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Membrane channels are subject to a wide variety of regulatory
mechanisms that can be affected by activity. We present a
model of a stomatogastric ganglion (STG) neuron in which
several Ca2!-dependent pathways are used to regulate the
maximal conductances of membrane currents in an activity-
dependent manner. Unlike previous models of this type, the
regulation and modification of maximal conductances by elec-
trical activity is unconstrained. The model has seven voltage-
dependent membrane currents and uses three Ca2! sensors
acting on different time scales. Starting from random initial
conditions over a given range, the model sets the maximal
conductances for its active membrane currents to values that
produce a predefined target pattern of activity "90% of the
time. In these models, the same pattern of electrical activity can
be produced by a range of maximal conductances, and this

range is compared with voltage-clamp data from the lateral
pyloric neuron of the STG. If the electrical activity of the model
neuron is perturbed, the maximal conductances adjust to re-
store the original pattern of activity. When the perturbation is
removed, the activity pattern is again restored after a transient
adjustment period, but the conductances may not return to
their initial values. The model suggests that neurons may reg-
ulate their conductances to maintain fixed patterns of electrical
activity, rather than fixed maximal conductances, and that the
regulation process requires feedback systems capable of re-
acting to changes of electrical activity on a number of different
time scales.
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Conductance-based neuron models have been quite successful at
duplicating the activity profiles and response properties of their
biological counterparts (for review, see Marder and Abbott,
1995). Such models typically involve large numbers of free pa-
rameters (for example, the parameters that control the maximal
conductances of the different membrane currents) that must ei-
ther be set by experimental measurement or by tedious adjust-
ment until the model performs properly. However, real neuronal
conductances do not appear to be held at fixed values. Instead,
they can be modified if the activity of the cell changes for a
sufficiently long period (Alkon, 1984; Franklin et al., 1992; Tur-
rigiano et al., 1994; Hong and Lnenicka, 1995, 1997; Li et al.,
1996).

We have constructed and studied models previously that incor-
porate activity-dependent modification of neuronal conductances
(Abbott and LeMasson, 1993; LeMasson et al., 1993; Siegel et al.,
1994). Our initial motivation was to understand how a neuron
could maintain fixed activity patterns over long periods of time
despite ongoing channel turnover. To this end, we built models
with homeostatic regulation of membrane conductances that
maintained a roughly constant average activity on the basis of
feedback provided by the intracellular Ca2! concentration.

These models had a number of interesting properties. They
were extremely robust because their conductances could change
in the face of modified external conditions to maintain relatively

constant levels and patterns of activity. In addition, different types
of synaptic drive could modify intrinsic membrane conductances.
Furthermore, the models could be used to study the functional
implications of activity-dependent conductances (Casey et al.,
1997) (J. Golowasch, M. Casey, L. F. Abbott, and E. Marder,
unpublished observation). Despite these interesting features, the
models had some serious limitations that we now seek to remedy.
The limitations are not merely technical; they involve elements
that are clearly not biophysically realistic, that restrict model
flexibility and adaptability, and that limit our ability to compare
model results with data.

The key component in any model of this type is the feedback
element that allows electrical activity to control and modify
membrane conductances. This element must sensitively and ac-
curately reflect the electrical activity of the neuron while being
capable of controlling the pathways that modify membrane con-
ductances. The identification of such elements can only be
achieved through experimental research. However, theoretical
work provides useful clues about the characteristics of these
feedback pathways that can guide the search for their biophysical
bases.

Our previous models (Abbott and LeMasson, 1993; LeMasson
et al., 1993; Siegel et al., 1994) used the intracellular Ca2!

concentration as a regulatory feedback element that linked neu-
ronal conductances to electrical activity. Intracellular Ca2! is a
good candidate for such an element because the rate of Ca2!

entry into a neuron is well correlated with its level of electrical
activity (Ross, 1989) and Ca2! is a ubiquitous regulator of
biochemical pathways that affect membrane conductances.
Changes in the intracellular Ca2! concentration are associated
with modifications of channel densities (Linsdell and Moody,
1995) and long-term changes in gene expression (Murphy et al.,
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1991; Gallin and Greenberg, 1995; Gu and Spitzer, 1995; Bito et
al., 1997). In the model presented here, as in previous models,
Ca2! is used as a feedback signal, but the dynamics of Ca2!

sensing is modeled in more detail by including multiple feedback
pathways. Experimental data suggest that the route and temporal
pattern of Ca2! entry into a cell influence the signal transduction
pathways that are activated (Gallin and Greenberg, 1995; Bito et
al., 1997; Fields et al., 1997). Thus, Ca 2! signaling may involve
multiple parallel and semi-independent pathways. Furthermore,
the new model eliminates a restriction on how activity could
modify conductances that was the primary limitation and most
prominently unrealistic feature of previous models. In previous
models, the conductances maintained by a model neuron were
affected by the intracellular Ca2! concentration, but they were
also highly constrained by the structure of the model. In the
model presented here, activity-dependent pathways, using Ca2!

entry as a monitor of activity, direct the model to generate a
particular pattern of activity, but otherwise the strengths of the
different membrane conductances are unconstrained.

MATERIALS AND METHODS
Electrophysiology experiments were performed as described by Golo-
wasch and Marder (1992). Briefly, stomatogastric ganglia (STG) from
Cancer borealis were dissected, pinned on a Sylgard-lined Petri dish, and
superfused with normal saline (in mM: 440 NaCl, 11 KCl, 26 MgCl2 13
CaCl2 , 12 Trizma base, and 5 maleic acid, pH 7.4–7.5). The stomato-
gastric ganglion was desheathed, and cells were identified as described by
Hooper et al. (1986). Lateral pyloric (LP) neurons were impaled with
two microelectrodes filled with 3 M KCl (10–15 M# resistance), and
ionic currents were measured in two electrode voltage clamp using an
Axoclamp 2A (Axon Instruments) in the presence of 10 !M picrotoxin
(Sigma, St. Louis, MO) to block all inhibitory glutamatergic synapses
(Marder and Eisen, 1984) and 0.1 !M tetrodotoxin (Sigma) to block
action potential generation.

All three outward K ! currents in the LP neuron activate at membrane
potentials more depolarized than $40 mV. The delayed rectifier current
IKd was measured from a holding potential of $40 mV in the presence of
500 !M Cd 2!. The Ca 2!-dependent K ! current IKCa was measured as
the difference current between the total current and the current remain-
ing in the presence of 500 !M Cd 2!. The fast transient K ! current IA was
measured in the presence of 500 !M Cd 2! as the difference in currents
evoked from the holding potentials of $80 and $40 mV. Chord conduc-
tances were calculated from the equation g % I/(Vtest $ Erev ), with
Vtest % !20 mV and an estimated Erev % $80 mV for all three outward
K ! currents. Maximal currents were measured as the steady-state cur-
rent for IKd and the peak currents of IKCa and IA measured 20 msec after
the onset of Vtest. Conductances were normalized to the capacitance of
the neuron in which they were measured. Membrane capacitance was
determined as the integrated capacitive transient current over time for
five voltage steps below $40 mV divided by the change in voltage.

THE MODEL
As in all conductance-based models, membrane currents are
described using the formalism of Hodgkin and Huxley (1952).
Labeling the different membrane conductances with an index i,
we express the membrane currents at membrane potential V as:

Ii " ḡimpihqi&V$Ei', (1)

in which ḡi is the maximal conductance for current i, pi and qi are
integers, and Ei is the reversal potential. The currents used are
based on the experimental work of Turrigiano et al. (1995) and
consist of a fast Na!, INa; delayed rectifier K!, IKd; fast transient
and slow Ca 2!, ICaT and ICaS ; Ca 2!-dependent K!, IKCa; fast
transient K!, IA ; hyperpolarization-activated inward cation, IH;
and passive leakage, IL. The expressions used to describe these
conductances are given in Appendix.

In the models we are considering, the maximal conductances

are not fixed parameters as in conventional models, but instead
they can change over time. We assume that this is a slow process,
occurring over hours or even days. Changes in the values of the
maximal conductances are regulated by the activity of the neuron
through its effect on Ca 2! entry. If the external conditions are
held fixed, the maximal conductances in the model will attain
roughly constant equilibrium values. In the original models we
studied (Abbott and LeMasson, 1993; LeMasson et al., 1993;
Siegel et al., 1994), the equilibrium values were sigmoidal func-
tions of the intracellular Ca 2! concentration. This linked the
equilibrium maximal conductances to activity. If the pattern of
activity of the model neuron changed for some reason, the intra-
cellular Ca2! concentration would also change (due to modified
entry through voltage-dependent Ca2! conductances), and this
would result in different equilibrium maximal conductance val-
ues. This scheme has the distinct disadvantage that the equilib-
rium values of all the different maximal conductance parameters
are functions of a single variable, [Ca2!], and therefore are
highly constrained. In a multidimensional parameter space with
one coordinate axis for each maximal conductance, the equilib-
rium configurations all lie on a single, fixed curve. This means
that most combinations of conductances can never exist at equi-
librium. As a result, the model is highly restricted when searching
for a set of maximal conductances to achieve a particular pattern
of activity. Furthermore, it is unlikely that the constraint imposed
in these models has any biological counterpart.

To remove the constraint that limited previous models, we must
construct the model so that equilibrium values of maximal con-
ductances are regulated by intracellular Ca2! but are not
uniquely expressed as functions of its concentration. We do this
by changing the form of the equations governing the maximal
conductances. Previous models used an equation of the form
#dḡi /dt % (i([Ca2!]) $ ḡi , in which # controlled the speed of
conductance modification, and the (i were sigmoidal functions of
the intracellular Ca2! concentration. There are two classes
of quasistationary solutions of these equations. For one class, the
values of the maximal conductances oscillate indefinitely with a
period of order #. For the other class, fixed-point equilibrium
configurations, the values of the ḡi stay at approximately constant
steady-state values. They display, at most, small amplitude oscil-
lations with a period much shorter than # caused by the fact that
the Ca2! concentration changes over time because of the elec-
trical activity of the neuron. The oscillations are small because #
is large compared with the period of [Ca2!] oscillations. The
equilibrium values around which the ḡi fluctuate are determined
by ḡi % )(i([Ca2!])*, where the brackets denote an average over
time. The averaging time should be longer than the characteristic
time scales for membrane oscillations but short compared with #.
Typically, equilibrium occurs at values of Ca2! that lie on the
approximately linearly rising portion of the sigmoidal functions
(i. If we use a linear approximation for this region, we can write
the equilibrium values as ḡi+(i()[Ca2!]*). Thus, at equilibrium
the ḡi are given by functions of a single variable, the time-
averaged intracellular Ca2! concentration. This is the constraint
discussed above.

In the model we present here, the maximal conductances
satisfy equations of the form:

#
dḡi

dt " (i ḡi , (2)
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and the connection between (i and Ca2! is more complex than a
simple functional dependence on the intracellular Ca2! concen-
tration. The factor of ḡi on the right side of Equation 2 serves two
purposes: it prevents ḡi from becoming negative, and it scales the
speed of maximal conductance modifications so that large maxi-
mal conductances change more rapidly than small ones.

The key feature of this model is the form of Equation 2. For
this equation, equilibrium is achieved when )(i* % 0 for each i.
This imposes a set of conditions on the equilibrium maximal
conductances, but it does not require them to be functions of a
single variable. The (i are determined by the amount of Ca2!

entering the cell so the requirement that )(i* % 0 for each i is a
constraint on the temporal pattern of Ca2! entry. Because Ca2!

enters through voltage-dependent conductances this also imposes
a condition on the temporal pattern of electrical activity. Thus,
the model requires that the equilibrium maximal conductances
produce a particular pattern of activity but it does not otherwise
constrain their values.

The basic idea of models with activity-dependent conductances
is that the maximal conductance parameters should be allowed to
change in an unrestricted manner until the model neuron has
achieved a “desired” set of functional characteristics. The signal
that this has occurred is that the right side of Equation 2 should
be zero. For the model to work, it is essential that )(i* % 0 for
each i only when the model neuron is performing properly.
Furthermore, it is essential that this equilibrium be stable. Oth-
erwise the model may increase some of its conductances without
bound. In previous models, these conditions were relatively easy
to satisfy because the equilibrium conductances were so highly
constrained. In the model presented here, these constraints have
been dropped and achieving functional uniqueness and stability is
considerably more challenging.

The values of the (i functions that control the maximal con-
ductances through Equation 2 are governed by Ca 2! entry. The
simplest way to do this would be to make the (i functions of the
intracellular Ca2! concentration as in previous models. Figure 1
shows why this cannot work. In this example, three different
patterns of electrical activity lead to three different temporal
patterns of oscillation in the bulk intracellular Ca2! concentra-
tion. However, the time-averaged Ca 2! concentration, )[Ca2!]*,
is essentially the same in all three cases. Thus, imposing a
condition involving only )[Ca2!]* like )(i([Ca2!])* %
0+(i()[Ca2!]*) does not uniquely determine the pattern of elec-
trical activity of the cell. The problem is that there are many ways
of getting Ca 2! into the cell: through tonic action potentials,
bursts of action potentials, or slow-wave calcium “spikes.” These
three activity patterns can produce the same time-averaged con-
centrations. However, as seen in Figure 1, the time course of
[Ca2!] fluctuations produced by these three modes of Ca2! entry
are quite different. To distinguish the three patterns of activity in
Figure 1, we need Ca2! sensors that are sensitive not only to the
time-averaged intracellular Ca2! concentration, but also to the
time course of Ca2! entry.

The approach we take is to make the (i functions of three
Ca2! sensors with different temporal characteristics, (i %
(i(F,S,D) in which F, S, and D stand for fast, slow, and DC
sensors. We can think of these Ca2! sensors as corresponding to
different feedback pathways that react at different rates to Ca2!

entry. All the Ca2! sensors act as integrators of the Ca2! current
entering the cell but they act with different integration time
constants. In addition, the relationship between the value of a
particular Ca2! sensor and the level of Ca2! influx is nonlinear.

The nonlinearity is important because differences caused by the
range of integration time constants of the sensors would be
washed out by temporal averaging if linear sensors were used. The
exact form of the sensors will be discussed below. We assume that
the three sensors are coupled to three different signal transduc-
tion pathways that modulate channel conductances and densities,
and that at particular sensor values, when F % F, S % S, and D %
D, the pathways come to equilibrium resulting in no net change in
membrane conductances. When the sensor variables deviate from
their equilibrium values, the signal transduction pathways act to
change the maximal conductances of membrane currents. For
simplicity, we choose the rate at which maximal conductances
change to depend linearly on the value of each Ca2! sensor and
the different sensors to act additively. As a result, the time-
evolution of the maximal conductance ḡi is determined by the
equation:

#
dḡi

dt " ,Ai&F $ F' % Bi&S $ S' % Ci&D $ D'- ḡi . (3)

The linear assumption is not as restrictive as it may sound. We
can think of the right side of Equation 3 as the linear term of a
Taylor series for the true dependence expanded around the

Figure 1. Three different activity patterns have similar average [Ca 2!]
levels. A, Left, Membrane potential of a neuron firing action potentials
tonically. Right, The instantaneous Ca 2! concentration (oscillating curve)
and its time-averaged value (approximately straight line). The average
[Ca 2!] level is 4.3 !M. B, Left, Membrane potential for a neuron firing
bursts of action potentials. Right, [Ca 2!] and its average value. Average
[Ca 2!] level is 4.0 !M. C, Left, Membrane potential for a neuron firing in
a different bursting pattern. Right, [Ca 2!] and its average value. Average
[Ca 2!] level is 4.3 !M.
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equilibrium point at F % F, S % S, and D % D. Because the
existence and stability of an equilibrium point are determined by
the linear term, Equation 3 captures the essential features needed
to analyze the model.

The parameters Ai , Bi , and Ci determine how the different
sensors affect conductance i. Because the overall time scale of
changes in the maximal conductance values is governed by the
parameter #, we restrict Ai , Bi , and Ci to just three different
values, 0 and .1. A zero value indicates that a given pathway has
no effect on a particular conductance. The sign of these param-
eters determines whether an increasing signal on the pathway
increases or decreases a conductance. The values of Ai , Bi , and Ci

for the different conductances (different i) are given in Table 1.
Note that the leakage conductance is not subject to activity-
dependent modification. The rationale for the choices of these
values will be given below, but they were partially determined by
a trial-and-error process and set to values that made the model
stable.

The time constant # determines the speed of activity-
dependent conductance changes. The value of # used in the
simulations was 5 sec. In reality, the time scale for activity-
dependent conductance changes is likely to be much longer, on
the order of hours or days, not seconds. However, the only effect
of making # / 5 sec is to slow down the regulation process.
Otherwise, the activity of the model is insensitive to # as long as
# & 5 sec. Thus, to avoid long waits during simulation runs, we set
# to this minimum value.

The pattern of activity that the model neuron exhibits is con-
trolled by setting the equilibrium points for the sensors, the
parameters F, S, and D, to appropriate values (we used F % S %
D % 0.1, except in Fig. 9, in which the values are reported in the
caption). In practice, these values are determined by running the
model with fixed maximal conductances set to values that pro-
duce a desired pattern of activity. The average values of the
sensors under these conditions are determined and F, S, and D are
then set to these values. When the model is running with activity-
dependent conductances, the maximal conductances determine
the type of electrical activity that the neuron will produce. This
activity affects Ca2! entry and thus the values of the Ca2!

sensors. The Ca2! sensors in turn modify the maximal conduc-
tances through Equation 3. The entire system will come to equi-
librium when the maximal conductances take steady-state values
that produce a pattern of Ca2! entry that sets the time average of
each Ca2! sensor to its equilibrium value: )F* % F,)S* % S, and
)D* % D. If the A, B, and C parameters are chosen appropriately,
deviations from this equilibrium activity will result in changes of
maximal conductances that restore the equilibrium behavior.
Although the equilibrium activity of the model is fairly uniquely
specified, this does not necessarily (and, as we will see below, does
not in practice) uniquely specify the set of equilibrium maximal
conductances. In these models, the maximal conductances that a
given neuron develops depend not only on the level and time
course of Ca2! entry, but also on the past history of the cell.

Although the conditions )(i* % 0 for each i can be interpreted as
a set of equations that determine the maximal conductance val-
ues, for the (i we choose, these equations appear to have a large
number of solutions that are not constrained to any subregion of
the space of maximal conductance values in any obvious way.

The three Ca2! sensors used in this model act as bandpass
filters integrating the Ca 2! current over three different time
scales. We assume that the sensors activate at rates controlled by
the concentration of Ca2! close to the cell membrane. In a
narrow shell just inside the cell membrane, the influx of Ca 2! will
quickly come to equilibrium with diffusion, buffering, and Ca2!

uptake mechanisms that remove Ca2! from this region. If we
assume that the Ca2! uptake and removal mechanisms are linear
functions of the Ca2! concentration, equilibrium will occur with
the Ca 2! concentration near the membrane proportional to the
rate of Ca 2! influx. To avoid having to model the diffusion and
uptake processes, we simply assume that the local Ca2! concen-
tration at the sensor sites is proportional to ICa. For this reason,
we make the sensor activation and inactivation rates functions of
the total Ca 2! current entering the cell, ICa. This simplifying
assumption is not an essential feature of the model. A variety of
different Ca2! signals could be used to drive the sensors.

The Ca2! sensors activate and inactivate at rates controlled by
Ca2! entry, so we write:

F " GF MF
2 HF S " GS MS

2 HS D " G D MD
2 , (4)

in which the M and H variables represent activation and inacti-
vation respectively, and we have set GF % 10, GS % 3, and GD %
1. The sensors depend on the square of the sensor activation
variable, a dependence chosen empirically. The DC sensor has no
inactivation so it performs a long-time integration of the Ca2!

current. The activation and inactivation variables are determined
by differential equations similar to those of the Hodgkin–Huxley
model, except that the rate constants depend on the Ca 2! current
rather than on voltage:

#MX

dMX

dt " MX&ICa' $ MX #HX

dHX

dt " HX&ICa' $ HX

(5)

in which X % F, S, or D. The parameters #M and #H determine the
frequency range over which a particular sensor is sensitive to
changes in the Ca2! current, whereas the functions M(ICa) and
H(ICa) control its dependence on ICa. These functions are
sigmoidal:

MX&ICa' "
1

1 % exp,ZMX % ICa/&1 nA/nF'-
(6)

and:

HX&ICa' "
1

1 % exp,$ZHX $ ICa/&1 nA/nF'-
. (7)

The values of the Z parameters, which set the thresholds (in units
of nA/nF) for activation and inactivation of the different sensors,
are given in Table 2. The threshold levels are highest for the fast
sensor so that its value is mostly affected by the large transients
caused by action potentials. The lower threshold values of the
slow and DC sensors allow them to be sensitive to subthreshold
fluctuations as well. The threshold values thus reinforce the
selectivity properties inferred by the choice of time constants.

Table 1. Values for conductances/regulation parameters

Na CaS CaT Kd KCa A H Leak

A !1 0 0 !1 0 0 0 0
B 0 !1 !1 $1 $1 $1 !1 0
C 0 0 0 0 $1 $1 !1 0
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Because the parameters A, B, and C reflect the actions of the
complex mechanisms and pathways responsible for the effects of
activity on neuronal conductances, they are fairly unconstrained.
The basic guiding principle used to establish their values is
stability. The assignments in Table 1 are not unique. In general,
inward currents appear with positive signs and outward currents
with negative signs in Table 1 matching their effect on excitability.
By operating in different frequency ranges and with different
thresholds, and because they are nonlinear, the sensors can mon-
itor activity occurring at different time scales and therefore are
selectively useful for controlling different features of the neuron’s
intrinsic excitability. For example, the fast sensor registers Ca 2!

entry over single action potentials. A drop in its value typically
indicates that the neuron has stopped firing action potentials. As
a result, we couple this fast sensor to the Na! and delayed
rectifier K! maximal conductances responsible for spiking. Note
that both the Na! and delayed rectifier conductances appear with
positive coefficients with respect to the fast sensor. This assign-
ment was made because increasing the Na! current without a
compensating increase in the delayed rectifier current can cause
the model neuron to latch up into a depolarized state. The slow
sensor is sensitive to the shape of slow-wave oscillations of the
membrane potential so it is coupled to the maximal conductances
of currents that control bursts, Ca2! currents for example. The
values of the B parameters are chosen to assure that a low sensor
signal, corresponding to the loss of bursting activity, will act to
restore bursts. The DC sensor monitors and regulates the long-
term average membrane potential and, among other things, pre-
vents latching of the model neuron into a chronically depolarized
state. The outward currents IA and IKCa are coupled to the DC
sensor because they are particularly effective at releasing the
neuron from the chronically depolarized state that is the major
instability that this sensor detects. Positive coupling of the DC
sensor to IH helps assure that a sufficient level of depolarization
will exist to avoid a completely silent state.

For the Ca2! sensors to set the maximal conductances to
values producing a certain type of activity, their average values
must signal when such activity is occurring. The average values of
the sensors are the relevant quantities, because Equation 3 only
depends on the time averages of F, S, and D due to its slow
dynamics (the large value of #). We saw in Figure 1 that the
time-averaged intracellular Ca2! concentration cannot, by itself,
distinguish different patterns of activity. Figure 2 shows that the
average values of the three Ca 2! sensors resolve the ambiguity
seen in Figure 1. Here the time-averaged value of the DC sensor,
like the time-averaged Ca2! concentration of Figure 1, cannot
distinguish between the three different activity patterns shown.
However, the time-averaged fast and slow sensors are clearly
different in the three cases. The average value of the slow sensor
effectively discriminates between tonic spiking and bursting pat-
terns of action potentials (Fig. 2A,B), whereas average values of
the fast sensor distinguish between bursts with one or many
spikes (Fig. 2B,C).

RESULTS
A surprising feature of the model developed in the preceding
section is the lack of fixed parameters characterizing maximal
conductance variables. In this model, maximal conductances are
dynamic variables, and the values for all seven active conduc-
tances are controlled by the three parameters F, S, and D. This is
quite different from previous models (Abbott and LeMasson,
1993; LeMasson et al., 1993; Siegel et al., 1994) in which one
parameter scaled the magnitude of each conductance.

The activity-dependent model neuron we have constructed is
self-assembling. In other words, starting from most sets of maxi-
mal conductances the model will reach an equilibrium state
exhibiting a characteristic pattern of activity. In all the cases
shown here (except Fig. 9), we have set the equilibrium values of
the Ca2! sensors, F, S, and D, so that this target pattern of
activity is bursting. Figure 3 shows how the model spontaneously
develops into a burster and illustrates an interesting feature of
self-assembly. Here the model spontaneously developed sets of
maximal conductances that produced bursting behavior, starting
from two different initial conditions. Although the final activity
shown in Figure 3, A and B, is similar, the maximal conductances
established by the model were quite different. Furthermore, the
trajectories followed as the model self-assembled were different in
the two cases shown.

To explore further the range of maximal conductances that can
produce the basic bursting pattern of activity seen in Figure 3, we
allowed the model neuron to self-assemble 1000 times starting
each time with different randomly chosen initial conditions. In
most cases (90%), the final equilibrium activity exhibited by the
model neuron was similar to the bursting pattern seen in Figure 3.
However, the maximal conductances generated by the activity-
dependent mechanism of the model in these cases covered a wide
range of different values. This, once again, stresses the nonunique
map between maximal conductances and activity. The final set of
conductances attained by the model depends on initial conditions.
In the 10% of cases when the model could not achieve the target
behavior, it either fell into an oscillatory limit cycle in which
conductances continued to vary without reaching a fixed equilib-
rium point (5% of cases), or the conductances increased indefi-
nitely (5% of cases). These latter cases indicate that even with
three sensors the model is not completely stable. The percentage
of unstable cases grew as the range over which the initial conduc-
tance values were chosen randomly was increased. The instabili-
ties could be avoided if the initial maximal conductances of the
model were restricted to avoid certain troublesome regions of the
parameter space. In general, initial configurations that led to
extended periods with no activity allowed development of the
system to take place without any activity feedback and were
problematic. Figure 4 shows the range of maximal conductances
found in the model when it had achieved steady-state bursting
activity starting from random initial conditions in 31 different
trials. The range seen in Figure 4 is typical of that in runs that
involve larger numbers of trials. We examined the bursting activ-
ities of all of the configurations shown in Figure 4 and found that
they were quite similar.

The range of conductances shown in Figure 4, over which the
model neuron can display bursting activity, is surprisingly large.
In general, the model predicts that neurons exhibiting similar
patterns of activity may, nevertheless, have significantly different
maximal conductances of their membrane currents. To test this
prediction we examined voltage-clamp measurements of three K!

Table 2. Values of Z parameters

Parameter ZM ZH #M #H

F 14.2 9.8 0.5 ms 1.5 ms
S 7.2 2.8 50 ms 60 ms
D 3 — 500 ms —

Liu et al. • Activity-Dependent Conductances J. Neurosci., April 1, 1998, 18(7):2309–2320 2313



currents in the LP neuron of the crab STG (Golowasch and
Marder, 1992). The LP is an identified neuron with a well defined
and characteristic pattern of activity. Conductance densities of
three different K! currents, IKd, IKCa , and IA , were measured in
12 neurons. Figure 5A shows the values of the conductance
densities measured for each of the K! currents. The variability is
large. We examined the data to determine whether there are fixed
ratios or other simple relationships between the conductances for
the different currents. When the measured conductances are
plotted against each other (Fig. 5B), no clear correlation is ap-
parent. Interestly, no clear pattern can be seen for this set of three
conductances in the model either (Fig. 4B).

The conductance variability seen in the LP neuron is compa-
rable to that seen in the model. Although the relative ranges and
distributions of conductance values show in Figures 4 and 5 match
quite well, the magnitude of the conductances in the LP cell is
significantly smaller than in the model. This is attributed, in part,
to the fact that the measured values are not maximal conduc-
tances but actual conductances measured under defined condi-
tions. Nonmaximal activation and residual inactivation in these
currents under the measurement conditions may contribute to the
smaller values, but the discrepancy may simply be because the

model describes a different type of intrinsic activity than that
exhibited by the LP neuron. The model neuron is a burster, not
a model of the LP neuron that was in a tonic firing mode when the
measurements were made.

Figure 6 illustrates the robustness that is the hallmark of
models with activity-regulated conductances. Here a model neu-
ron that had established a bursting pattern of activity (Fig. 6A)
was perturbed by changing the value of the K! equilibrium
potential, EK , from $80 mV to $60 mV. Such a shift could be
made in a real system by changing the extracellular K! ion
concentration. This shift had, initially, a large impact on the
activity of the model neuron (Fig. 6B). The model sensed the
resulting change in activity through the modification in the entry
of Ca2! into the cell, and it adjusted its maximal conductances
until strong bursting was restored (Fig. 6C). The dominant con-
ductance change was in INa and IKd , corresponding to the fact
that the main effect of the perturbation was to reduce the number
of action potentials being generated. Shifting EK back to its initial
value had a similar transient effect (Fig. 6D) and then resulted in
a return to bursting (Fig. 6E). Note, however, that the maximal
conductances established at the end of this exercise are somewhat
different from those initially present. In these models, the values

Figure 2. The three Ca 2! sensors distinguish different activity patterns. Rows A–C correspond to the same three patterns of activity presented in Figure
1, as can be seen by the membrane potential plots in the first column. The second column shows the Ca 2! current in each case, and the remaining three
columns show the transient (oscillating curves) and average values (approximately straight lines) of the fast, slow and DC Ca 2! sensors F, S, and D. Note
that, taken collectively, the average values now distinguish among the three different types of activity.
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of maximal conductances are history dependent and highly vari-
able even though activity is robustly stable.

We also tested the stability of the model by deleting a current
after the model reached an equilibrium state. As seen in Figure
7B, knocking out the membrane current IH greatly decreases the
cycle frequency and results in weaker bursts than under steady-
state conditions with IH present (Fig. 7A). Because of the reduc-
tion in activity seen in Figure 7B, Ca2! entry dropped, the Ca2!

sensors drifted from their equilibrium values and the maximal
conductance parameters started to change. When steady-state
equilibrium was restored, the model neuron had not appreciably
increased its cycle frequency but had significantly increased the
number and amplitude of spikes per burst. The increased spiking
activity compensated for the slower cycle frequency sufficiently to
allow the Ca2! sensors to reach their equilibrium values. The
bursting activity in Figure 7C is, in some sense, the best that the
model can do at reproducing the activity of Figure 7A when it
does not have the current IH to work with.

STG neurons taken from the spiny lobster Panulirus interruptus
and grown in primary cell culture exhibit a number of interesting
time- and activity-dependent changes in their responses to cur-
rent injection (Turrigiano et al., 1994, 1995). Initially, the cul-
tured neurons show little active response to depolarization, but
after "3 d in culture they typically fire action potentials in bursts
arising from an oscillating underlying potential. Neurons in this
condition were subjected to repeated pulses of hyperpolarizing
current (Turrigiano et al., 1994). During the course of this “stim-
ulation” the character of the bursts changed and after "1 hr,

when the pulses were stopped, the neurons no longer displayed
bursting when subjected to steady depolarizing current. Instead,
they fired a steady train of action potentials. If the neurons were
left unperturbed for "1 hr, the original pattern of bursting activ-
ity was restored.

Figure 8 shows that the model we have presented reproduces
the results of these experiments. In Figure 8A the model neuron
is in an equilibrium bursting state that resembles the activity of
the neurons studied experimentally before stimulation. Given
that the membrane currents we used were based on measure-
ments made on these neurons, this match is to be expected.
Figure 8, B and C, shows what happens over time when the model
is subjected to periodic hyperpolarizing current pulses. As in the
experiments, the character of the bursts changes and, when the
current pulses are removed, the neuron fires action potentials at
a steady rate with no sign of bursting (Fig. 8D). Over time, in the
absence of current injection, bursting behavior is restored (Fig.
8E) until the neuron returns to its initial equilibrium behavior
(Fig. 8F ). This duplication of the experimental result does not
rely merely on the fact that the modeled membrane currents
matched those in the real neurons. It requires the regulation
process that allows activity to modify conductances to be mod-
eled with fair accuracy as well.

Because the maximal conductances in the model we have
presented are dynamic variables, not fixed parameters, they can-
not be adjusted by hand to coax the model into behaving in a
desired manner, as is usually done in neuronal modeling. Model

Figure 3. Approach to equilibrium from
two different initial conditions. The top
traces in A and B show the activity of the
model neuron with two randomly chosen
sets of initial maximal conductance val-
ues. Over time, the model dynamically
adjusted the maximal conductances of the
seven active currents of the model until
the activity shown in the lower traces was
obtained. The values of the maximal con-
ductances as a function of time over 15
sec is shown for both cases in the bottom
row of plots. The vertical axes for CaT,
CaS, and H extend from 0 to 2 !S/nF
whereas the range is 0–50 !S/nF for all
other conductances. In both A and B, the
model achieves a bursting pattern of ac-
tivity but the final equilibrium values of
the maximal conductances are different
(bottom plot).
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activity can only be controlled by adjusting the equilibrium values
of the three Ca2! sensors, F, S, and D. These represent equilib-
rium points for the three different signal transduction pathways,
and in the model they are free parameters. The slow and fast
sensor values provide the most control for changing the steady-
state activity of the model. Figure 9 shows a variety of steady-state
behaviors that can be achieved for different values of these pa-
rameters. The range includes tonic firing and a variety of bursting
patterns.

In Figure 9, we have purposely chosen parameter values that do
not cause the activity of the neuron to differ too radically from the
bursting state that was considered in all the other figures. This is

because the Ca 2! sensors were specifically designed to be sensi-
tive to patterns of activity in the frequency ranges relevant for this
type of bursting. If the activity of the neuron shifts to a radically
different frequency range, these sensors will no longer be optimal
and instability can result. Thus, shifting the activity of the neuron
may require combined and concerted shifts in sensor equilibrium
values and sensor dynamics. This feature may simply be a limi-
tation of the model. Perhaps if a better or more complete set of
sensors were found, they could stabilize the model for any desired
pattern of activity. Alternately, neurons may develop sets of
sensors that are specialized to the range of activity that they
exhibit, and no “universal” set, applicable to all patterns of
activity, may exist.

DISCUSSION
The standard approach to building a detailed conductance-based
neuron model involves setting the maximal conductance param-
eters to fixed numbers that are supposed to reflect the “true”
values for the neuron being modeled. A basic assumption needed
to justify this procedure is that the maximal conductances of

Figure 4. Range of equilibrium conductance values for a bursting model
neuron. The model was run repeatedly starting from randomly chosen
initial maximal conductance values until a steady-state pattern of bursting
activity was attained. The initial maximal conductances for CaT, CaS, and
H were chosen uniformly in the range between 0.05 and 0.95 !S/nF,
whereas the maximal conductances for the remaining active currents were
chosen randomly between 2.5 and 47.5 !S/nF. The points show final
steady-state maximal conductances for 31 runs. A, Range of steady-state
maximal conductances. Note that the maximal conductances for some of
the currents have been multiplied by 10 to make them more visible. B,
Maximal conductances of the three outward currents in each run plotted
against each other to show that no strong correlation or pattern emerges.

Figure 5. Range of conductance densities for K ! currents measured in
12 LP neurons from the crab STG. Each point represents a different
neuron. A, Distribution of conductance densities measured. B, Conduc-
tance densities for the three K ! currents in individual neurons plotted
against each other. As in Figure 4B, no obvious correlation or pattern can
be seen.
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neurons are fixed quantities that have “correct” values for the
model to match. The results we have presented challenge this
assumption. First, the view that a given neuron has a fixed set of
maximal conductances that is uniquely tied to its behavior is not
supported by the model. Second, data indicate a wide range of
conductance values for the identified LP neuron of the STG.
Instead, we suggest that a set of biological mechanisms that
control the synthesis, modulation, and degradation of membrane
channels can produce the electrical characteristics required by a
neuron, in a number of different ways. Therefore, an identified
neuron displaying a stereotyped activity pattern, such as the LP
neuron, could have significantly different sets of conductances
when measured in two animals or in the same animal at two
different times. Perhaps some of the variability in physiological
measurements of membrane currents that has been attributed to
experimental error may reflect instead an intrinsic variability
inherent even in identified cell types. Rather than thinking of
fixed conductances generating neuronal activity, we propose that
relatively fixed average neuronal activity regulates variable con-
ductances. Stated another way, we suggest that neurons regulate

activity rather than conductances. This does not imply that there
are no fixed parameters that characterize a given neuron type
(our model after all has fixed parameters in it). However, the fixed
parameters may not be the maximal conductances themselves, but
rather parameters related to the mechanisms that control maxi-
mal conductances.

In the model presented, we have not tried to model the signal
transduction pathways responsible for activity-dependent conduc-
tance regulation in any detail. Because we are predominantly
interested in steady-state behavior, we could consider a linearized
description around the equilibrium point of each transduction
pathway. This led to the introduction of parameters describing
the equilibrium points, most notable the equilibrium sensor val-
ues F, S, and D. In principle, these have a well defined meaning in
terms of the biochemistry of the signal transduction pathways, but
because this is unknown, they appear as free parameters in our
model. We have set their values to achieve a particular type of
activity. In biological neurons, these equilibrium points would be
established by the basic molecular biology and biochemistry of
the cell and their values would be determined as part of the
process by which a neuron differentiates into a particular cell
type. Specifically, these values reflect the properties of the par-
ticular Ca2!-dependent process active in each cell. Once estab-
lished, fluctuations around the equilibrium points guide the con-
struction and maintenance of membrane conductances. It is
possible that modulatory processes could later change the equi-
librium points leading to a fundamental change in the target
pattern of activity of the neuron. Alternately, they may be fixed
for the life of the cell once it differentiates.

Figure 6. Response to an external perturbation. A, The model was at
equilibrium producing the bursting activity shown. B, The membrane
potential immediately after the reversal potential for the K ! currents was
changed from $80 mV to $60 mV. C, The activity of the model after a
new equilibrium configuration of maximal conductances developed in
response to the perturbation. D, The membrane potential immediately
after the K ! reversal potential was set back to $80 mV. E, Recovery of
the model back to the initial bursting activity. The plots at the right show
the maximal conductances corresponding to these different cases. These
are not shown for B and D, because they are identical, respectively, to the
histograms in A and C. Note the increase in Na and Kd conductances in
C and that the conductances in A and E are not identical.

Figure 7. Effect of removing the IH conductance. A, Initial activity and
maximal conductances of the model at equilibrium. B, Activity of the
model immediately after the IH conductance was set to 0. The conduc-
tance histogram at right is identical to that of A, except that ḡH % 0. C, The
new equilibrium activity and conductances established by the model.
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We used three different Ca2! sensors as the feedback elements
in the model, but the fact that we still did not obtain complete
stability suggests that more than three elements may be required.
Given the complexities of cellular signal transduction, we would
expect a significant number of different pathways, certainly more
than the three we have modeled (Bitu et al., 1997). Some path-
ways may integrate Ca2! and other second messenger signals
slowly to regulate gene expression and channel synthesis (Fields
et al., 1997). Others may act over a more rapid time scale con-
trolling, for example, insertion of channels into the cell mem-
brane and channel cross-linking to the cytoskeleton. Finally,
other pathways could control levels of channel phosphorylation
(Levitan, 1994). It is not essential that all, or indeed any, of the
pathways involve intracellular Ca2!. Any other second messen-
ger that links the molecular biology inside the neuron to the
behavior of the membrane potential will suffice. However, con-
sidering the widespread role of Ca2! as a second messenger, it
seems likely that Ca2! plays at least some role in the processes we
are modeling.

The modification of intrinsic membrane conductances by ac-
tivity adds a new element to the type of plasticity normally
considered in neuronal circuit models. Activity is known to me-
diate many processes, including changes in synaptic efficacy (Ar-
tola and Singer, 1993; Bliss and Collingridge, 1993; Malenka and
Nicoll, 1993) (Turrigiano et al., 1998) and neurite outgrowth
(Fields et al., 1990; Kater and Mills, 1991; van Ooyen and van
Pelt, 1994) in addition to modifying ionic currents. This raises
interesting possibilities for modeling the growth and development

of neural circuits (Casey et al., 1997; Jensen and Abbott, 1997)
including the effects of activity on intrinsic neuronal properties,
axonal and dendritic growth, synaptogenesis, and synaptic
strength.

APPENDIX
The membrane potential V of the model neuron is computed by
numerically integrating the equation:

dV
dt " $!

i
Ii ,

in which the currents Ii are given by Equation 1 and the sum over
i refers to the eight currents of the model (seven voltage-
dependent and one leak). The values of the parameters p and E
for the different currents are given in Figure 10. In all cases, the
value of q was either 0 or 1. Cases with q % 0 can be identified
from Figure 10, because no h0 or #h functions are listed for them.
In addition to the currents listed in Figure 10, there is a leakage
conductance with p % q % 0, ḡleak % 0.01 !S/nF, and Eleak % $50
mV. All maximal conductances are normalized to the surface
area of the neuron by dividing the total conductance by the
capacitance of the neuron, so their units are !S/nF. No values for
the maximal conductances of other currents are given because
these are dynamical variables, not model parameters. The value
for the reversal potential for Ca2! currents is not given in Figure
10, because it was computed from the intracellular Ca 2! concen-

Figure 8. Simulation of experiments done on cultured STG neurons
(Turrigiano et al., 1994). A, The activity of the model neuron in its initial
equilibrium configuration. B, Activity during a series of hyperpolarizing
current pulses applied to the model. The injected current is plotted below
the membrane potential trajectory. C, Same as B but after more pro-
longed exposure to hyperpolarizing current pulses. D, The activity of the
model immediately after the prolonged sequence of hyperpolarizing
pulses was terminated. E, Activity somewhat longer after the hyperpolar-
izing pulses were terminated. F, Recovery of the model back to its initial
state.

Figure 9. Range of steady-state activities obtained using different target
values for the slow and fast Ca 2! sensors. In all cases D % 0.1. Other
values were: A, F % 0.25, S % 0.09; B, F % 0.2, S % 0.09; C, F % 0.06, S %
0.09; D, F % 0.15, S % 0.045; E, F % 0.2, S % 0.045; F, F % 0.06, S % 0.045.
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tration using the Nernst equation with an external Ca2! concen-
tration of 3 mM.

The activation and inactivation variables mi and hi are com-
puted by numerically integrating equations of the form: Eq. pg 33
bottom

#m
dm
dt " m0 $ m #h

dh
dt " h0 $ h

The functions m0, #m , h0, and #h are given in Figure 10. Note that
m0 for the current IKCa depends on the Ca2! concentration as
well as on the voltage. The calcium concentration, used to control
IKCa , is determined by integrating the equation

&20 msec'
d,Ca2!-

dt

" $&0.94 !M!nF/nA'ICa $ ,Ca2!- % 0.05 !M

reflecting the fact that the total Ca2! current determines how
much Ca 2! enters the cell and assuming that Ca 2! is removed,
sequestered, and buffered at a rate that depends linearly on the

Ca2! concentration. We set the time constant for Ca2! removal
to be 20 msec. The factor that multiplies ICa depends on the ratio
of the surface area of the cell to the volume in which the Ca2!

concentration is measured. We have taken this volume to be a
narrow shell just inside the membrane and approximated the
neuron by a cylinder 50 !m in diameter and 400 !m long. This
gives a capacitance of 0.628 nF. The last term on the right side of
this equation sets the value of the resting Ca2! concentration.
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