced, i.e. maps half the training data to 1 and half the training data to 0. We use this
median cutoff in the results presented in the main article. Appendix C.1 discusses results on a random cutoff.

For the ReLU networks, we use Kaiming normal initialization (He et al., 2015).

A.2 Convex Optimization

To solve the convex optimization problems, we used the cvxpy library in Python (Diamond and Boyd, 2016; Agrawal
et al., 2018), which follows the paradigm of Disciplined Convex Programming (DCP) (Grant et al., 2006). DCP follows
a set of conventions on how to formalize convex optimization problems. We trained the shallow GLN as well as the
SVM-L2 and SVM-HL using the OSQP algorithm (Stellato et al., 2020) with at most 10,000 iterations. We trained the
SVM-GLN, SVM-RC, and SVM-LC using the ECOS algorithm (Domahidi et al., 2013) with at most 200 iterations.
We sampled the random contexts for the FReLUs using the same method as for the GLNs with median initialization.

Whereas the other architectures were easily translated into the DCP conventions, the SVM-L2 predictor required a bit
more attention. More specifically, it is more natural to express the architectural constraints by specifying ζ instead of β
and so we wanted to compute the equivalent of ‖β‖22 for ζ. It turns that this is given by

‖Aζ‖22, (Aζ)hc :=
1

HC

∑
h′,c′

ζh′c′ −
∑
c′

ζhc′ + Cζhc, (23)

which we prove below.

Proof. We have to prove that ‖β‖22 = ‖Aζ‖22. Since β satisfies our architectural constraints, we know that there is a ζ
such that

βγ =

H∑
h=1

ζhγh

for all γ. Thus,

‖β‖22 =
∑

γ∈{1,...,C}H

∥∥∥∥∥
H∑
h=1

ζhγh

∥∥∥∥∥
2

2

=
∑

γ∈{1,...,C}H

H∑
h,h′=1

〈ζhγh , ζh′γh′ 〉 = ∆1 + ∆2,

where we define ∆1, ∆2 by changing the order of the summation operators and splitting the summation over h and h′
into the case h = h′ (for ∆1) and h 6= h′ (for ∆2), i.e.

∆1 =

H∑
h=1

∑
γ∈{1,...,C}H

‖ζhγh‖22, ∆2 =
∑
h 6=h′

∑
γ∈{1,...,C}H

〈ζhγh , ζhγ′h〉.

We can now simplify these equations by noting that ζhγh is invariant to all but one dimension of our iterator γ:

∆1 = CH−1
H∑
h=1

C∑
c=1

‖ζhc‖22, ∆2 = CH−2
∑
h6=h′

C∑
c,c′=1

〈ζhc, ζh′c′〉.

12

https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

Defining

M ∈ R(H×C×D)2 , M hcd
h′c′d′

:= δdd′ (Cδhh′δcc′ + (1− δhh′)) = δdd′ (1 + C(δhh′δcc′)− δhh′) , (24)

we can rewrite this norm as

‖β‖22 = CH−2
∑
hcd
h′c′d′

M hcd
h′c′d′

ζhcdζh′c′d′ .

All that remains to show is that A2 = M (note that A is symmetric).

To show this, we make a parameterized guess, following the ansatz

A ∈ R(H×C×D)2 , A hcd
h′c′d′

= δdd′ (α+ βδhh′ + γδcc′ + κδhh′δcc′)

We thus require

M hcd
h′c′d′

=
∑

h′′,c′′,d′′

A hcd
h′′c′′d′′

Ah′′c′′d′′
h′c′d′

= δdd′ (HCα+ Cβδhh′ +Hγδcc′ + κδhh′δcc′) ,

and therefore
α = 1

HC , β = −1, γ = 0, κ = C. (25)

A.3 Data Analysis

We performed all data analysis in R. (R Core Team, 2021) All figures (except for Figure 1a, for which we used Inkscape)
were created using ggplot2 (Wickham, 2016) and patchwork (Pedersen, 2020). In the supplementary material, we
provide an R package that contains all data as well as the code reproducing all figures.

B Proofs

B.1 Proof of Theorem 3.1

We begin by restating the theorem:

Theorem 3.1. Consider a dataset (x(n), y(n), γ(n)), where x(n) ∈ RD is the input, y(n) = {−1, 1} is the label, and
γ(n) is a global context. Then if w(t) converges to a fixed direction and the loss approaches zero, the limiting direction
ŵ is proportional to a stationary point of

min ‖w‖22, s.t. y(n)fw(x(n); γ(n)) ≥ 1. (6)

The theorem is operating under the following fundamental assumptions:
Assumption B.1. ` is an exponential-like loss.

Assumption B.2. L(w(t))→ 0.

Assumption B.3. w(t) converges in direction to some ŵ.

In addition, we consider two assumptions excluding pathological cases, Assumptions B.4 and B.5, which we introduce
at the point where they become necessary.

To prove the theorem, we must demonstrate (1) primal feasibility and (2) stationarity.

Primal feasibility simply involves proving that there is some w∗ = αŵ such that

y(n)fw∗(x
(n); γ(n)) ≥ 1.

This is fairly straightforward, with a minor complication being created by the fact that different polynomials Pγ may
have different degrees νγ .

For any given γ, we define the minimal margin of this context’s data,

mγ := min
n:γ(n)=γ

y(n)fŵ(x(n); γ). (26)

13

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

By assumption, we know that L(w(t)) → 0, and so we are guaranteed that for all n and large enough t,
y(n)fw(t)(x(n)) > 0. However, we wish to exclude the pathological case, in which the margin of the normalized weight
ŵ(t) still converges to 0 instead of a positive value. This motivates the following assumption:

Assumption B.4. For all n, y(n)fŵ(x(n); γ(n)) > 0.

From this assumption, we know that for all γ, mγ > 0. Scaling w by some α results in the changed margin

y(n)fαŵ(x(n); γ(n)) = α
ν
γ(n) y(n)fŵ(x(n); γ(n)).

So for each γ, we can set the minimal margin to 1 by scaling w by m−1/νγ
γ . Since we want to make sure that the margin

for each context is not smaller than 1, we scale w by

α := max
γ

m−1/νγ
γ , (27)

setting w∗ := αŵ. Thus, we know that w∗ satisfies the margin constraints (i.e. primal feasibility) and are left to check
whether it also satisfies stationarity.

To demonstrate stationarity, we follow the same strategy as Gunasekar et al. (2018b). To a large extent, we can make
arguments that are exactly analogous to theirs and we refer to their proof in these cases. For each γ, we consider
the resulting sequence of linear predictors β(t)

γ = Pγ(w(t)). We would like to apply Lemma B.11 (which allows
us to consider any exponential-like loss, in contrast to Gunasekar et al. (2018b)). For this purpose, we consider the
contextwise loss function

Lγ(βγ) =
∑

n:γ(n)=γ

`(y(n)〈βγ , x(n)〉). (28)

Since the sum of all these loss functions converges to zero and all Lγ or nonnegative, we immediately know that
L(β(t))→ 0. Analogous to Gunasekar et al. (2018b), we also know that β(t)

γ /‖β(t)
γ ‖2 → β̂, where

β̂ :=
P(ŵ)

‖P(ŵ)‖
. (29)

All that is left is to exclude pathological cases where the gradient of the loss in the linear predictor does not converge:

Assumption B.5. For all γ,∇βLγ(β
(t)
γ) converges in direction to some ẑγ .

This allows us to apply Lemma B.11 and infer that for each γ,

ẑγ =
∑
n∈Sγ

λnynxn, λn ≥ 0. (30)

The gradient update ∆w(t) = ηt∇wL(w) can be decomposed into contextwise updates

∆w(t)
γ = ηt∇wLγ(w). (31)

Similarly, we write
w(t)
γ := w(0)/|Γ|+

∑
γ

∆w(t)
γ , (32)

which implies that
w(t) =

∑
γ

w(t)
γ (33)

(We could distribute the initial value w(0) =
∑
γ∈Γ w

(0)/|Γ| in different ways and only write it this way for conve-
nience’s sake. If Γ is an infinite set, we leave away all empty contexts without loss of generalization.) From Gunasekar
et al. (2018b), equation (24), we know that we can write

w(t)
γ =

(
∇wPγ(w)ẑ + δ(t)

γ

)∑
u<t

ηupγ(u)g(u)νγ−1, (34)

where
p(u) = ‖z(t)

γ ‖2, g(u) = ‖w(t)‖2, (35)

14

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

and δ(t)
γ → 0 is analogous to δ(t)

3 in their article.

For the purpose of a shorter notation, we now define

k(t)
γ :=

∑
u<t

ηupγ(u)g(u)νγ−1, (36)

which means that

w(t) =
∑
γ∈Γ

k(t)
γ

(
∇wPγ(w(∞))ẑ(∞) + δ(t)

γ

)
. (37)

This k(t)
γ serves two purposes: it encodes the fact that w(t) diverges (since k(t)

γ diverges), and it specifies the scale of
contributions to each contextwise gradient. We thus disentangle these two purposes by defining the overall scale

k(t) :=
∑
γ∈Γ

k(t)
γ , (38)

and the weights

k̂(t)
γ := k(t)

γ /k(t). (39)

(Since all k(t)
γ diverge, we consider a large enough t such that all k(t)

γ > 0.) Defining

δ̃(t) =
∑
γ∈Γ

k̂(t)
γ δ(t)

γ → 0, (40)

we can rewrite w(t) in a way that makes it more obvious how normalization will affect it:

w(t) = k(t)

(∑
γ

k̂(t)
γ ∇wPγ(w(∞))ẑ(∞) + δ̃(t)

)
. (41)

We thus know that the normalized sequence of weights is given by

w(t)

‖w(t)‖
=

∑
γ k̂

(t)
γ ∇wPγ(w(∞))ẑ(∞) + δ̃(t)∥∥∥∑γ k̂
(t)
γ ∇wPγ(w(∞))ẑ(∞) + δ̃(t)

∥∥∥ . (42)

We are left with two observation that will allow us to determine the limit of this equation and thus prove the theorem.
First, we can infer, analogous to Claim 1 in Gunasekar et al. (2018b),∥∥∥∥∥∑

γ

k̂(t)
γ ∇wPγ(w(∞))ẑ(∞)

∥∥∥∥∥ > 0, (43)

for large enough t that all k̂(t)
γ > 0. Second, we must consider the limit of k̂(t)

γ . Here, we face a small complication
introduced by the context-gated setup: though we know that k̂(t)

γ is upper bounded by 1, we do not know whether it
converges. It is possible, for instance, that this sequence oscillates between two different values. However, because the
sequence is bounded, we know that it has a convergent subsequence (ts)s∈N. (For example, this subsequence may take
into account only one of the two values between which k̂(t)

γ may oscillate.) We choose some bounded subsequence and
define the limit

k̂(ts)
γ → k̂γ . (44)

These two observations together allow us to infer that

ŵ = lim
t→∞

w(t)

‖w(t)‖
=

∑
γ k̂γ∇wPγ(ŵ)ẑ∥∥∥∑γ k̂γ∇wPγ(ŵ)ẑ

∥∥∥ . (45)

This is clearly a linear sum of support vectors and since w∗ is a positive scaling of ŵ, it, too can be written as a linear
sum of support vectors, proving the theorem.

15

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

B.2 The Inductive Bias of GLNs with Two Layers

B.2.1 Architectural Constraints

We stated in the main article that architectural constraints are given by the fact that the difference between two predictors
is invariant to the contexts they share, and that for a given architecture, we can choose exactly (C − 1)H + 1 linear
predictors freely. Lemma B.6 formalizes the first statement, Lemma B.7 the second one.
Lemma B.6. Consider two pairs of context γ(1), γ(2) and γ̃(1), γ̃(2). We call this pair different only in contexts they
share if the following two conditions are true:

1. If γ(1)
h = γ

(2)
h , then γ̃(1)

h = γ̃
(2)
h ,

2. If γ(1)
h 6= γ

(2)
h , then γ(i) = γ̃(i) for i = 1, 2.

For any such pair of pairs,
βγ(2) − βγ(1) = βγ̃(2) − βγ̃(1) . (46)

Proof. We know that

βγ(2) − βγ(1) =

H∑
h=1

w
(2)
h

(
w

(1)

hγ
(2)
h

− w(1)

hγ
(1)
h

)
. (47)

If we prove that
w

(1)

hγ
(2)
h

− w(1)

hγ
(1)
h

= w
(1)

hγ̃
(2)
h

− w(1)

hγ̃
(1)
h

, (48)

for all h, we have proven the lemma.

To prove the equation, we consider two cases. If γ(1)
h = γ

(2)
h , both sides of the equation are zero. If γ(1)

h 6= γ
(2)
h , then

w
(1)

hγ
(i)
h

= w
(1)

hγ̃
(i)
h

for i = 1, 2 and again, the equation holds true.

Lemma B.7. Consider the set of contexts Γ, where at most one hidden unit’s local context is different from one, γh 6= 1.
We can pick w to parameterize an arbitrary set of linear predictors βγ for all γ ∈ Γ and this set, in turn, uniquely
determines all other linear predictors. This means we can pick exactly |Γ| = (C − 1)H + 1 linear predictors freely.

Proof. Consider an arbitrary set of predictors βγ , γ ∈ Γ. Let us denote by γ1 = (1)h=1,...,H the vector where all
contexts are 1 and by γch = (1 + (c− 1)δh′h)h′=1,...,H the vector where all entries are 1 except for the h-th context,
which is c. Any γ ∈ Γ can be expressed as either γ1 or γhc.

We then define the weights w(1) ∈ RC×H×D as

w
(1)
11 := βγ1 , ∀c>1w

(1)
c1 := βγc1 ,

∀h>1w
(1)
1h := 0, ∀c>1w

(1)
ch := βγch − βγ1 ,

(49)

and w(2) = (1)h=1,...,H .

Using this definition, we can see that the predictor β̃ parameterized by w is identical to β for all γ ∈ Γ:

β̃γ1 = w
(2)
1 w

(1)
11 = βγ1 ,∀c>1β̃γc1 = w

(2)
1 w

(1)
c1 = βγc1 ,

∀h>1∀c>1β̃γch = w
(1)
11 + w

(1)
ch = βγch .

We now show that, given this set of predictors, we can use (46) to define all other predictors. We use finite induction:
consider some h = 1, . . . ,H and suppose that we have already uniquely defined all βγ if γk = 1 for all k ≥ h (for
h = 1, this is trivially true as γ1 ∈ Γ). For the induction, we must uniquely define any context γ where γh = c 6= 1 and
γk = 1 for all k ≥ h+ 1.

For any such context we consider the pair of contexts γ, γch and γ̃, γ1, where γ̃k = γk for all k 6= h and γ̃h = 1. Since
γch, γ1 ∈ Γ, βγch , βγ1 have already been defined. Since γ̃k = 1 for all k ≥ h, βγ̃ has been defined by the induction’s
assumption. Since these pairs are different only in contexts they share (namely only in dimension h), this immediately
implies that

βγ = βγch + βγ̃ − βγ1 , (50)
is uniquely defined as well.

16

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

B.2.2 The GLN Norm

To prove (20), we prove the following statement:

Proposition B.8. For a deep GLN with two layers, under Assumptions B.1 to B.5, β̂ is proportional to a minimum of

‖β‖GLN, s.t. y(n)〈βγ(n) , x(n)〉 ≥ 1, (51)

where

‖β‖GLN = min
ζ

H∑
h=1

‖ζh‖2, s.t. βγ =

H∑
h=1

ζhγh . (20 restated)

Proof. Since w converges in direction, ζ also converges in direction. We aim to prove that its limit direction, ζ̂, is
proportional to a stationary point of

H∑
h=1

‖ζh‖2, s.t. y(n)

〈
H∑
h=1

ζhγh , x
(n)

〉
≥ 1 (52)

Since (52) is convex (because its objective function is convex and its constraints are linear), this will be sufficient to
prove the proposition.

From Theorem 3.1, we know that ŵ is proportional to a stationary point of (6) and can therefore be characterized as

ŵ
(1)
ch = ŵ

(2)
h

∑
γ:γh=c

φγ , ŵ
(2)
h =

C∑
c=1

〈
ŵ

(1)
ch ,

∑
γ:γh=c

φγ

〉
. (53)

,

where φγ is the sum of support vectors for a given context:

φγ =
∑
n∈Sγ

λnx
(n)y(n). (54)

ŵ parameterizes ζ̂ as
ζ̂h = ŵ

(2)
h ŵ

(1)
h ∈ RC×D (55)

A stationary point of (52) is characterized by the equation

ζhc = ‖ζh‖2
∑

γ:γh=c

φγ , (56)

so since the margin constraints are equivalent, we must only show that ζ̂ satisfies (56).

If ŵ(2)
h = 0, ζ̂h = 0 and (56) holds true. We therefore assume that ŵ(2)

h 6= 0. From (53), we can infer that

ŵ
(2)
h = ŵ

(2)
h

C∑
c=1

∥∥∥∥∥ ∑
γ:γh=c

φγ

∥∥∥∥∥
2

2

,

which, since ŵ(2)
h 6= 0, implies that

C∑
c=1

∥∥∥∥∥ ∑
γ:γh=c

φγ

∥∥∥∥∥
2

2

= 1. (57)

That in turn implies that

‖ŵ(1)
h ‖

2
2 =

C∑
c=1

‖ŵ(1)
hc ‖

2
2 =

(
ŵ

(2)
h

)2 C∑
c=1

∥∥∥∥∥ ∑
γ:γh=c

φγ

∥∥∥∥∥
2

2

=
(
ŵ

(2)
h

)2

, (58)

17

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

and therefore

ζ̂hc = ŵ
(2)
h ŵ

(1)
hc =

(
ŵ

(2)
h

)2 ∑
γ:γh=c

φγ = |ŵ(2)
h |‖ŵ

(1)
h ‖2

∑
γ:γh=c

φγ = ‖ζ̂h‖2
∑

γ:γh=c

φγ ,

which proves (56).

To prove the reverse direction, we must show that if ζ̂ satisfies (56), we can find a ŵ satisfying (53) such that
ζ̂h = ŵ

(2)
h ŵ

(1)
h . If ζ̂h = 0, we define ŵ(2)

h = 0 and ŵ(1)
h = 0. We therefore assume ζ̂h 6= 0 and define

ŵ
(1)
h := ζ̂h/

√
‖ζ̂h‖2, ŵ

(2)
h :=

√
‖ζ̂h‖2. (59)

Clearly this parameterizes ζ and so all that is left to show is that it satisfies (53). (56) implies

ŵ
(1)
h = ζ̂h/

√
‖ζ̂h‖2 =

√
‖ζ̂h‖2

∑
γ:γh=c

φγ = w
(2)
h

∑
γ:γh=c

φγ .

Moreover, (56) immediately implies (57) and thus

C∑
c=1

〈
ŵ

(1)
hc ,

∑
γ:γh=c

φγ

〉
=

1√
‖ζ̂h‖2

C∑
c=1

〈
ζ̂hc,

∑
γ:γh=c

φγ

〉
=

1√
‖ζ̂h‖2

C∑
c=1

〈
‖ζ̂h‖2

∑
γ:γh=c

φγ ,
∑

γ:γh=c

φγ

〉
=

√
‖ζ̂h‖2

C∑
c=1

∥∥∥∥∥ ∑
γ:γh=c

φγ

∥∥∥∥∥
2

2

=

√
‖ζ̂h‖2 = w

(2)
h ,

which proves (53) and thus the proposition.

Note that we can prove the inductive bias of FreLUs (22) in an analogous manner.

We now prove the following statement:
Proposition B.9. For C = H = 2, the norm is given by

‖β‖2GLN = (‖β11 − β12‖2 + ‖β11 − β21‖2)
2

+ ‖β12 + β21‖22. (60)

Equivalently,
‖β‖2GLN = ‖β‖22 + 1

2

∑
i,j

‖βij − βij‖2‖βij − βij‖2, (21 restated)

where k = 2 if k = 1 and k = 1 if k = 2.

Proof. We must minimize
min

ζ∈R2×2×D
‖ζ1‖2 + ‖ζ2‖2, s.t. βij = ζ1i + ζ2j , (61)

for i, j = 1, 2. For any ζ11, β will uniquely determine ζ such that the constraint holds. More specifically,

ζ21 = β11 − ζ11, ζ22 = β12 − ζ11, ζ12 = β21 − ζ21 = β21 − β11 + ζ11.

Thus we must minimize the function

g(ζ11) := ‖ζ1‖2 + ‖ζ2‖2 =
√
g1(ζ11) +

√
g2(ζ11),

g1(ζ11) := ‖ζ11‖22 + ‖β21 − β11 + ζ11‖22,
g2(ζ11) := ‖β11 − ζ11‖22 + ‖β12 − ζ11‖22,

(62)

where we leave the dependence of g on β implicit to simplify the notation. g is convex and thus minimized by ζ11 if
and only if

0 =
∂g

∂ζ11
(ζ11),

18

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

which is equivalent to

0 =
√
g1(ζ11)

∂g2

∂ζ11
(ζ11) +

√
g2(ζ11)

∂g1

∂ζ11
(ζ11) =√

g1(ζ11)(2ζ11 − β11 − β12) +
√
g2(ζ11)(2ζ11 + β21 − β11).

This means that

2g(ζ11)ζ11 =
√
g1(ζ11)(β11 + β12) +

√
g2(ζ11)(β11 − β21).

Defining

α =

√
g1(ζ11)

g(ζ11)
∈ [0, 1], (63)

we can express

ζ11 = 1
2 (α(β12 + β11) + (1− α)(β11 − β21)) = 1

2 (β11 + αβ12 − (1− α)β21) .

We have therefore reduced our search space to α, and reexpress the norm in terms of α:

g̃(α) :=
√
g̃1(α) +

√
g̃2(α),

g̃1(α) :=g1(ζ11) = ‖ζ11‖22 + ‖β21 − β11 + ζ11‖22 =
1
4 (‖β11 − β21 + α(β12 + β21)‖22 + ‖β21 − β11 + α(β12 + β21)‖22) =
1
2 (‖β11 − β21‖22 + α2‖β12 + β21‖22),

g̃2(α) :=g2(ζ11) = ‖β11 − ζ11‖22 + ‖β12 − ζ11‖22 =
1
4 (‖β11 + β21 − α(β12 + β21‖22 + ‖(2− α)(β12 + β21)− (β11 + β21)‖22) =
1
2 (‖β11 + β21‖22 + (1 + (1− α)2)‖β12 + β21‖22 − 2〈β12 + β21, β11 + β21〉) =
1
2 (‖β11 − β12‖22 + (1− α)2‖β12 + β21‖22).

(64)

We now wish to show that
min
α
g̃(α) =

√
1
2‖β‖GLN, (65)

according to the first definition, (60). If β12+β21 = 0, this follows immediately. We therefore assume that β12+β21 6= 0.
Any minimal α must satisfy

0 =
∂g̃(α)

∂α
=
α‖β12 + β21‖22√

g̃1(α)
− (1− α)‖β12 + β21‖22√

g̃2(α)
. (66)

Since α ∈ [0, 1], both α and 1− α are nonnegative, and (66) is equivalent to

g̃1(α)(1− α)2 = g̃2(α)α2, (67)

which, in turn, reduces to
α2‖β11 − β12‖22 = (1− α)2‖β11 − β21‖22. (68)

Taking the square root and rearranging results in

α =
‖β11 − β21‖2

‖β11 − β12‖2 + ‖β11 − β21‖2
. (69)

This implies

g̃1(α) = 1
2‖β11 − β21‖22

(
1 +

‖β12 + β21‖22
(‖β11 − β12‖2 + ‖β11 − β21‖2)2

)
.

Since

1− α =
‖β11 − β12‖2

‖β11 − β12‖2 + ‖β11 − β21‖2
,

we can analogously infer that

g̃2(α) = 1
2‖β11 − β12‖22

(
1 +

‖β12 + β21‖22
(‖β11 − β12‖2 + ‖β11 − β21‖2)2

)
.

19

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

Finally, these identities imply that

g3(α∗) =
√

1
2 (‖β11 − β12‖2 + ‖β11 − β21‖2)

√
1 +

‖β12 + β21‖22
(‖β11 − β12‖2 + ‖β11 − β21‖2)2

=√
1
2

√
(‖β11 − β12‖2 + ‖β11 − β21‖2)2 + ‖β12 + β21‖22,

which proves (65) and thus (60).

All that is left to show is that (60) is equivalent to (21). To do so, we note that

β22 − β21 = β12 − β11. (16 recalled)

Therefore
‖β‖22 =‖β11‖22 + ‖β12‖22 + ‖β21‖22 + ‖β12 + β21 − β11‖22 =

2(‖β11‖22 + ‖β12‖22 + ‖β21‖22 + 〈β12, β21〉 − 〈β11, β12〉 − 〈β11, β21〉),
(70)

and
‖β11 − β12‖22 + ‖β11 − β21‖22 + ‖β12 + β21‖22 =

2(‖β11‖22 + ‖β12‖22 + ‖β21‖22 + 〈β12, β21〉 − 〈β11, β12〉 − 〈β11, β21〉) = ‖β‖22.
(71)

This, in turn implies that

‖β‖2 = ‖β‖22 + 2‖β11 − β12‖2‖β11 − β21‖2 = ‖β‖22 + 1
2

∑
i,j

‖βij − βij‖2‖βij − βij‖2, (72)

where the latter equality follows from the fact that for all i, j

‖βij − βij‖2‖βij − βij‖2 = ‖β11 − β12‖2‖β11 − β21‖2, (73)

as a result of (16).

B.3 Extending Gunasekar et al. (2018a) to exponential-like losses

We here consider the same set of loss functions as Soudry et al. (2018) and Lyu and Li (2020). We call this class
exponential-like losses.
Definition B.10. We call ` : R→ R exponential-like if and only if the function satisfies the following assumptions:

1. ` is monotonically decreasing, differentiable, and limu→∞ `(u)→ 0.

2. `′ is Lipschitz continuous.

3. −`′ has a tight exponential tail, i.e. there exist positive constants c, a, µ+, µ−, u+, u− such that

∀u>u+
− `′(u) ≤ c(1 + exp(−µ+u)) exp(−au), (74)

∀u>u− − `′(u) ≥ c(1− exp(−µ−u)) exp(−au). (75)

Gunasekar et al. (2018a,b) only consider the exponential loss, but note that they expect their results to generalize towards
exponential-like losses. More specifically, they prove Lemma 8 in Gunasekar et al. (2018a) only for the exponential
loss. We here close the small gap their results leave by extending this lemma to exponential-like losses.

Lemma B.11. For almost all linearly separable datasets D =
(
(x(n), y(n))

)
n=1,...,N

, consider the loss function

L(β) :=

N∑
n=1

`(y(n)〈β, x(n)〉), (76)

where ` is an exponential-like loss.

Any sequence β(t) such that

L(β(t))→ 0, (77)

β(t)/‖β(t)‖2 → β̂, (78)

−∇βL(β(t))/‖∇βL(β(t))‖2 → ẑ, (79)

20

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

for some β̂, ẑ. Let
SD :=

{
n|y(n)〈β̂, x(n)〉 = min

n
y(n)〈β̂, x(n)〉

}
(80)

be the support. Then there exists a sequence of nonnegative numbers (αn)n∈SD , αn ≥ 0 such that

ẑ =
∑
n∈SD

αnynxn. (81)

Proof. To prove the lemma, we reduce the general, exponential-like case to the special case where ` is the exponential
loss.

The gradient is given by

−∇βL(β) =

N∑
n=1

−`′(y(n)〈β, x(n)〉)y(n)x(n). (82)

We now decompose this gradient into the special case where ` is the exponential loss, and the deviation of ` from the
exponential loss. We write

−∇βL̃(β) =
N∑
n=1

−c exp(−ay(n)〈β, x(n)〉)y(n)x(n), (83)

where c, a are the constants from the definition of `. (Put differently, L̃ defines the dataset’s loss if we were using the
exponential loss.)

We know that
m(t)
n := y(n)〈β(t), x(n)〉, (84)

diverges. Thus we can assume a large enough t such that y(n)〈β(t), x(n)〉 > u+, u− for all n. We can now write

−`′(m(t)
n) = c exp(−am(t)

n) + c exp(−am(t)
n)δ(t)

n , (85)

where, due to the fact that −`′ has a tight exponential tail, we are guaranteed that

− exp(−µ−m(t)
n) ≤ δ(t)

n ≤ exp(−µ+m
(t)
n), (86)

for large enough t. We have thus sucessfully decomposed the gradient:

−∇βL(β(t)) = −∇βL̃(β(t)) + c

N∑
n=1

exp(−am(t)
n)δ(t)

n y(n)x(n). (87)

We now want to use this decomposition to prove that

−∇βL̃(β(t))/‖∇βL̃(β(t))‖2 → ẑ, (88)

as well. We know that

δ(t) :=

∑N
n=1 exp(−am(t)

n)δ
(t)
n y(n)x(n)

exp(−am(t)
n)y(n)x(n)

(89)

is bounded by δ̃(t) := maxn δ
(t)
n , and therefore δ(t) → 0. This, in turn, implies that

(1 + δ(t))/‖1 + δ(t)‖2 → 1. (90)

We can rewrite
−∇βL(β(t)) = −∇βL̃(β(t))(1 + δ(t)), (91)

and therefore infer

ẑ = lim
t→∞

−∇βL(β(t))

‖∇βL(β(t))‖
= lim
t→∞

−∇βL̃(β(t))

‖∇βL̃(β(t))‖
1 + δ(t)

‖1 + δ(t)‖
= lim
t→∞

−∇βL̃(β(t))

‖∇βL̃(β(t))‖
(92)

Clearly, L̃(β(t))→ 0, which allows us to apply Lemma 8 from Gunasekar et al. (2018a) and proves the more general
lemma.

21

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

10%

20%

30%

10%

20%

30%

S
V

M
 E

rr
or

W
ith M

I
W

ithout M
I

10.0% 15.0%
GD−GLN Error

a

W
ith M

I
W

ithout M
I

10.0% 14.0% 18.0%

10%

20%

30%

10%

20%

30%

GD−GLN Error

In
co

ns
is

te
nc

y

b
2 Contexts per Unit 4 Contexts per Unit

W
ith M

I
W

ithout M
I

10 30 100 10 30 100

10%

20%

30%

10%

20%

30%

Nr. of Hidden Units

E
rr

or
 o

n
M

N
IS

T

Training Size

500

1000

2000

Type of Deep GLN

GD−GLN

SVM−GLN

SVM−L2

c

Figure 4: Full data from our experiments on GLNs. a The error of the GD-GLN plotted against the error of the SVMs.
The grey line represents identical performance. The two panels correspond to the network that used median initialization
(”With MI”) and those that did not (”Without MI”). b Inconsistency between the GD-GLN and the SVM plotted against
the GD-GLN’s error on MNIST. The grey line represents the inconsistency we would expect from a predictor with
matched error rate, but no further correlation with the network (see Footnote 6). c Error of the SVMs and the GD-GLN
plotted against the number of hidden units.

C Extended Data

For clarity’s sake, we only showed a subset of the data in Figures 2 and 3. Figures 4 and 5 depict the full data from our
experiments on GLNs and ReLU networks, respectively.

C.1 Gated Linear Networks

Since Veness et al. (2017) did not use median initialization (MI), we trained the GLNs without MI as well. This resulted
in slightly worse performance, but the SVM-GLN was still more consistent with the GD-GLN than the SVM-L2
(Figure 4a,b).

In addition, Figure 4c, unlike Figure 2d, also depicts the networks with four contexts per unit. Remarkably, for 100
hidden units, the SVM-L2 is beginning to outperform the SVM-GLN. Other than that, the interpretation of the data
remained unaffected. Without MI, the data was qualitatively similar, as well, except that the GD-GLN tended to slightly
outperform the SVM-GLN.

C.2 Frozen-Gate ReLU Networks

In Figure 3, we depicted the networks trained with a momentum of 0.9. Since our theorem technically only holds for
gradient descent without momentum (though Soudry et al. (2018) saw qualitatively similar behavior with momentum,
as well), we additionally trained networks without momentum. Since they do not rely on the ReLU networks at all,
this did not change the SVM-RC. It changed the SVM-LC and SVM-HL only insofar as the model from which they
used the contexts and hidden layer, respectively, changed. The interpretation of the data remained unaffected. Most
notably, both performance and consistency with the SVMs were a bit worse. This is consistent with the interpretation
that momentum speeds up training to a limit that is, in part, characterized by the SVMs, and that moving closer to this
limit improves performance.

22

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

5.0%

7.5%

10.0%

12.5%

15.0%

17.5%

S
V

M
 E

rr
or

M
om

entum
: 0

M
om

entum
: 0.9

5.0% 10.0% 15.0%
GD−ReLU Error

a

0.0%

5.0%

10.0%

15.0%

0.0%

5.0%

10.0%

15.0%

In
co

ns
is

te
nc

y

M
om

entum
: 0

M
om

entum
: 0.9

5.0% 10.0% 15.0%
GD−ReLU Error

b

M
om

entum
: 0

M
om

entum
: 0.9

10 30 100

5.0%

10.0%

15.0%

5.0%

10.0%

15.0%

Nr. of Hidden Units

E
rr

or
 o

n
M

N
IS

T

Training Size

500

1000

2000

Type of Network

GD

SVM (Hidden Layer)

SVM (Learned Contexts)

SVM (Random Contexts)

c

Figure 5: Full data from our experiments on ReLU networks. a The error of the GD-ReLU plotted against the SVMs.
The grey line represents identical performance. The two panels correspond to training with and without momentum. b
Inconsistency between the GD-ReLU and the SVMs plotted against the GD-ReLU’s error on MNIST. The grey line
represents the inconsistency we would expect from a predictor with matched error rate, but no further correlation with
the network (see Footnote 6). c Error of the SVMs and the GD-ReLU plotted against the number of hidden units.

23

	1 Introduction
	2 Gated Linear Networks
	3 Exact Asymptotic Behavior of Learning in Gated Linear Networks
	3.1 Background: Learning in Linear Networks
	3.2 Extension to Generalized GLNs
	3.3 Proof Sketch
	3.3.1 Background: Sketch of Previous Proofs
	3.3.2 Proof Sketch of th

	4 Gated Linear Networks with Two Layers
	4.1 The GLN-Norm Improves Generalization Over the L2 Norm
	4.2 Understanding the GLN Norm

	5 Frozen-Gate ReLU Networks
	5.1 The Implicit Bias of FReLUs
	5.2 Comparing ReLU networks and FReLUs

	6 Discussion
	A Experimental Setup
	A.1 Training the Finite-Time Predictors
	A.2 Convex Optimization
	A.3 Data Analysis

	B Proofs
	B.1 Proof of th
	B.2 The Inductive Bias of GLNs with Two Layers
	B.2.1 Architectural Constraints
	B.2.2 The GLN Norm

	B.3 Extending gunasekarcharacterizing2018 to exponential-like losses

	C Extended Data
	C.1 Gated Linear Networks
	C.2 Frozen-Gate ReLU Networks

