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SUMMARY
The neural mechanisms that generate an extensible library of motor motifs and flexibly string them into arbi-
trary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project
to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. We model the
basal ganglia inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and
free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neu-
rons can control cortical dynamics to generate specific motor output in a noise-robust way. Additionally, a
single ‘‘preparatory’’ thalamocortical network can produce fast cortical dynamics that support rapid transi-
tions between any pair of learned motifs. If the thalamic units associated with each sequence component are
segregated, many motor outputs can be learned without interference and then combined in arbitrary orders
for the flexible production of long and complex motor sequences.
INTRODUCTION

Animals have the remarkable ability of flexibly performing long

and complex sequences of movements (Geddes et al., 2018;

Krakauer et al., 2019). In humans, dance illustrates this ability.

A long dance can be decomposed into a sequence of short, ste-

reotypedmoves ormotifs. Thesemotifs form a library that can be

flexibly combined by experienced dancers to create novel se-

quences—new dances—with minimal additional training.

Furthermore, new motifs can be learned to extend the library

without interfering with previously acquired dance moves. These

phenomena raise important questions regarding sequence gen-

eration in the mammalian motor system that have not yet been

addressed with computational models (Figure 1A). First, how is

flexibility achieved? If the motor system could not generate se-

quences with previously unexperienced transitions between

pairs of known motifs, this would severely limit flexibility. Sec-

ond, how can a motif library be extended? New learning brings

the risk of overwriting of prior knowledge, which the motor sys-

tem must be robust to. Third, how can a high-level sequencing

command—instructing which motifs to execute and in which or-

der—be efficiently communicated to a neural network dedicated

to the dynamic elaboration of the corresponding motor pro-

gram? Of note, these are also open issues in machine learning

(Merel et al., 2019b; Belkin et al., 2018; Geirhos et al., 2018; He

and Jaeger, 2018; Riemer et al., 2019). We turn to the anatomy

and physiology of the motor system for clues to and constraints

on the answers to these questions.

We focus on the recurrent system comprising motor cortex,

the basal ganglia, and thalamus, for which much evidence sup-
This is an open access article under the CC BY-N
ports a role in the learning and execution of skilled motor se-

quences (Beloozerova and Marlinski, 2020; Geddes et al.,

2018; Sauerbrei et al., 2020; Jin et al., 2014; Shenoy et al.,

2013; Penhune and Steele, 2012; Jin and Costa, 2010; Mushiake

and Strick, 1995). Although multiple other structures are impor-

tant in motor control in general, these are particularly implicated

in internally generated behaviors (Mushiake and Strick, 1995;

van Donkelaar et al., 1999, 2000), the target of our investigation.

The motor cortex appears to function as a dynamic pattern

generator that produces neural activities needed to execute

the muscle contractions associated with individual motifs

(Churchland and Cunningham, 2014; Shenoy et al., 2013). The

basal ganglia, on the other hand, have been linked to computa-

tions needed for arranging motifs into sequences. The striatum

may control sequence structure (Geddes et al., 2018), and the

output nuclei—the internal capsule of the globus pallidus (GPi)

and substantia nigra pars reticulata (SNr)—generate sustained

firing patterns that are specific to particular motifs (Jin et al.,

2014). During sequence generation, the motor thalamus is typi-

cally considered to function as a relay, receiving strong inhibitory

input from the basal ganglia (Edgerton and Jaeger, 2014; Deniau

and Chevalier, 1985) and projecting to cortex (Harris et al., 2019).

However, the motor thalamus also receives feedback from mo-

tor cortex (Harris et al., 2019). Thus, in addition to the conven-

tional loop from cortex through the basal ganglia and thalamus

and back to cortex, there is a second loop directly between cor-

tex and thalamus. Although the former has long been studied

(Mannella and Baldassarre, 2015; Alexander and Crutcher,

1990), only recently has the importance of the second loop

been characterized (Rikhye et al., 2018; Schmitt et al., 2017;
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Figure 1. Motif sequencing and the cortex-thalamus circuit

(A) Flexible and extendable motor sequencing.

(B) Cortex-thalamus model schematic.

(C) Motif-specific dynamics. The effective connectivity matrix ~Jm defines the dynamics of motif m (Equation 1), which can be summarized by an ensemble of basis

functions (right). These basis functions are characterized by (1) exponential and oscillation timescales t and T, which depend on the connectivity ~Jm, and (2) initial

amplitudes A and phases 4, which depend on the cortical activities at the start of motif m. A sum of these basis functions composes the motor output (pink trace).

(D) (Left) Neural activity space for a 3-neuron network. The neural trajectory is shown in red. The basis functions are the projections of the neural activity onto

specific directions in activity space (i.e., the eigenvectors in purple; STARMethods section 4.2, with details in section 4.2.2.2). The arrows show the projection of

the neural activity for the 2nd basis function. Dark to bright shades are early to late times. (Right) The activity of each neural unit (e.g., here, c3) is a weighted sum of

the basis functions.

(E) Control of the dynamics’ timescale parameters (i.e., the eigenvalues) li—related to t and T in (C) through t = 1=ðRe li �1Þ and T = 2p=Im li—by a thala-

mocortical loop during a motif. The target eigenvalues ldesk (for k%20; pink ‘‘+’’ symbols) are included among the eigenvalues of the full cortex-thalamus circuit

(purple circles) as a result of imposing the relationship between the corticothalamic and thalamocortical synaptic weights given by Equation 2. The corresponding

eigenvalues of the unperturbed cortical network are shown for comparison (red dots), and the unit circle (indicating the bounds for an infinite random recurrent

network; Bai, 1997) is shown for reference. Cortical network size: N = 500.

(F) Approximating a target motor motif (here, the sinc function; black curve) by a weighted sum of K basis functions (green dashed curve: K = 20; blue dashed

curve: K = 10). The pink curve is the cortical output when the corresponding timescales (pink crosses in E) are included in the dynamics through tuning a tha-

lamocortical loop (with K = 20).

See Figure S1 for other motifs.
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Guo et al., 2017). Lacking, however, is a model of how motor

function is supported by the interaction between these two

loops.

We have developed a model incorporating thalamocortical

loops controlled by basal ganglia outputs that can flexibly and

extensibly generate sequences. Ourmodel allows for a complete

analysis that reveals the relationship between system output and

the synaptic weights of the cortex-thalamus circuit. We find that

the dynamics needed to execute a specific motif in a noise-
2 Cell Reports 35, 109090, June 1, 2021
robust manner can be generated solely by adjusting the synap-

ses between cortex andmotif-specific thalamic units, while leav-

ing all synapses within cortex and to the motor output un-

changed by learning. Furthermore, our analysis reveals the role

for special purpose ‘‘preparatory’’ thalamocortical loops that

robustly mediate fast transitions between motifs without

requiring motif- or transition-specific synaptic weights.

To generate an arbitrary sequence, the basal ganglia switches

between inhibiting different subsets of thalamic units to prepare
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and execute different motifs. This framework ascribes to the

basal ganglia the roles of sequence selection and transition

timing and to the thalamocortical loop, in conjunction with motor

cortex, the roles of motor preparation and motif execution. Our

framework suggests that the cortex-thalamus architecture is

well suited to flexibly control prolonged and complex sequential

motor behavior.

RESULTS

Our aim is to develop an understanding of how cortical and

subcortical motor areas cooperate to implement flexible motor

sequencing. In particular, we wish to gain insight into how the

structural anatomy of the motor system supports this complex

function. In the development of our model, we are guided by

three sources of evidence: anatomy; physiology; and the

computational requirements of sequencing. These lead us to

construct a model that is faithful to the known biology but simple

enough to be analytically tractable and thus provide insights

about the functioning of the motor system.

Our model comprises motor cortex, motor thalamus, and GPi/

SNr (Figure 1B, left). Motor cortex is a highly recurrent structure

(Kaneko, 2013), a feature of our model that is necessary to

generate the dynamics needed to produce each motif. Further-

more, projection neurons in cortex synapse in the spinal cord

for the control of muscles (Harrison et al., 2012), and thus, we

model motor output as arising from cortical activity. Motor thal-

amus, conversely, has no excitatory recurrence (Arcelli et al.,

1997), and this, as we shall see, is fundamental for the func-

tioning of our model. It does, however, both project to and

receive projections from motor cortex (Harris et al., 2019).

Finally, we assume that GPi/SNr selects behavior via its inhibi-

tory inputs to thalamus.

We rely on twomajor features of the physiology. First, previous

experimental and theoretical work (Shenoy et al., 2013; Church-

land and Cunningham, 2014; Sussillo et al., 2015) has provided

strong evidence that motor cortex dynamics generates patterns

of activity that form a basis for driving the muscle activity asso-

ciated with movement. Specifically, these studies support the

view, during individual movements, that activity in cortex can

be captured by linear dynamics (Lara et al., 2018a; Sussillo

et al., 2015) and that muscle activity can be reconstructed

from a weighted sum of cortical activity (Russo et al., 2018).

These results support using a linear network model during

each motif. Second, activity patterns in GPi/SNr have been

shown to be sustained duringmotif execution, with switches pre-

dominantly at the transitions between motifs (Jin et al., 2014). In

our model, we assume that the synapses from basal ganglia to

thalamus are strong enough such that, when active, they

completely inhibit their thalamic targets (Edgerton and Jaeger,

2014)—which we assume to be a specific subset of thalamic

neurons involved in learning new motifs. This assumption is

further supported by the presence of recurrent inhibition within

the thalamus (e.g., via the thalamic reticular nucleus; Arcelli

et al., 1997), which—though ignored by our model—would only

facilitate the ability of the basal ganglia to select among different

thalamocortical loops via winner-take-all dynamics (Murray and

Escola, 2017). This is compatible with the classic view that motor
thalamus is in an inhibited state by default and is disinhibited by

targeted removal of inhibitory input from the basal ganglia, which

gates movement (Deniau and Chevalier, 1985; Edgerton and

Jaeger, 2014; Kim et al., 2017; Aoki et al., 2019; but see Schwab

et al., 2020 and STAR Methods, section 4.2.5). Importantly, this

introduces a critical nonlinearity in our model by allowing

thalamic units to be switched ‘‘on’’ and ‘‘off’’ across motifs. Spe-

cifically, inhibited thalamic units are silent while disinhibited ones

are free to respond to their cortical inputs—in which case they

participate to the motif-specific linear dynamics.

We further constrain our model by considering the computa-

tional requirement that robust motor sequencing must support

the learning of new motifs without concern for interference with

previously acquired ones. The structure of the cortex-thalamus

circuit suggests a two-part solution. First, we restrict learning

to the synapses within the thalamocortical loops and assume

that the intracortical and output synapses are fixed. Second,

we restrict the subsets of thalamic neurons that are active during

different motifs to be non-overlapping. These constraints guar-

antee that motifs do not interfere and offer a procedure for add-

ing new motifs: identify a new subset of thalamic units and set

their synapses to and from cortex such that, when they are

released from basal ganglia inhibition, the cortex-thalamus sys-

tem drives the output to generate some new target movement

(Figure 1B).

We can develop a mathematical description of our model with

a final assumption that the dynamics in thalamus are more rapid

than in cortex—which is expected given the absence of recurrent

excitation in thalamus (Lim and Goldman, 2013; Seung et al.,

2000)—and thus that we can approximate the thalamic response

to cortical activity as instantaneous. (See the table in STAR

Methods, section 4.2.5, for a complete list of the assumptions

in our model and their supporting references and STAR

Methods, section 4.2.6, for a demonstration that our results

remain valid under more biologically plausible conditions.)

Together, the lines of evidence and assumptions above can be

formalized within the standard ‘‘firing-rate’’ model framework

(Gerstner et al., 2009; STARMethods, section 4.2.5). The cortical

activity, described by a vector c, interacts with thalamic activitybt
according to the rate equation _c = � c+ Jccc+ Jctbt, where Jcc
and Jct are the fixed intracortical and tunable thalamocortical

synaptic weights, respectively. The cortical input to thalamus is

Jtcc, where Jtc are the tunable corticothalamic weights. Conse-

quently, the thalamic activity bt—which accounts for inhibition

from basal ganglia—is given as bt = SmJtcc, where Sm is a diago-

nal ‘‘selection matrix’’ whose only nonzero elements are "1"s at

locations along the diagonal corresponding to thalamic units that

are active during somemotif m. This selectionmatrix encodes the

inhibition and disinhibition of thalamus caused by its basal

ganglia inputs: multiplication by Sm sets the inhibited thalamic

units to zero but leaves the disinhibited units free to respond to

their cortical inputs. Note that the vector bt only models the

thalamic units that are modulated by basal ganglia during

sequence generation; other (non-plastic) thalamocortical loops

may be absorbed into the non-plastic part of the network

(STAR Methods, 4.2.5). Finally, the motor output y is generated

as a weighted sum of the cortical activity with fixed output

weights w: y = wTc.
Cell Reports 35, 109090, June 1, 2021 3
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The simplicity of this model allows us to combine our cortical

and thalamic descriptions into a single closed equation for the

cortical activity during motif m:

_c = � c+ ~Jmc; where ~JmhJcc + JctSmJtc: (Equation 1)

Thus, during a particular motif, the cortical dynamics are gov-

erned by the effective synaptic weights ~Jm given by the sum of

the fixed intracortical connectivity Jcc and a corticothalamocort-

ical perturbation JctSmJtc. This perturbation, in turn, is deter-

mined by the pattern of inhibitory input into the thalamus from

the basal ganglia as encoded in the diagonal elements of Sm.

Although we have presented these equations within the context

of motif generation, the same framework can apply more gener-

ally. For instance, below, we will consider the dynamics of motor

preparation as also arising frombasal ganglia disinhibition of tha-

lamocortical loops. In this case, Sprep will indicate the pattern of

basal ganglia activity during preparation and the preparatory dy-

namics will be governed by Jcc + JctSprepJtc.

We briefly notemajor distinctions between ourmodel and prior

approaches. Several studies have modeled the neural and mus-

cle activity of motor motifs with fully linear dynamical systems

(Hennequin et al., 2014; Churchland and Cunningham, 2014;

Lara et al., 2018a). However, these models generate a diversity

of outputs only by setting motif-specific initial neural activities.

Initial conditions also play an important role in defining our motifs

(as discussed below), but by proposing that basal ganglia input

changes the effective synaptic weights in cortex, our model ben-

efits from increased expressivity, which we analytically charac-

terize in the next section. Our proposal for the motor system—

a switching linear model (Linderman et al., 2017)—falls into a

larger category of approaches with nonlinear modulations of dy-

namics. However, by employing motif-specific thalamocortical

loop weights, our model distinguishes itself by benefiting from

rich shared cortical dynamics while still providing a mechanism

for fine-tuning those dynamics per motif and avoiding interfer-

ence between motifs.

We next address several key questions regarding the imple-

mentation of motor sequence generation by our model. First,

what is the relationship between the corticothalamic and thala-

mocortical weights and the dynamics of the model, and what

are the limitations to the dynamics that can be instantiated by

tuning these weights? Second, how should these weights be

set such that a particular motor output is generated? Third,

can motif generation remain robust to noise in the system?

Finally, a major question remains regarding the implementation

of transitions between motifs. If the transitions between all

possible pairs of motifs need to be learned, this would scale

quadratically with the number of motifs. Can the motor system

as represented in our model support efficient transitioning that

avoids this poor scaling property? (We will show that, in fact, it

can.)
Thalamus can act as a powerful modulator of cortical
dynamics
A hypothesis of our model is that control of motif production

arises from basal ganglia disinhibition of motif-specific thalamic
4 Cell Reports 35, 109090, June 1, 2021
units. We will show that this disinhibition can switch the dy-

namics of the motor system between a number of different con-

figurations, one per motif, such that the thalamocortical network

can implement a variety of motif-specific dynamics that enables

robust and accurate motor outputs that go beyond the expres-

sivity of the cortical network alone. Our cortical model is a stable

recurrent linear network with fixed connectivity, mirroring previ-

ous models of motor cortical dynamics during reaches (e.g.,

Hennequin et al., 2014; Churchland and Cunningham, 2014;

and Lara et al., 2018a). The dynamics of such a network is

composed of an ensemble of oscillatory ‘‘basis functions’’ (Fig-

ures 1C and 1D; see table at the beginning of the STARMethods

section 4.2.2), whose temporal characteristics—oscillation fre-

quency and decay rate—are typically limited to a specific range

that depends on the statistics of the recurrent weightmatrix (e.g.,

Figure 1E; and see Ahmadian et al., 2015; Bai, 1997; and Girko,

1985). For instance, if the cortical matrix is designed to favor sta-

ble dynamics, the basis functions will all decay much more

rapidly (Hennequin et al., 2014) relative to the slower dynamics

of many typical movements (Russo et al., 2018). In principle,

these basis functions can be combined in different ways to

generate a variety of motifs (Figures 1D and 1F), but—if there

is a mismatch between the temporal characteristics of a desired

motif and the temporal characteristics of the basis functions pre-

sent in the cortical network—accurate motif production will

require extremely large neural activities (such that the output re-

lies on a ‘‘fine-tuned’’ cancellation of the activities; Figures S1F–

S1L). In addition to being biologically implausible, such a solution

would be highly sensitive to noise perturbations (Figures S1K

and S1L). To generate such a motif robustly, the basis function

ensemble must be modified such that basis functions with

appropriate oscillatory and decay timescales are present within

the dynamics (Figures S1A–S1E), and we propose to do this

through thalamocortical loops.

Thalamic control of cortex requires that the activity of the large

cortical network be altered by a much smaller number of

thalamic units. To understand whether this is possible, we use

the fact that our model is linear within each motif, which permits

complete characterization of its dynamics. Specifically, the

effective synaptic connectivity matrix ~Jm determines the basis

functions of the combined thalamus-cortex system: their decay

rates and oscillation frequencies are given by the real and imag-

inary parts of the ‘‘eigenvalues’’ of ~Jm (Figure 1C, right; Figure 1E;

STARMethods section 4.2.2.2). Thus, whether or not a motif can

be realistically generated depends on the eigenvalues of ~Jm be-

ing set such that the motif can be constructed from a weighted

sum of the basis functions (Figures 1C–1F) without requiring

large neural activities. Because the neural activities directly

relate to the weighting (STAR Methods, section 4.2.2.2), a plau-

sible solution is one that constructs a motif by combining basis

functions with relatively small weights. Although, for any motif

m, there is no unique appropriate set of basis functions, we

wish to identify a small number of ‘‘desired’’ basis functions

that, if present together in the basis function ensemble, would

be sufficient for the network to accurately and robustly produce

the motif with reasonable activities. Specifically, we wish to

determine K decay rates and oscillation frequencies (i.e., eigen-

values) such that, when the corresponding basis functions are
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summed, the result both faithfully reproduces the desired motif

and does so under the constraint that the basis function weights

are small (Figures S1A–S1E; STAR Methods). These two condi-

tions enable accuracy, robustness, and plausible activities, while

the condition of requiring a small K minimizes the number of ba-

sis functions that need to be introduced into the dynamics

through thalamic control (Figures S1 and S2). Using these

criteria, we can determine such a set of desired basis functions

either numerically or, in some cases, analytically (STAR

Methods, sections 4.2.2.2 and 4.2.7; Figure S1).

Given these considerations, we ask: can we efficiently employ

thalamocortical loops in our model such that this set of desired

basis functions that would enable the network to produce a given

motif is certain to be present in the ensemble? To explore this,

we consider the minimal case in which a single thalamic unit is

left free to interact with cortex during motif m while all others

are inhibited by the basal ganglia. In this case, the effective con-

nectivity matrix in Equation 1 simplifies to ~Jm = Jcc +umv
T
m , where

um and vm are the thalamocortical and corticothalamic synaptic

weight vectors that are active during motif m. We show, under

light assumptions about the structure of Jcc, that a relationship

exists between um and vm such that the ensemble of basis func-

tions in our model is guaranteed to include the desired set (STAR

Methods, section 4.2.2). Specifically, if the decay rates and oscil-

lation frequencies of K desired basis functions are given by the

real and imaginary parts of ldesi (for i = 1;.;K) and the basis

functions of the unperturbed cortical network Jcc are given by

the N eigenvalues li, the relationship is

vm = LTdiagðL umÞ�1P+ 1; (Equation 2)

where the rows of L describe the directions in the high dimen-

sional space of the neural activity along which the basis func-

tions of the unperturbed cortical network lie (i.e., L is a matrix

of the left eigenvectors of Jcc) and P+ is the pseudoinverse of

a matrix with elements Pij = 1= ldesi � lj
� �

. For a given motif,

our goal of introducing K desired basis functions into the dy-

namics in principle imposes only K constraints on the 2N pa-

rameters defining um and vm. A sufficient way to satisfy these

constraints is to impose N relationships between um and vm
(through the pseudoinverse of P; see Equation 12 in STAR

Methods). The choice of how to make use of these N relation-

ships is arbitrary; one can, for example, choose to completely

define vm in terms of a random um (as in Equation 2 above and

Figures 2A–2C) or vice versa. In the following section, we will

take advantage of the remaining N degrees of freedom to in-

crease the robustness of the solution.

Figure 1E shows the ldesi for a set of desired basis functions

and the li for a random unperturbed cortical network (pink

crosses and red dots, respectively). After setting the corticotha-

lamic weights vm according to Equation 2 (with any random tha-

lamocortical weights um), the cortex-thalamus system contains

the desired basis functions (i.e., the eigenvalues of the effective

connectivity matrix ~Jm include the ldesi ; purple circles).

Equation 2 shows that, in principle, setting onlyN thalamocort-

ical synaptic weights is sufficient to control all the timescales of

the basis functions of the model cortex, a system with a much
larger N2 synaptic weights. However, there are limits to this con-

trol. If the number of desired basis functions is large or if their

timescales differ toomuch from those of the unperturbed cortical

network, it may be numerically difficult to satisfy Equation 2

(STAR Methods, section 4.2.2; Figure S2). This could, in princi-

ple, impose an effective constraint on the motifs that can be

generated. Fortunately, a wide variety of motifs—including oscil-

latory signals resembling, for example, themuscle activities seen

during primate behavior (Churchland et al., 2012; Russo et al.,

2018)—can be well described by a relatively small number of ba-

sis functions (i.e., K � N; see Figure S1). In this case, obtaining

the desired basis functions is stable (Figures 1E, S2, and S5) with

synaptic weights within the thalamocortical loop that are similar

in magnitude to the recurrent cortical weights (Figures 2C, 2F,

and S4). Furthermore, the changes in the cortical timescales

induced by individual motif-specific thalamocortical loops are

sufficient to dramatically and qualitatively expand the diversity

of the motifs that the network can produce (Figures S1 and

1E). Thus, despite the obvious challenge of remapping the dy-

namics of the large cortical network with a single thalamocortical

loop, the use of thalamocortical control loops greatly extends the

dynamics that could be achieved by using an unmodulated cor-

tex model.

In summary, our analysis demonstrates that a single thalamo-

cortical loop can powerfully modulate cortex by introducing into

the circuit dynamics a set of useful basis functions for a specific

motif.

Taming sensitivity to initial conditions
Generating the right set of basis functions within the cortical dy-

namics is necessary to produce a desired motif but omits a key

remaining step: setting the initial cortical activities (Churchland

et al., 2006; Shenoy et al., 2013; Churchland and Cunningham,

2014; Elsayed et al., 2016; Lara et al., 2018b; Zimnik andChurch-

land, 2021). In our model, these initial activities determine the

amplitude—and, for oscillating functions, phase—of each basis

function in the subsequent dynamics (Figures 1C and 1D).

Because each basis function has its own relative contribution

to the motor output—governed by the geometrical orientation

of the basis functions and the output weights in the space of

the dynamics—setting the amplitudes and phases appropriately

is necessary to ensure that the summed output gives a desired

motif (Equation 15 in STAR Methods, section 4.2.2.2). Here, we

study the robustness of motor output to the presence of noise

in the initial conditions. This is fundamental because any biolog-

ically plausible mechanism for setting the initial conditions must

be able to tolerate the large neural variability observed in

behaving animals (Churchland et al., 2010).

By expressing a desired motif as a weighted sum of basis

functions, we can calculate the initial cortical activities cinit
m

(STAR Methods, Equation 16) that will produce a given motif if

set exactly. However, if the thalamocortical ðumÞ and corticotha-

lamic ðvmÞ weights satisfy the constraints given in the previous

section (Equation 2) but are not further constrained (i.e., um is

random), the system output can be catastrophically affected if

the initial activity pattern is perturbed even slightly (Figure 2A).

This occurs even in the stable regime where all basis functions

in the network undergo decay (Figure 1E).
Cell Reports 35, 109090, June 1, 2021 5
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Figure 2. Noise-robust motif execution

(A–C) Corticothalamic weights vm adjusted to control the dynamics’ timescales as in Figure 1E (with Equation 2), while the thalamocortical weights um are random

(as indicated with the dashed line in the schematic on the left).

(A) Desired and actual system outputs in the presence and absence of noise in the initial cortical activities (cinit
m from Equation 16). Noise is Gaussian i.i.d. with

standard deviation equal to 1% of the root-mean-squared norm of the activities in the noiseless setting.

(B) Amplification of noise due to alignment of the directions of the basis functions. If the output weightsw and some directions of large noise amplification overlap,

the output is highly noise sensitive.

(C) Distributions of intracortical and loop weights with um sampled from a centered Gaussian distribution scaled such that um and vm have equal norm (STAR

Methods, section 4.2.5).

(D–F) Same as (A)–(C) but with the thalamocortical weights um optimized to minimize the effect of noise in the initial activity. Noise has a negligible effect on the

output (D) because all directions of large noise amplification and the output vector are no longer aligned (E). Additionally, the distribution of the loop weights

narrows (F).

(G) Distributions of the cosine of the angles between pairs of basis functions’ directions (i.e., eigenvectors). Larger values indicate that a pair of directions are

nearly parallel (STAR Methods, section 4.2.3).

(H) Root-mean-squared error of the output in the presence of 1% noise. Compared to the case of random um (1), the noise-induced error is substantially

diminished after optimization (2) and is on par with errors observed using matrices with the same timescales as ~Jm but with basis function directions that match

those of random Gaussian matrices (3) or are orthogonal (4). See STAR Methods, section 4.2.3 for details.

(I) Average root-mean-squared norm of the activity vector cwhen the initial activity is sampled from a random noise vector of norm one (from Equation 20 in STAR

Methods). Optimizing um reduces the length of the activity vector (1 versus 2), but not to lengths observed with random or orthogonal directions of basis functions

(3 and 4), indicating that optimization does not fully eliminate non-normal amplification.

The data in (G)–(I) were generated from 50 random networks (i.e., random samples of Jcc andw) with five randomly sampled um per network; (H) and (I) used five

matrices with random and orthogonal directions of basis functions per network. N= 500 throughout. Boxplots indicate the median (red line), the 25th and 75th

percentiles (edges of the box), the range of the data beyond these percentiles while staying no more than 1.5 times the interquartile interval away (whiskers), and

outliers (crosses).
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We can understand this through our analysis which reveals

that, in order for a motif to be produced in a noise-robust way

with reasonable neural activities, the requirement that the motif

be decomposable into a sum of basis functions with small

weights is incomplete. This requirement would be sufficient to

ensure reasonable magnitude neural activities if the geometry

of the network dynamics was ‘‘regular’’ (i.e., if the directions of

the basis functions were close to orthogonal). If the basis func-

tions are aligned, however, this sets up the potential for the neu-

ral activities—which themselves can be written as sums of basis

functions—to require large weights and thus have large magni-

tudes (Figure 1D; Equations 16, 20, and 21 in STAR Methods).

Then, as the dynamics evolve, large noise-amplifying activity

transients can be observed, a phenomenon known as non-

normal amplification (Ganguli et al., 2008; Murphy and Miller,

2009; Hennequin et al., 2012; Bondanelli and Ostojic, 2020).

Indeed, in our case, we show that, by forcing the dynamics to

include our desired basis functions via Equation 2, the directions

of the basis functions will tend to be aligned with each other.

Thus, it is imperative that the geometry of the cortical dynamics

can be constrained through thalamic influence.

Fortunately, the conditions on the thalamocortical and corti-

cothalamic weights required to generate a set of basis func-

tions with desired decay rates and oscillation frequencies

(Equation 2) do not completely specify both sets of these

weights. This raises the possibility that they can be selected

to make the motor output more robust to deviations in the initial

conditions by controlling the geometry of the dynamics. In fact,

noise robustness is only needed in the directions of the dy-

namics that are aligned with the output weights w. Our model

permits an analytic calculation of the output error in the pres-

ence of initial noise as a function of the thalamocortical weights,

and therefore, we optimized these weights to minimize this er-

ror (STAR Methods, section 4.2.3). Importantly, this optimiza-

tion does not affect the decay rates and oscillation frequencies

of the basis functions but instead exclusively acts on the direc-

tions along which the basis functions lie and thus the properties

of non-normal amplification in the system (STAR Methods, sec-

tions 4.2.2 and 4.2.3). After optimization, we find that produc-

tion of the motor output is robust to initial noise (Figure 2D),

with errors on par with those seen using ‘‘control’’ connectivity

matrices that have the same basis functions as ~Jm but are con-

structed to have little or no non-normal amplification (Figure 2H).

This is achieved even though the controlled basis functions stay

relatively aligned (Figure 2G), meaning that the remaining non-

normal amplification is restricted to non-output dimensions

(Figures 2E, 2I, S3D, and S3E; STAR Methods, section 4.2.3).

Therefore, after full optimization of the thalamocortical loop,

the activities in the network are of moderate magnitudes (Fig-

ures 3E and 3F), with norms (Figure S3E) that indicate that

the directions of larger activity patterns tend to not fully align

with the readout weights (which themselves have unit norm).

Likewise, moderately large neural activity patterns in move-

ment-irrelevant dimensions have been observed in motor

cortical dynamics (Russo et al., 2018; Saxena et al., 2021).

Finally, we find that noise-robust solutions lead to smaller mag-

nitudes of the thalamocortical loop weights compared to unop-

timized networks (Figures 2C and 2F).
These results show that adjusting both the corticothalamic

and thalamocortical synaptic weights is a mechanism by which

a thalamocortical loop can achieve the dual goals of sculpting

the cortical dynamics to provide the basis functions formotif pro-

duction and stabilizing the motor output with respect to devia-

tions in the neural activity.
Thalamocortical loops can prepare cortex to execute
each motif
We now turn to the question of how the cortex-thalamus system

can prepare the initial activities needed to generate a motif

(Churchland et al., 2006; Shenoy et al., 2013; Churchland and

Cunningham, 2014; Elsayed et al., 2016; Lara et al., 2018b).

This preparation should not depend on the cortical activity at

the start of the preparatory period or else the motor system

would need to explicitly learn the transitions between all pairs

of motifs, producing a quadratic dependence on the number of

motifs and preventing improvisation of new sequences. Addi-

tionally, it should be possible to achieve preparation quickly

(Lara et al., 2018b). Here, we assume that an input that specifies

the upcoming motif can be delivered to the motor system during

motor preparation. This input could arise, for example, from fron-

tal cortex and reflect goals (Russo et al., 2020; Kornysheva and

Diedrichsen, 2014) or from the sensory system to cue a behav-

ioral response to a stimulus (Dacre et al., 2019). We also assume

that the basal ganglia (Jin and Costa, 2010; Jin et al., 2014) can

select preparation-specific thalamocortical loops that are active

only during the preparatory period. Importantly, these prepara-

tory loops can be reused for the transitions between all pairs of

motifs. Thus, we propose that preparation is split computation-

ally into two components: the specificity for the upcoming motif

is determined by amotif-specific input, while the preparation dy-

namics are shaped generically through thalamic modulation of

cortex (Figure 3A).

Turning to our model, the effective connectivity of the cortex-

thalamus system during preparation is given by Jprep =

Jcc + JctSprepJtc, where Sprep determines the thalamic units that

are active during preparation (Figure 3A). Then, if xm is the input

specific to upcoming motif m, the cortical dynamics are given by
_c = � c+ Jprepc+ xm. With these dynamics (whichwe can ensure

are stable) and if xm is set appropriately, the cortical activity will

converge to the desired initial state for the upcoming motif cinit
m

(Equation 24 in STAR Methods, section 4.2.4).

This ‘‘decay to steady state’’ mechanism is independent of the

cortical activity both at the start of preparation (which is the end

of the previous motif) and throughout the new motif. Thus, a sin-

gle preparatory network can serve all possible motif transitions

despite having no synaptic weights that are trained on specific

transitions.

The speed of preparation depends on how quickly the desired

initial activity state can be reached. Because the dynamics of

convergence to steady state are independent of the input (Equa-

tion 26 in STAR Methods, section 4.2.4), if thalamocortical loops

generate fast decay dynamics, they can be used for quick prep-

aration of any upcomingmotif. Tuning of thalamocortical loops is

required because, when the unperturbed cortical network is cho-

sen to include slow dynamics to aid in motif generation, its
Cell Reports 35, 109090, June 1, 2021 7
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Figure 3. Motif preparation
(A) Effective thalamocortical network during the preparatory period.

(B) Decay of the magnitude of the difference between the cortical rates and their steady state for an optimized thalamocortical preparatory network (solid purple:

average; dashed purple: individual trials) and for the unperturbed cortical network (red).

(C) Timescale parameters of the optimized preparatory cortex-thalamus network (purple circles), compared to those of the unperturbed cortical network (red

dots). Conventions as in Figure 1E. See also Figures S6D and S6J.

(D) Time for the cortical activity vector to decay by either 95% or 99% of its initial value as a function of the number of thalamic units used in the preparatory

network relative to the number of cortical units. For a fixed proportion of thalamic units, the decay time is similar between different numbers of cortical units. The

arrow indicates the proportion of thalamic neurons used in other panels.

(E) Preparing and executing two motif variations m (which is identical to the output in Figure 2) and m0 when using the same thalamocortical loop during motif

execution. Top: schematic of the thalamocortical circuits involved. Example basis functions are also shown—for each motif variation, the basis functions’

exponential decay rates and oscillation frequencies are fixed, but their initial amplitudeA and phase 4 are set via x. Middle: network output. Bottom: two example

cortical units. Network activities were initialized with random standard normal values.

(F) Three sample motif preparations and executions when systematically varying the neural activities at motif start along a line in neural space. Conventions are as

in (E).

N= 500 for (A)–(C), (E), and (F). In all panels except (D), the thalamic population has 10% of the number of cortical units.

Article
ll

OPEN ACCESS
intrinsic convergence to steady state is too slow to support effi-

cient preparation (Figure 3B, red).

To find corticothalamic and thalamocortical weights that

encourage rapid preparation, we optimized the relevant weights

of Jct and Jtc to minimize the convergence time while ensuring

smoothness in the network output (STAR Methods, section

4.2.4; Figure S6). Using a thalamic population that has 10% of

the number of cortical units, convergence to steady state occurs

in just a few time constants of the cortical rate model (Figure 3B,

purple). This occurs because all basis functions of the prepara-

tory network have fast exponential decay rates (Figures 3C,

S6D, and S6J). Increasing the size of the thalamic preparatory

population leads to faster convergence times (Figure 3D).

Furthermore, after optimization, the thalamocortical loop

weights can have magnitudes that are comparable to the intra-

cortical weights (STAR Methods, section 4.2.4; Figures S6E

and S6K). The size of the thalamic population needed for prepa-

ration is considerably larger than what is needed for the produc-

tion of any single motif. This is because, during production, the

readout is the only constrained direction, whereas during prepa-

ration, all units are constrained.
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This preparatorymechanism suggests thatmovements can be

divided into two categories. In the previous sections, we have

considered the casewhere different movements require different

dynamics, corresponding to different basis functions, that are

implemented by different thalamocortical loops. There is also

the case where the same dynamics can be reused to generate

novel movements by exclusively modifying motor preparation.

Different inputs during preparation change the activities at the

start of motif production—and thus the amplitudes and phases

of the basis functions—resulting in different outputs. We can

call these ‘‘motif variants’’ to disambiguate them from different

motifs that require all new dynamics. In Figure 3E, motif variants

m and m0 can share the same circuit dynamics during execution

ð~JmÞ as long as their initial activities can be prepared with appro-

priate inputs. However, we stress that a distinctly shaped new

movement cannot always be robustly and accurately con-

structed as a variant of some previously learned motif m (or

equivalently constructed from a fixed linear network; Figure S1)

because the fixed dynamics constrain the basis functions’ time-

scales and directions. The concept of motif variants is supported

by results showing that, when primates prepare and reach to
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different targets (Lara et al., 2018a; Churchland and Cunning-

ham, 2014), the cortical activities across these movements can

be well captured by shared linear dynamics. Furthermore, evi-

dence suggests that structured variability at the end of the pre-

paratory period correlates with output variability for similar

movements (Churchland et al., 2006; Vyas et al., 2018), as is

also the case in our model, specifically among motif variants

(Figure 3F). This effect does not hold across different motifs,

consistent with experiments that explored more varied move-

ments (Al Borno et al., 2020; Sun et al., 2020).

In summary, we have shown that thalamocortical loops can

modify the motor system dynamics to quickly drive the cortical

activity toward a particular initial condition needed for an up-

coming behavior. As we shall see in the following section, this

enables near-seamless transitioning between motifs during

sequence generation. Importantly, the same preparatory thala-

mocortical loop can be used to prepare any upcoming motif,

with motif specificity coming from inputs to the system.

Switching between thalamocortical loops robustly and
flexibly generates complex motor sequences
The components of the motor circuit discussed in the preceding

sections can be combined to implement arbitrary motif se-

quences. The basal ganglia are the ‘‘selectors’’ of the system,

dictating which sequence elements to perform and in which or-

der. Via their inputs to thalamus, the basal ganglia alternate be-

tween disinhibiting different thalamocortical loops for the prepa-

ration of motif-specific initial conditions in cortex and the

subsequent execution of those motifs (Figure 4A). The cortex-

thalamus system is the ‘‘executor,’’ implementing the necessary

dynamics needed to prepare and execute each motif. During the

preparatory period, the cortical activities converge toward a

static pattern associated with the upcoming motif, while during

execution, motif-specific activity is generated (Figure 4B).

In ourmodel, basal ganglia act as a critical nonlinearity, turning

on and off different thalamocortical loops and thus changing the

cortical dynamics per motif. In contrast, a naive baseline linear

network that could support similarly rich sequence generation

would effectively require a different subnetwork for each motif

(compare Figure 4C, left and right). The total number of units Nu-

nits required by ourmodel scales as the sumof the number ofmo-

tifs Nmotifs and the number of basis functions K required for each

motif (which is a lower bound on the size of the cortical network).

A fully linear solution, on the other hand, would require� KNmotifs

units. These considerations emphasize how, during motif pro-

duction, the control of many basis functions by a smaller number

of thalamocortical loops—possibly as few as one, as we demon-

strate here—is a key factor for the efficiency of our model. This

makes it clear that the presence of strong nonlinear inhibition

at a specific location in the thalamocortical architecture bal-

ances the goals of keeping Nunits low while maintaining segrega-

tion of motif-specific circuit elements and providing a simple and

plausible solution for adding motifs to the system.

Once a set of motifs is learned, any arbitrary motif sequence

order can be generated by the network (Figure 4D). Just prior

to the onset time for the next motif (here, we use 5 times the

cortical rate model time constant), the active thalamocortical

loop is switched to the preparatory loop and the preparatory
input for the next motif is supplied to the circuit. During the tran-

sition period, the cortical activity approaches the appropriate

initial condition for the upcoming motif. After this, removal of

xm, inhibition of the preparatory loop, and disinhibition of the

appropriate thalamic unit results in the execution of the next

motif. Due to the smoothness constraint mentioned in the previ-

ous section, themotor output smoothly interpolates from the end

of the prior motif to the start of the next one over the course of the

transition period (even when those two output values differ sub-

stantially; STAR Methods, section 4.2.4; Logiaco and Escola,

2020). Notably, the need to invoke motor preparation dynamics

for each motif transition—which arises in our network for purely

computational reasons—argues against the ‘‘chunking’’ theory

of motor sequences (Sakai et al., 2003; Abrahamse et al.,

2013) and mirrors recent experimental results in primates, which

show preparatory activity prior to each component of fast reach

sequences (Zimnik and Churchland, 2021).

DISCUSSION

We have developed a model of the cortex-thalamus system that

can produce sequences composed from an extensible library of

motifs generated in arbitrary order. Mechanistically, this relies on

switching linear dynamics where the switches—which are

aligned to the transitions during sequence production—are trig-

gered by basal ganglia disinhibition of specific thalamocortical

loops with tuned weights.

The linearity of our model during motif execution makes it

analytically tractable, while the nonlinear inactivation of thalamic

units gives it flexibility. Indeed, any nonlinear dynamical system

can be approximated by switching linear dynamics, with

increasing precision (but decreasing tractability) when the

switching frequency increases. In the context of motor

sequencing, switching is useful to quickly stabilize and adjust

the dynamics at each motif transition and to support motif-spe-

cific dynamical regimes. In contrast, although linear dynamical

systems can have fixed points and interesting transient dy-

namics, they cannot modify their dynamics to suit different mo-

tifs. The thalamic modulation of cortical dynamics during

different motifs therefore expands the expressivity of the linear

networks previously used to model motor cortical dynamics

(Hennequin et al., 2014; Churchland and Cunningham, 2014;

Lara et al., 2018a).

Comparison to prior modeling work
We considered the case of a single thalamic unit active during

motif execution that results in a ‘‘rank-one’’ perturbation to the cir-

cuit dynamics. Thisminimal change, coupledwith thewithin-motif

linearity of our model, allowed us to fully characterize the dy-

namics while accounting for the detailed structure of all the

weights. This revealed that a single unit can robustly shape theac-

tivity of a recurrent network and expands a body of research using

recurrent networks with dynamics defined by the sum of full-rank

and low-rank matrices (Sussillo and Abbott, 2009; Rivkind and

Barak, 2017; Mastrogiuseppe and Ostojic, 2018, 2019; Landau

and Sompolinsky, 2018; Schuessler et al., 2020; Sch€ußler et al.,

2020; Susman et al., 2021). Notably, the mathematical analysis

of these networks used to focus on cases where the low-rank
Cell Reports 35, 109090, June 1, 2021 9
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Figure 4. Flexible motor sequencing

(A) Schematic of the cortex-thalamus system. The input from the basal ganglia selects thalamic units needed for either motif execution or preparation. During

preparation, the cortical population also receives an input xm specific to the upcoming motif m.

(B) Preparation and execution of three example motifs. When the preparatory thalamic units interact with cortex, the system output (upper) and cortical units

(lower) converge to the values needed for the upcoming motif. (Here, for visualization purposes, the preparatory period was made much longer than needed.)

Upon disinhibition of the motif-specific execution loops, the target motifs (upper) are composed from thalamic and cortical activities (middle and lower). These

motifs are composed from a linear combination of motif-specific basis functions (top), with different (1) directions in neural space, (2) timescales, and (3) initial

amplitudes and phases.

(C) Comparison of the thalamocortical network with a ‘‘baseline’’ linear network. These two architectures are shown during the production of motif ‘‘A,’’ and active

elements of the circuits are drawn in bright colors while inactive elements are grayed out. In the thalamocortical network (left), the total number of units in the

network Nunits is given as the number of motifs Nmotifs added to the fixed sizes of the cortical network and of the preparatory network. As newmotifs are added to

the library, this implies a scaling of network size withNmotifs. In contrast, in a linear network (right), a subnetwork of size K (i.e., the number of basis functions used

for motif construction) is required for each motif giving a total scaling of KNmotifs.

(D) Generation of sequences of arbitrary orders, using preparatory periods (between vertical dashed lines) before executing each motif.

Article
ll

OPEN ACCESS
perturbation dominates the resulting dynamics (Mastrogiuseppe

and Ostojic, 2018; Landau and Sompolinsky, 2018) or on manip-

ulating the timescales (the eigenvalues) of thesystem (Rivkind and

Barak,2017;MastrogiuseppeandOstojic, 2019;Schuessler et al.,

2020). Instead, our analysis reveals that we can fully tune the low-

rank matrix to match features of the detailed structure of both the

full-rank matrix and the output weights, which enables control of

both the timescales and the directions of the basis functions (their

eigenvectors). By doing so, we can robustly shape high dimen-

sional activity, which can then be used for the flexible production

of complex temporal outputs.

Though flexible motor sequencing is routinely performed by

animals, it remains a challenge in machine learning (Merel

et al., 2019b; Merel et al., 2019a; Logiaco and Escola, 2020).
10 Cell Reports 35, 109090, June 1, 2021
Sequencing requires both that new motifs can be learned

without destroying previously learned ones (He and Jaeger,

2018; Riemer et al., 2019) and that motif sequences can be

generated in orders never experienced during training (Belkin

et al., 2018; Geirhos et al., 2018; Merel et al., 2019a, 2019b)—

two flexibility requirements that can lead to catastrophic failures

with state-of-the-art methods (Logiaco and Escola, 2020).

Guided by biological and formal principles, our thalamocortical

network overcomes both of these challenges. First, different mo-

tifs can be learned with completely separate sets of parameters,

preventing interference while still benefiting from the rich dy-

namics of the shared cortical network. Specifically, the capacity

of the network for producing large numbers of motifs is only

limited by the number of thalamic units. In addition, by
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segregating the units that control cortical dynamics into their

own non-recurrent brain region where activity cannot spread

laterally—the thalamus—our model avoids the problem of inter-

ference between motifs. Finally, segregating the control units

into thalamus facilitates two biological processes: inputting the

switch commands into the circuit and learning the motif-specific

synapses. Second, our preparatory network, which is motif inde-

pendent, can implement any transition, including novel ones. We

further show that transitions can be fast even under the

constraint that the size of the preparatory thalamic population

is a fraction of the size of cortex. Interestingly, recent results

(Logiaco and Escola, 2020) demonstrate that the insights from

the switching-linear thalamocortical model presented in this

article are relevant to improving both robustness and accuracy

in a continuously nonlinear network solving a hierarchical control

task (Merel et al., 2019a).

Our implementation of motor preparation shares similarities

with an alternative thalamic preparatory circuit that was recently

developed (Kao et al., 2021). The key difference between the two

approaches is that the thalamic preparatory network we propose

is designed to generically handle any upcoming movement dy-

namics, whereas Kao et al. propose a preparatory network

with synaptic weights that are matched to specific upcoming dy-

namics, yielding very efficient motor preparation. From a func-

tional viewpoint, the two approaches have complementary

strengths. The latter approach is clearly advantageous in a

context in which a given dynamics is reused to create different

motif variations (e.g., by changing the initial activities in cortex

as in Figures 3E and 3F). However, in a context with multiple

complex motifs requiring different dynamics (Figure 4), our pre-

paratory network can be used to prepare all motifs while still im-

plementing fast transitions. More generally, during motor prepa-

ration or motor production, our results emphasize that even a

limited number of thalamic units can potently remap cortical dy-

namics, so that the thalamocortical circuit can extensibly learn

and flexibly perform the motor sequencing task while using neu-

ral resources relatively sparingly.

Our model captures key experimental findings
Our model captures several important features of motor cortical

activity, despite the fact that we did not impose biological con-

straints other than the type of dynamical regime and basic anat-

omy. Notably, we observe prominent oscillatory patterns of neu-

ral activity duringmotif execution (Russo et al., 2018; Churchland

and Cunningham, 2014). We require an obligatory preparatory

period before movement execution (Lara et al., 2018b; Shenoy

et al., 2013). Variability in the cortical activity at the end of the

preparatory period can correlate with variability in the motor

output (Churchland et al., 2006; Vyas et al., 2018). Perhaps

most interestingly, our model stipulates that preparatory periods

are required even within ongoing motor sequences, specifically

at the transition times between motifs. This mechanism is in

contrast to the view that highly repeated motor sequences

become chunks that are executed en bloc following their initia-

tion (Sakai et al., 2003; Abrahamse et al., 2013). Recently, motor

cortex recordings have shown that motor preparation occurs

before starting each sequence element during rapidly executed

sequences (Zimnik and Churchland, 2021), supporting our hy-
pothesis that—at least in certain settings—chunking does not

occur at the level of motor cortex.

Model limitations and extensions
Certain aspects of our model are considerably simplified

compared to the full complexity of the biological circuit. Notably,

we assumed (1) that, during specific motifs, all cortical units and

all disinhibited thalamic units are in a linear regime and (2) that

thalamus is instantaneous with respect to cortex. In STAR

Methods, sections 4.2.5 and 4.2.6, we explain how it is possible

to relax these two simplifications by using standard rectified

units in place of linear units in both cortex and thalamus and

by setting the thalamic time constant to be ten times faster

than cortex rather than infinitely fast. We have verified that there

exists a dynamical regime under which the model can still

generate motif sequences with dynamics that closely follow

our idealized theoretical framework (Figure S7).

To keep the exposition of our results focused on general

mechanisms by which a motor sequential task can be solved

by a recurrent network, we did not try to optimize the statistics

of the recurrent connectivity matrix or of the motor motifs to fit

a particular dataset. However, the thalamic control mechanisms

proposed in this work could be combined with different putative

types of cortical connectivity matrices, such as those that have

been shown to capture specific statistics of cortical activity re-

corded while primates perform hand reaches (Hennequin et al.,

2014; Kao et al., 2021).

Furthermore, sensory feedback is absent in our model. In

many realistic settings, sensory feedback is likely to be key in

organizing the sequence, as well as in providing error-correcting

information (Penhune and Steele, 2012; Guo et al., 2020; Dacre

et al., 2019). Our thalamocortical model could be extended by

introducing a cerebellar module, which could fine-tune cortical

dynamics in response to sensory feedback and/or contribute

to motif selection and tuning. More generally, in our model, tran-

sitions between motifs are ‘‘externally’’ triggered by altering the

pattern of basal ganglia input to the thalamus. In the brain, it is

likely that the striatum is involved in this process by inhibiting

neurons in the GPi/SNr (the output nuclei of the basal ganglia)

at times determined by its monitoring of cortical activity. In

particular, frontal brain regions, which project back to the basal

ganglia (McFarland and Haber, 2000) and whose firing rates can

reflect the abstract sequential structure of a task (Tanji and

Shima, 1994; Clower and Alexander, 1998; Procyk et al., 2000;

Russo et al., 2020), are good candidates for planning and con-

trolling sequence generation in this way. Alternatively, other

brain structures could participate in themechanisms for thalamic

disinhibition—the key functional feature of our model. For

example, cerebellar outputs could modulate cortex-thalamus in-

teractions (Nashef et al., 2021) through indirect disinhibitory sig-

nals, e.g., passing through the thalamic reticular nucleus (Arcelli

et al., 1997).

Finally, our work does not address the mechanisms by which a

biologically plausible learning rule could allow the brain to learn

the synaptic weights of thalamocortical loops. The most straight-

forward interpretation of our model would suggest that plasticity

occurs at the level of the synapses of the direct thalamocortical

and corticothalamic projections—for which there is some
Cell Reports 35, 109090, June 1, 2021 11
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evidence (Pigeat et al., 2015; Oberlaender et al., 2012; Yu et al.,

2012; Hsu et al., 2010; Castro-Alamancos and Calcagnotto,

1999). However, plasticity could also occur anywhere within an

effective feedforward subnetwork between the thalamic and

cortical populations involved in the dynamic production of motor

commands. Our model assumes that the synaptic weights be-

tween units can be tuned to an accuracy of up to about 0.1%

of the magnitude of the cortical weights (Figure S5), a similar

constraint as for recurrent networks trained with an online algo-

rithm (Sussillo and Barak, 2013). This fine-tuning requirement

would be somewhat mitigated by mapping each model unit to a

population of biological neurons and matching the model’s syn-

aptic weights to effective weights between populations (Mongillo

et al., 2017). Furtherworkwill be needed to investigatewhether, in

the context of ourmodel, the level of synaptic fine-tuning required

for generating a complex motor sequence with a realistic number

of units can be within a biologically plausible range.

Experimental predictions
Our model makes experimental predictions that can be tested in

animals engaged in flexible motor sequencing tasks. First, we

predict that changes in the activity patterns either in thalamus

or in the basal ganglia should immediately precede, and be caus-

ally related to, changes in cortical dynamics. Recently developed

data analysis tools (Linderman et al., 2017) can infer switch times

between different dynamical regimes in neural population re-

cordings. Thus, simultaneous recordings in motor cortex and

either thalamus or GPi/SNr could be used to test this prediction.

Similarly, we predict that switch times in thalamic activity pat-

terns, as well as switch times in cortical dynamics, would reflect

points of change in muscle activity delineating reusable behav-

ioral primitives (Zimnik and Churchland, 2021). Further, motor

preparation is predicted to involve the activation of a substantial

thalamic population, considerably larger than for the execution

of any single motif, which appears consistent with recent results

(Nashef et al., 2021). Next, we predict that perturbative experi-

ments in GPi/SNr and thalamus would have differential effects.

A controlled alteration of activity patterns in the basal ganglia

could modify the order of motifs while leaving individual motifs

unchanged. Perturbing thalamocortical interactions during a

motif, on the other hand, would affect cortical dynamics and

would thus disrupt motor execution. This is in line with recent

experimental results demonstrating the need for time-depen-

dent thalamic input to motor cortex during movements (Sauer-

brei et al., 2020) and would additionally suggest a critical role

for the feedback from cortex to thalamus. In addition, our model

posits that thalamocortical interactions can remap cortical dy-

namics to produce the basis functions needed for the execution

of each motif. This is compatible with experimental reports

showing substantial changes in motor cortical activity between

different movements and/or contexts (Miri et al., 2017; Al Borno

et al., 2020; Sun et al., 2020), as well as during prolonged brain

machine interface training (Oby et al., 2019). Further analyses

will be needed to investigate whether these large changes of

cortical activity relate to changes in the effective cortical connec-

tivity (Feulner and Clopath, 2021). Finally, our model also postu-

lates that the thalamic neurons involved in shaping cortical dy-

namics during motif execution are segregated into motif-
12 Cell Reports 35, 109090, June 1, 2021
specific subpopulations. This prediction could be tested by

correlating recordings in thalamus with behavior during a flexible

sequencing task, ideally during the acquisition of new motifs.

Interestingly, a study showed that, when training an animal on

two distinct motor tasks, learning for each task is associated

with its own synaptic subpopulation in a thalamic-recipient layer

of motor cortex (Hayashi-Takagi et al., 2015; Kaneko, 2013). Our

interpretation would be that these subpopulations are receiving

inputs from motif-specific neurons in thalamus.
Conclusions
In conclusion, our corticothalamocortical model suggests a

mechanism for flexible and robust sequence generation and

leads to experimental predictions that can further our under-

standing ofmotor system function. In addition, ourmodel reveals

how complex cognitive processes may rely on neural systems

operating on very different timescales. First, slow learning

through the adjustment of synaptic weights can construct a li-

brary of cognitive building blocks, such as motifs. Then,

assuming the network architecture is appropriately con-

strained—as in the case of motif-specific units in the thal-

amus—the flexible organization of these cognitive building

blocks can be achieved online through a selection process like

the one that we propose is implemented in the basal ganglia.
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METHOD DETAILS

Here, we formally define our model and derive several properties that we have illustrated in themain text figures.We then explain how

additional biological constraints – such as finite timescales and firing rate positivity – can be added to the model while staying within

the validity domain of our simplified mathematical framework. In the main text, we have aimed to use intuitive words to describe the

mechanisms by which our model produces output; however here we will use the corresponding technical terms to make the text as

clear as possible for the computationally-oriented reader. We list the equivalencies between the names used in the main text and the

mathematical terminology in the table below.
Correspondence between intuitive and technical terms

Main text phrase Technical term

Basis function of the dynamics eigenmode

Timescale parameter for each basis function eigenvalue l

Direction/axis of basis function eigenvector
4.2.1 Model definition
Here, we give a short derivation of the simplified rate equations we use in the main text (Equation 1). A longer derivation linking these

rate equations to more biologically plausible neuronal dynamics is provided in STAR Methods section 4.2.5.

We consider a rate description of population neural dynamics (Gerstner et al., 2009), where the cortical activities c and thalamic

activities t interact according to: (
_c= � c + Jcc c + Jct ½t�+ + x ðEquation 3Þ
tt _t= � t + Jtc c+b; ðEquation 4Þ

where Jcc is the recurrent cortical connectivity matrix, Jct is the thalamocortical weight matrix, Jtc is the corticothalamic weight ma-

trix, and x and b are external inputs. Finally, ½ �+ is the rectified nonlinearity. Note that these equations assume that cortical dynamics

stays in a quasi-linear regime so that the cortical rates do not need to be passed through rectification. Also, note that the dynamics

are expressed in units of the cortical timescale (that we normalized to one in our figures).

In addition, we analyze themodel in the limit in which the thalamic dynamics are fast compared to cortical dynamics – which would

be expected given that positive recurrent feedback, which is present in cortex but not in thalamus (Arcelli et al., 1997; Sherman,
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2016), often results in slower timescales of neuronal population dynamics (Seung et al., 2000; Lim and Goldman, 2013). In this limit,

t = Jtc c+b. In addition, we consider that during a particular stage ‘s’ of the task (e.g., during motif execution or preparation), the

thalamic units are separated into two groups indexed by a diagonal ‘selection’ matrix Ss: those who are fully shut off by their basal

ganglia inputs, which correspond to zeros in the diagonal ofSs; and thosewho are left free to interact linearly with cortex, which corre-

spond to ones in the diagonal ofSs. Then, during the task stage s, we can find amapping between ½t�+ and the thalamic activity vectorbt =SsJtc c (see STAR Methods 4.2.5 for details) such that we can write:

_c = � c+ Jcc c+ Jct SsJtc c+ xs (Equation 5)

Depending on the particular stage considered –motif production ormotor preparation – the characteristics of the cortical input xs and

of the selection matrix Ss will be different, as we explain below.

Motif execution dynamics

During the execution of a given motif dynamics m, we study the minimal case when a single motif-specific thalamic unit is left free to

interact with cortex, such that the matrix Ss =Sm has a single non-zero entry on row m. Therefore, Jct bt =umv
u
m c where um is the mth

column of Jct and vum is the mth line of Jtc. In addition, there is no input needed during motif, so xs = 0, and we get:

_c = � c+ Jccc+umv
u
m c : = � c+ ~Jmc: (Equation 6)

Hence, the thalamocortical loop involved in the execution of motif m effectively implements a rank-one perturbation umv
u
m of the con-

nectivity Jcc to create an effective motif-specific connectivity ~Jm.

Motor preparation dynamics

We assume that for the preparation of any motif, a specific population of Nprep thalamic neurons interact with cortex such that Ss =

Sprep where Sprep hasNprep non-zero entries that are separate from the entries corresponding to motif execution units. In addition, for

the preparation of a given motif variation which starts with the ideal cortical activity pattern cinit
m , the input xm is added to the circuit, so

that the dynamics is:

_c = � c+ JctSprepJtc + xm : = � c+ ~Jprepc+ xm: (Equation 7)

If the dynamics are asymptotically stable (which is one of the aims of the design of the connectivity JctSprepJtc, as we will explain in

STAR Methods section 4.2.4), then by choosing xm = � ð~Jprep � IÞcinit
m , the activities indeed converge toward cinit

m .

Now that we have formally defined the dynamics of our model, we will describe how the thalamocortical perturbation weights can

shape the cortical dynamics to support flexible motor sequencing.

4.2.2 Eigenvalue control for motif sculpting
In this section, we focus on the dynamics of the circuit during the production of the motif m, associated with the effective connectivity

matrix ~Jm. For the sake of equation compactness, in this section we omit the index m for the associated thalamocortical loop vectors u

and v as well as for the eigenvalues ½~li�1%i%N and the left and right eigenvector matrices ~L and ~R of ~Jm.

The eigenvalues ~l1.~li.~lN of the effective motif-specific connectivity ~Jm obey the characteristic equation:

0=det Jcc � ~li I+uvu
� �

= 1+ vu Jcc � ~li I
� ��1

u
� �

det Jcc � ~li I
� �

;

wherewe assumed that Jcc is an invertiblematrix whose eigenvalues are all distinct from all ½~li�1%i%N so that Jcc � ~li I is invertible, and

we used the matrix determinant lemma to write the second equality. In addition, these assumptions we make on Jcc imply that

detðJcc � ~li IÞs0, so the above equation implies:

1= vu ~li I� Jcc

� ��1
u : (Equation 8)

We then further assume that Jcc is diagonalizable and use the eigendecomposition procedure to write Jcc = RdiagðlÞL, where we

have concatenated the eigenvalues l1;.; lN in the vector l, and L andR arematrices regrouping the left and right eigenvectors of the

matrix Jcc. This allows us to expand ð~li I� JccÞ�1 = R diagð~li � lÞ�1 L, where diagð~li � lÞ�1 is a diagonal matrix whose element on

the jth row and column is 1=ð~li � ljÞ. We can then rewrite Equation 8 to get:

1= vuR diag ~li � l
� ��1

Lu : (Equation 9)

Note that Equation 9 is valid for all eigenvalues ~li of ~Jm. As a consequence, in order for the eigenspectrum of ~Jm to include an ensemble

of K%N desired eigenvalues ldesi , then – with the K3Nmatrix P defined to have elements Pij = 1= ldesi � lj
� �

– the following system of

equations holds:

1 = P diagðRuvÞ Lu (Equation 10)
=P diagðLuÞ Ruv; (Equation 11)
Cell Reports 35, 109090, June 1, 2021 e2
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where 1 is a vector of ones. Note that these two expressions are equivalent and that they restate Equation 9 as a linear equation for

either u or v instead of an implicit equation for both. These equations then allow one to get an expression for either the vector u (from

Equation 10) or the vector v (from Equation 11) that imposes the eigenvalues ldesi in the eigenspectrum of ~Jm. In the following, without

loss of generality, we will proceed with the latter.

It is interesting to examine the extreme case when all eigenvalues are desired to change (i.e., K = N). It is then easy to see that

under themild assumptions that (i)P is full-rank – notably requiring that all the eigenvalues li and ldesi are all distinct from one another;

and (ii) u is not orthogonal to any of the rows of L, then there actually exist a solution for the weights v such thatc1%i%N;~li = ldesi .

This solution is v = LudiagðLuÞ�1P�11. However, although this solution is well-defined analytically, it can suffer from numerical sta-

bility issues (Figures S2A–S2C). Indeed, if several desired eigenvalues ldesi are way outside of the ensemble of initial eigenvalues lj,

the statistics of the difference ldesi � lj will be on a larger scale compared to the differences among the initial eigenvalues, and there-

fore the matrix P will have correlated rows and will be hard to invert. Indeed, more formally, in this case, we can write ldesi � lj =

ldesi � ðl + εjÞ, with εj � ldesi � l and l =
P

jlj=N. Hence, to zeroth order in εj, Pijz1= ~li � l
� �

which is independent of the column

index j, indicating that different rows will be almost constant and therefore correlated to one another. This explains why, numerically,

the control of all eigenvalues succeeds if the target eigenvalues have the same distribution as the initial eigenvalues (Figure S2A) but

not if they are drawn from a very different distribution (Figure S2B). These correlations in the matrix P also relate to the necessity for

the perturbation weights uvu to be large whenmany desired eigenvalues are different from the ensemble of initial eigenvalues (Figure

S2B; Tao, 2013).

In order for eigenvalue control to be stable enough – both numerically and from the view-point of biological learning – while being

computationally more powerful than linear reservoir computing, we therefore examine how to design a plausible solution of an under-

determined version of Equation 11 where there are 1 < K � N desired eigenvalues outside of the initial ensemble of eigenvalues.

4.2.2.1 Choosing a solution for loop weights implementing eigenvalue control that favors stable dynamics

When the number of desired eigenvalues of the perturbedmatrix ~Jm is much less than the dimensionality of the system, then there are

indeed several vectors v that solve Equation 11 and we are interested in choosing a solution that is favorable for the stability of the

dynamical system. To this end, we solved Equation 11 using the pseudoinverse P+ of thematrixP. More specifically, our approach is

to fix:

dhP+
1=Ruv1Lu (Equation 12)

where 1 is the element-wise product. Though this restricts the ensemble of possible thalamocortical weight solutions verifying the

equality in Equation 11, there are still infinitely many u; v that would lead to the same vector d. Wewill take advantage of this remaining

freedom in the upcoming section 4.2.3, while here we just remark that for any choice of u (still with the onlymild restriction that u is not

orthogonal to any of the rows of L), then we can choose:

v=Ludiag Luð Þ�1d=Ludiag Luð Þ�1P+ 1;

which is Equation 2 from the main text.

As we will now show, the reason why this solution favors the stability of the motif dynamics is that besides imposing the K desired

eigenvalues ldesi among the eigenvalues ~li of ~Jm, it also indirectly constrains the N� K remaining ~li such that their norm tends to be

small. This consequently discourages the presence of eigenmodes with very slow exponential decay. Indeed, as indicated above,

Equation 2 fixes d, such that the following holds for any pair u; v satisfying Equation 2:

1=
XN
j = 1

dj

~li � lj
=

PN
j = 1dj

Q
ksj

~li � lk
� �QN

k = 1
~li � lk
� � ;

which implies

0 =
XN
j =1

 
dj

Y
ksj

�
~li � lk

�!
�
YN
k = 1

�
~li � lk

�
: (Equation 13)

This equation defines the roots of a polynomial where ~li is the variable, and all coefficients are fixed given an initial matrix Jcc – which

constrains the initial eigenvalues l1;.; lN – and given d1;.;dN which are constrained by dhP+ 1. Hence, Equation 13 imposes

exactly the N values that ~li can take. In other words, when fixing d by using the pseudoinverse of P, we constrain the whole eigens-

pectrum of ~Jm (Figure S2D). Moreover, we choose a very particular solution for d: the Moore–Penrose pseudoinverse or the minimal

norm solution, which – as can be seen from Equation 13 – in turn tends to minimize the maximummagnitude of the coefficients of the

characteristic polynomial (except for the leading coefficient associatedwith ~l
N

i which is fixed to�1). This further tends tominimize the

Lagrange and Cauchy upper bounds on all of the roots of the characteristic polynomial (Hirst and Macey, 1997). As a consequence,

the modulus of the non-controlled eigenvalues tends to be minimized. This is visible in Figure 1E. The purple circles corresponding to

the ~li that are not used to match the desired eigenvalues (i.e., that do not overlap with a pink cross) are indeed closer to the center of

mass of the distribution than the red dots indicating the initial eigenvalues li. Note-worthily, as a consequence, ourmethod also leads

to smaller eigenvalue norm compared to an alternative eigenvalue control procedure (Schuessler et al., 2020) that, given the initial
e3 Cell Reports 35, 109090, June 1, 2021
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matrix Jcc and a loop vector u, chooses instead the vector v that has the smallest possible norm while imposing a number of desired

eigenvalues in the effective matrix ~Jm. More specifically, as a consequence of encouraging smaller norm for the N� K eigenvalues

that are not set to the desired targets ldesi , Equation 2 also favors a smaller maximal real part for these eigenvalues (Figure S2E) which

supports the stability of the dynamics. There are also other advantages of using Equation 2 rather than the minimal v norm solution.

Indeed, by fixing thewhole eigenspectrum of ~Jm, Equation 2 facilitates the analysis of the effect of the connectivity perturbation on the

circuit dynamics as well as the numerical optimization of the weights, as we will explain in the Methods Secs. 4.2.3 and 4.2.7

respectively.

In addition, given that eigenvalue control through Equation 2 requires us to take the pseudoinverse of the matrix P, whether or not

eigenvalue control will be numerically successful can be predicted by the condition number of the matrix P. In line with our analysis in

the above paragraph that clarifies the conditions under which the rows of P are correlated, the condition number of P is larger whenK

increases relative to N, or when the distance between the eigenspectrum of Jcc and the desired eigenvalues increases (Figure S2F).

Therefore, eigenvalue control will be successful when the number and relative distance of the desired eigenvalues are not too large for

a given cortical size N.

4.2.2.2 Using eigenvalue control to approximate any desired output

Here we explain how, during motif production, this control of the dynamics’ timescales by a thalamocortical loop can help sculpt the

network output into a desired shape. Under the conditions that the dynamics during a motif are linear, the output is shaped through

characteristics of the eigenmodes which act as basis functions. We will clarify in this section why these characteristics come in two

categories: first, the exponential and oscillation timescales, which are determined by the effective connectivity through its eigen-

values; and second, the initial amplitude and phase, which can be set by the activity pattern at the beginning of the motif dynamics

cð0Þ (Figures 1C and 1D).

More specifically, under the verymild assumption that the (left) eigenvectors ~L of ~Jm form a complete basis, the readout weightswu

can be expressed as a linear combination of these eigenvectors: wu = ðwu~L
�1Þ ~L = ðwu ~RÞ ~L. Therefore, the readout is also a

weighted sum (with weights wu ~R) of the N eigenmodes whose dynamics are given as:

~LcðtÞ = diag
�
eð~l�1Þt� ~L cð0Þ; (Equation 14)

where ~l is a vector of eigenvalues of ~Jm, and for any vector vwe use the notation ev for a vector whose elements are the exponentials

of the elements of v. We emphasize that here the time variable is defined such that time 0 corresponds to the beginning of motif

execution.

Notice that given that the activities are real, the eigenvalues ~l and eigenvectors ~L are either real or come in complex conjugate

pairs, such that the imaginary parts of the eigenmodes cancel. Therefore, for each eigenvalue ~li, the relevant time course of the eigen-

mode corresponding to ~Li: the ith row of ~L, ci˛½1;.;N�, is:

Re

�
~Li cðtÞ

�
= e

Re

��
~li�1

�
t

��
Aicos

�
Im

�
~li

�
t + fi

��
;where (Equation 15)
fi = arctan

Im

�
~Li cð0Þ

�
Re

�
~Li cð0Þ

� and Ai =

Re

�
~Li cð0Þ

�
cosfi

:

This explicitly shows how the dynamics of the network breaks down into the exponentially modulated sinusoids that we show in Fig-

ures 1C and 1D and that we call basis functions.

As we have mentioned at the beginning of the results section, in order for the network to get a chance to accurately and robustly

approximate a given a target trajectory ym for motif m, we can find a small number Kz4� 20 of basis functions with appropriate time-

scales ½ldesi �1%i%K that can be combined with complex weights ½ades
i �1%i%K whose magnitudes are not very large (i.e., they scale with

the maximum magnitude of the desired output ym) such that bym =PK
i = 1a

des
i eðl

des
i �1Þt fits ym very well and robustly. For some well-

defined functions like the sinc function we show in Figures 1 and 2, appropriate timescales and complex weights can be determined

analytically (for the sinc function, we just regularly sampled the frequencies given by the Fourier transform of this function). However,

even when it is not possible to determine appropriate ½ldesi �1%i%K and ½ades
i �1%i%K analytically, it is easy to do numerically because the

number of basis functions K required to get a good fit is small. More specifically, we choose the minimum K value that results into an

acceptable error in bym compared to ym while making sure that the ½ades
i �1%i%K are not too large (see STAR Methods Sec. 4.2.7 for

technical details, and Figures S1A–S1E for examples). By choosing an approximation bym which is composed of basis functions

that combine with weights of reasonable magnitude, we will allow a thalamocortical network whose dynamics includes the corre-

sponding basis functions to produce the corresponding motif in a noise-robust manner (and with reasonable activity norm), as we

will explain below and in the next STAR Methods section 4.2.3.
Cell Reports 35, 109090, June 1, 2021 e4
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Indeed, the previous paragraphs of the STAR Methods section showed how it is possible to adjust the weight vector v to ensure

that the eigenvalues ~li of the effective connectivity ~Jm includes the desired eigenvalues ½ldesi �1%i%K . The only other requirement that

needs to bemet in order for the network to produce the right output is therefore to control the initial amplitudesAi and phases fi of the

eigenmodes. We will show below how this can be achieved by adjusting the activity cð0Þ at the beginning of the motif execution.

Indeed, the N real values of cð0Þ are linked through a linear system of N equations with the initial amplitude (and phase, in case of

a complex eigenvalue) of the real part of each eigenmode composing the readout at time 0.

More precisely, we can then collect all the eigenvalues of ~Jm into the vector ~lm with ½lm�i%K = ldesi , and define a vector am such that

½am�i%K =ades
i and ½am�i >K = 0. Taking care of ordering the columns of the eigenvector matrix ~R in correspondence with the elements

of ~lm, we note that bymð0Þ = 1u am = ðwu ~RÞ ~L cð0Þ = 1u diagðwu ~RÞ ~L cð0Þ. Therefore, the initial activities cð0Þ need to be set accord-

ing to:

cð0Þ = cinit
m h~R diag

�
wu ~R

��1

am: (Equation 16)

Note that as a consequence, even with a fixed effective connectivity ~Jm, different motif variations m; m0 – corresponding to different

amplitudes and phases of the eigenmodes composing the readout – can be composed with different initial rates cinit
m ; cinit

m0 (Figures 3E

and 3F). Though this strategy works for generating a certain variety of motifs, it has some limitations as (i) the properties of the eigen-

vectors can be responsible for associating some desired phases and amplitudes with unreasonable initial activity norm, and (ii) the

timescales of a linear network with a fixed effective connectivity are restricted to a particular set (Figure 1E; Ahmadian et al., 2015;

Hennequin et al., 2014). This constrains how well a fixed linear reservoir can robustly approximate arbitrary target motifs, which also

means that such a model cannot approximate arbitrary motifs under the constraints of reasonable activity norm and of using a bio-

logically plausible mechanism to set the initial activity of the network (Figures S1F–S1L).

Thus, the ability to modify the effective connectivity of the circuit – in order to impose desired eigenvalues in the dynamics as we

described in this section and to control the eigenvector of the dynamics as described in the next section – is critical to plausibly pro-

duce motifs through the circuit dynamics (Figure S1).

4.2.3 Eigenvector control for motif robustness
For the above-proposed low-rank connectivity perturbation mechanism of motif production to be biologically plausible, the network

output should also (i) be robust to noise in the initial activity pattern cinit
m and (ii) be associated with a reasonable activity magnitude.

However, a naive ‘half-random’ rank-one connectivity perturbation approach which is only focused on eigenvalue control (STAR

Methods Sec. 4.2.2) can lead to strong noise sensitivity (Figure 2). In this section, we show why this happens and how to leverage

the remaining freedom in the low-rank perturbation to fix this.

4.2.3.1 Eigenvalue control through a half-random loop induces eigenvector correlations that compromise readout

robustness

As we showed above, our procedure for eigenvalue control – Equation 2 – actually fixes all the eigenvalues of the dynamics, such that

control networks with the same eigenvalues but well-behaved eigenvectors actually show good noise robustness (Figures 2H and 2I).

In addition, eigenvector correlations have the potential to create large amplification of initial network activity (Ganguli et al., 2008;

Murphy and Miller, 2009; Hennequin et al., 2012; Bondanelli and Ostojic, 2020). It is therefore natural to ask how our eigenvalue con-

trol procedure affects eigenvectors and how this can in turn affect noise robustness.

To get an expression for the left ð~LÞ and right ð~RÞ eigenvector matrices of the perturbed connectivity ~Jm, we can start from the basic

property of ~l
u

i , the ith row of ~L, to write:

~li ~l
u

i = ~l
u

i ðJcc + uvuÞ / ~li ~l
u

i rj = lj~l
u

i rj +~l
u

i uvurj; (Equation 17)

where, in the second step, we right-multiplied by rj, the jth column of R.

Wewill now consider�li which is a particularly scaled version of~li satisfying l+ui ri = 1. Later, we will take care of renormalizing these

arbitrarily scaled eigenvectors�li – and�ri – to get the properly normalized eigenvectors~l
u

i and~ri such thatci; ~l
u

i
~ri = 1 as needed.With

the former scaling, we can rewrite Equation 17 for the case of i = j to get

~li = li +�l
u

i u vuri / �l
u

i u=
~li � li

vuri
:

Then, substituting this back into Equation 17 for isj gives

~li�l
u

i rj = lj�l
u

i rj +
~li � li

vuri
vurj / �l

u

i rj =

vurj

�
~li � li

�
vuri

�
~li � lj

�:
This relationship is valid for all j, so we can use matrix notation to write
e5 Cell Reports 35, 109090, June 1, 2021
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�l
u

i R =
~li � li

vuri
vuRdiag

�
~li � l

��1

;

or

�l
u

i =
~li � li

vuri
vuRdiag

�
~li � l

��1

L:

Following similar steps, we can also write an equation for the right eigenvectors�ri that are normalized such that lui r+i = 1:

�ri =
~li � li

lui u
Rdiag

�
~li � l

��1

Lu:

Finally we need to renormalize the eigenvectors such that, ci; ~l
u

i
~ri = 1. We remark that

�l
u

i
�ri =

�
~li � li

�2

vuri l
u
i u

vuRdiag

�
~li � l

��2

Lu:

Thus, if we define the normalization factor aihðvuRdiagð~li � lÞ�2LuÞ�1
2, then we can write the normalized eigenvectors as8>>>><>>>>:

~l
u

i =
vuri
~li � li

ai�l
u

i = ai v
uRdiag

�
~li � l

��1

L

~ri =
lui u

~li � li
ai�ri = ai Rdiag

�
~li � l

��1

Lu:

(Equation 18)

Note that these eigenvector equations can finally be written compactly in matrix form, to get:8>>><>>>:
~R=R diagðbuÞA diag að Þ�1

2

~L=diag að Þ�1
2Audiag bvð ÞL;

(Equation 19)

where buhLu, bvu
hvuR, we define A such that Aij = 1=ð~lj � liÞ, and a = Audiag buð Þ1Audiag bvð Þ�1�

.

Using Equation 18, we can now reflect on the properties of these eigenvectors of ~Jm. More specifically, we can make deductions

about the alignment between eigenvectors – which we assessed in Figure 2G by the cosine of the angle between them qij, defined as

cosqij = Reð~rHi ~rjÞ=ð
				~ri								~rj				Þ, where the superscript H denotes conjugate transposition. The value cosqij approaches 1 (or, equivalently,

the eigenvectors are almost parallel) if the real and imaginary parts of the two eigenvectors have very similar directions, irrespective of

the norm of these vectors. Hence, from Equation 18, we can predict that cosqij will be large for the vectors ~ri and ~rj if the vectors

Rdiagð~li � lÞ�1Lu and Rdiagð~lj � lÞ�1Lu have similar directions. This happens when ~li and ~lj are much closer to one another

than typical eigenvalues in the initial spectrum are, and/or if these eigenvalues are far from the initial spectrum as this drives both

above-mentioned vectors toward 0 (Figures 1E, 2G, S3A, and S3B). These considerations most notably allow us to conclude that

the eigenvector correlations are likely to be larger in cases when there are many controlled eigenvalues that are sizably different

from the original eigenvalues (Figure 2G versus Figure S3G). In addition, we can similarly understand why relatively large eigenvector

correlations are also seen for ‘uncontrolled’ eigenvalues (that do not match any of the K desired eigenvalues in the matrix P) that

happen to be very close to one another, even at the center of the eigenvalue distribution (for instance among the eigenvectors whose

eigenvalues have very small norm, Figures S3A and S3B).

Why are these eigenvector correlations causing large and amplified activity transients in the network – including in the readout di-

rection, therefore leading to readout noise sensitivity? This can be understood by examining the expression for the expected integral

of the square activity norm with correlated versus ‘control’ non-correlated eigenvectors (i.e., these eigenvectors verify ~R
H

norm = ~R
�1

norm

and ~L
H

norm = ~L
�1

norm where H denotes conjugate transposition and norm stands for ‘normal’: the name of a matrix with ‘uncorrelated’

unitary eigenvectors).

In the latter case, we get:

anorm =Edc0

Z tm

0

dt cu c


 �
=Edc0

Z tm

0

dt Tr c cH
� �
 �

= ε
2
X
i

e2Re ~li�1ð Þ tm � 1

2Re ~li � 1
� � ; (Equation 20)

where ε
2 is the variance of the initial i.i.d. rates dc0 and tm is the duration of the motif, and we proceeded from the expression of the

dynamics of cðtÞ as a function of the eigenmode’s dynamics (Equation 14). Notice that the unitary eigenvectors – which we abusively
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refer to as ‘orthogonal’ in the main text to ease interpretability – cancel during the algebraic developments and do not contribute to

the final expression. In addition, notice how the different timescales of eigenmodes (i.e., 1=Re ~li � 1
� �

) are simply added together and

do not otherwise interact.

In contrast, when the eigenvectors are correlated, the expected squared activity norm deviates from Equation 20 to give:

acorr = ε
2Tr
h
~R
��

~L ~L
H
�
1K

�
~R
H
i
; (Equation 21)

where we defined the matrix K with elements Kij = ðeð~li + ~l
H

j �2Þtm � 1Þ=ð~li + ~l
H

j � 2Þ.
When comparing Equations 20 and 21, it is clear that the correlated eigenvectors in Equation 20 lead to magnified interactions be-

tween the dynamics of eigenmodes which combine into the neural activities: pairs of eigenvalues interact in the matrix K, and these

interaction terms can be multiplied by large numbers contained in the matrices ~L and ~R arising because these ill-conditioned, corre-

lated matrices are the inverses of one another. Under certain conditions (Bondanelli and Ostojic, 2020), these eigenvector correla-

tions can lead to very large amplified dynamics where the activities will undergo transient growth even though all eigenvalues

generate asymptotically stable dynamics. In addition, it is possible to observe a more ‘moderate’ type of amplification that leads

to a slower decrease of activity compared to what would be expected from a matrix with the same eigenspectrum but orthogonal

eigenvectors, as tends to occur in random Gaussian matrices (Chalker and Mehlig, 1998).

These considerations lead to the definition for our ‘control’ matrices in Figures 2H, 2I, S3E, and S3H: they have the same eigen-

values as our motif production matrix ~Jm, but their eigenvectors are generated either from the eigenvectors of a random Gaussian

matrix or a normal matrix. Therefore, these control matrices are of the form Rcdiagð~lÞR�1
c – where the eigenvector matrices Rc

were generated according to one of the following procedures:

d Eigenvectors from Gaussian matrices

we created random Gaussian matrices from which we selected those with the same number of real eigenvalues as their matched ~Jm.

We then extracted their eigenvectors through eigendecomposition, and finally aligned real eigenvectors to real eigenvalues and com-

plex conjugate eigenvector pairs to complex conjugate eigenvalue pairs of ~l.

d Eigenvectors from Normal matrices:

we created random normal eigenvectors with appropriate numbers of real and complex conjugate pairs with the help of the method

described inMezzadri (2007). We first createdN random real orthogonal eigenvectorsRRe
c using the QR-decomposition basedmeth-

odology developed in Mezzadri (2007) to uniformly sample the orthogonal group. We then created the appropriate nIm number of

complementary pairs of complex conjugate eigenvectors RIm
c through multiplication of an nIm subset of the columns of RRe

c , by

the eigenvectors of an nIm dimensional real random orthogonal matrix created with the same methodology and selected to only

have complex conjugate eigenvalues (which was very common). Then, by concatenating the N� nIm columns of RRe
c that we had

left aside, with the complementary nIm columns of RIm
c , we could create a complete set of random unitary eigenvectors with the

appropriate number of real and complex conjugate columns.

4.2.3.2 Readout robustness through full control of the loop weights

Our procedure for eigenvalue control fixes all eigenvalues by constraining one vector of the rank-one perturbation – here, v – while

leaving the vector u unconstrained (STAR Methods section 4.2.2; Figure S2D). Here, we will show how we can take advantage of

these remaining degrees of freedom to modify eigenvectors so as to improve the robustness of the readout. More specifically, we

will choose the vector u to optimize a cost function CðuÞ which we define as the integrated squared deviation in the network output

due to a Gaussian fluctuation h in the initial conditions with i.i.d. elements hi � N ð0;s2ðuÞÞ. Importantly, to get robustness to noise

whosemagnitude scales with the ‘signal’, we choose to scale the variance of hwith the time-averaged squared norm of the activities

cðtÞ when the initial conditions are exactly cinit
m . Therefore, defining bym;h as the network output when adding noise h to the initial con-

ditions cinit
m , we get:

C uð Þ= 1

tm
Eh

Z tm

0

dt bym;h � bym

� �2
=
1

tm
Eh

Z tm

0

dt wu ~R diag e
~l�1ð Þt� �

~Lh
� �2
 �

=
s2 uð Þ
tm

wu ~R ~L~L
u

� �
1L

� �
~R
u
w (Equation 22)

and:

s2 uð Þ= 1

Ntm

Z tm

0

dtkc k 2 =
1

Ntm

Z tm

0

dtk~R diag e
~l�1ð Þt� �

~L cinit
m k

2

=
1

Ntm
cinit u
m

~L
u ~R

u ~R
� �

1L
� �

~L cinit
m ; (Equation 23)

where we defined Eh as an expectation value, tm as the duration of themotif,1 as the component-wise Hadamard product, andL as

a matrix with components:

Lij =
e

~li + ~lj�2ð Þtm � 1
~li + ~lj � 2

: (Equation 24)

Note that CðuÞ and s2ðuÞ depend on u through the eigenvector matrices ~R and ~L (both directly and indirectly through cinit
m in

Equation 16).
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Of note our expressions for the eigenvectors of ~Jm, Equation 18, make it clear that the cost function C (Equation 22) can be in

general expressed as a ratio of polynomials where the variables are the entries of the weight vector u that we want to optimize.

This implies that there are several local minima in weight space for C (see Mehta et al., 2018 for a similar result in linear feedforward

networks), which justifies the use of a non-local optimization method to minimize C (see STAR Methods section 4.2.7).

After optimizing the vector u to minimize CðuÞ, we indeed observe subtle changes in the eigenvector directions (Figures 2G, S3A,

S3B, and S3G) that succeed at decreasing the network output’s sensitivity to noise in the initial conditions to similar levels as control

matrices with the same eigenvalues but well-behaved eigenvectors (Figures 2H and S3H). This can be achieved even though the

amount of non-normal amplification – as quantified by the average activity norm of the network’s response when initialized with

random uncorrelated values – is somewhat reduced but still large compared to the control matrices (Figure 2I). This implies that

amplification of noise added to the initial conditions can still be present, but is constrained to directions that are quasi-orthogonal

to the readout, which we indeed verified numerically (Figure S3D).

Note that, when optimizing CðuÞ, the scaling of the noise with the norm of the activity during noiseless motif production – as

opposed to a constant scaling – fulfills two different functions:

d First, it prevents the development of a dynamics that would give the illusion of noise robustness by cranking up the activity norm

during noiseless production. Indeed, as mentioned above, in cases when there are many controlled eigenvalues leading to

levels of non-normal amplification that cannot be fully reduced when optimizing the vector u, the optimization can force the

directions of maximal noise amplification to be orthogonal to the output weights w. To achieve this, a naive solution is to

make all the directions along which the activity can become large – which tend to correlate with the eigenvectors – nearly

orthogonal to w. However, this would mean that the eigenvectors corresponding to the controlled eigenvalues would also

be poorly aligned with w and thus that the cortical activities would need to be very large so that the projections of the needed

basis functions ontow would be of sufficient magnitude to construct the output (as is visible from Equation 16). By scaling the

noise term in our cost function with the norm of the activity during noiseless motif production, we prevent this implausible so-

lution and instead create a trade-off between howmuch noise can be redirected to output null directions and the signal to noise

ratio of the activity during motif production.

d Second, we effectively implement a form of soft-bounding of the activity norm, such that – conversely to the cases when the

eigenvectors are not shaped to favormotif production – the activity norm cannot become extremely large during noiselessmotif

production (for instance, compare the maximum norms for fully-tuned loops to some large outlier norms for the half-random

loop and the control matrices in Figure S3E).

However, Equations 22 and 23 do leave some freedom on the activity norm during motif production. Therefore, the activity norm is

still free to be moderately large – especially when adding noise to the dynamics. This indicates that, similarly to what is observed in

motor cortex (Russo et al., 2018), the maximal activity patterns can occur in directions that are not fully aligned with the readout. This

is for instance visible in Figure S3E, as the activity norm for the fully-tuned loop is still larger than themagnitude of the network output.

Indeed, given that the output weights are a Gaussian random vector of expected norm one, this indicates that the angle between the

output vector and the activity vector is relatively large. This phenomenon can be understood as a consequence of leveraging the

relative absence of constraints placed on non-output directions. Indeed, given that the optimization procedure uses a limited number

of parameters to control a much higher-dimensional dynamical system, it takes advantage of any degree of freedom – for instance by

not forcing the alignment ofwwith the directions along which larger activity patterns lie during noiselessmotif production, whichmay

be difficult to realize while simultaneously orthogonalizing the directions of noise amplification with w.

Remarkably, even though we defined CðuÞ to only ensure that the activities would be of reasonable magnitude when starting from

the pattern cinit
m corresponding to a particular set of amplitudes and phases of the controlled eigenmodes, this property of the activ-

ities also appeared to often generalize to other amplitudes and phases of these modes (Figure 3). If needed, to further expand the

ensemble of initial amplitudes and phases of the eigenmodes that correspond to reasonable activity norms, it would be conceivable

to modify the scaling of the noise in CðuÞ to an average over the mean activity when initializing the network from several initial

conditions.

An interesting additional consequence of our procedure that adjusts the full thalamocortical loop to improve noise robustness is

that it also decreases both the average norm, and the variance of the norm of the perturbation uvu (given a particular set of desired

eigenvalues but over different instantiations of w and Jcc, Figures S3C and S4).

For motifs that are associated with relatively large changes of the eigenspectrum – and for which the motif’s dynamics is therefore

more non-normal – a final noteworthy consequence of the minimization ofCðuÞ is an improvement of the robustness of the dynamics

with respect to noise in the synaptic weights (Figure S5F). This effect was somewhat expected as a consequence of the relative

decrease of non-normality of the effective connectivity matrix when optimizing u (Figures 2G and 2I), as non-normality is associated

with larger sensitivity of the eigenspectrum to this type of perturbation (Trefethen, 2005). In consequence, though the framework that

we propose in this paper does assume some relatively precise tuning of theweights, the dynamics can still be robust to small levels of

noise in the weights (noise matrix with Frobenius norm 0:1% of Jcc’s Frobenius norm, Figure S5).

In conclusion, we have shown that it is possible to fully tune a single thalamocortical loop to both (i)modulate the eigenspectrum of

the dynamics to include a small number K of eigenvalues, and (ii) robustly readout a desired linear combination of these desired
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eigenmodes. In this article, we demonstrate this by either pushing the control of the dynamics to K = 20 eigenvalues that are pretty

different from those of Jcc (‘hard’ scenario, Figures 2 and 3); or considering in milder cases with K = 4 eigenvalues (‘easier’ scenario,

Figures 4, S3F, and S3G).

4.2.4 Motor preparation through thalamic loops
Previously, we have explained how the successful production of a motif m relies on the activities being initialized by a motif-specific

pattern cinit
m . This brings into question the biological implementation needed to drive the activities toward the right pattern beforemotif

initiation. We propose to combine the use of a motif-specific cortical input and motif-independent thalamocortical loops for imple-

menting this motif-preparation mechanism. Notice how this implementation will enable motif transitions during sequences without

any network weights being specifically tuned to peculiar transitions between two given motifs, so that motifs can be learned inde-

pendently before stringing them into arbitrary sequence orders.

More specifically, we assume that the corticothalamic circuit during the preparatory period is given as ~Jprep =

Jcc + JctSprepJtchJcc +UVu, where Sprep selects an ensemble of thalamic units that are specific to the preparatory period (see above

section 4.2.1). When adding a cortical input xm, the effective dynamics reads:

_c =

�
~Jprep � I

�
c+ xm:

If all the eigenvalues of ~Jprep have real part less than one (which we will be able to enforce as described below), regardless of the initial

activities, the network will then converge toward cinit
m – the steady-state that can be found by setting _c= 0 – if:

xm = �
�
~Jprep � I

�
cinit
m : (Equation 25)

Importantly, the dynamics of decay to steady-state are independent of the input and therefore of the identity of the upcoming motif,

as can be seen by considering the variable dc = c� cinit
m :

_dc =

�
~Jprep � I

�
dc / dcðtÞ=Rprepdiag

�
eðlprep�1Þt� Lprep dc0; (Equation 26)

where dc0 is the vector containing the values of dc at the beginning of the preparatory period, Rprep and Lprep are the right and left

eigenvector matrices of ~Jprep respectively, and lprep is a vector containing the eigenvalues of ~Jprep.

The starting state of the preparatory period dc0 depends on the ending state of the previous motif which we assume is unknown,

and to implement a good motor preparation it is desirable that – regardless of this state – dc goes fast to 0. Therefore, to reach this

goal, we will minimize the average – over random iid values for the entries of dc0 – of the integrated squared norm of dc.

In addition, ideally, while a motif is being prepared, the readout should smoothly interpolate between the previous and upcoming

motifs, even though the single units may undergo fast and large transients. Therefore, we also include a smoothness contribution to

our cost function, that we design to be the integrated square of the first derivative of the readout.

Our total cost function is therefore:

C U;Vð Þ= 1

N
Edc0

Z N

0

dtjjdcjj2

 �

+ b Edc0

Z N

0

dt
d

dt
wudc

� �2
" #
f
1

N
Tr Rprep Lprep L

u
prep

� �
1Z

� �
Ru

prep

� �
+ b wuRprep Lprep L

u
prep

� �
1G

� �
Ru

prepw ; (Equation 27)

where Zij = � 1= l
prep
i + l

prep
j � 2

� �
and Gij = l

prep
i � 1

� �
l
prep
j � 1

� �
Zij. Finally, N is the number of cortical units and b is a hyperpara-

meter which trades off the relative importance of transition speed (left part of the cost function) and readout smoothness (right part of

the cost function). Notice that this cost is not impacted by the shape of the initial rates’ distribution. Notice also that while our cost

function relates to the linear-quadratic problem from control theory ((Kao et al., 2021)), using semi-numerical gradient-descent opti-

mization - with an analytically computed gradient through the eigenvalues and eigenvectors, see Methods section 4.2.7 - is fast and

enables direct control of the number of thalamic units involved (Figures 3 and S6C) and direct regularization of the loop weights

(instead of an indirect regularization through the norm of the control input, Figures S6J and S6K). Notably, the ability to control

the number of thalamic units was very important in the context of our article which emphasizes how, even with the biological

constraint that the size of thalamus is much smaller than the size of cortex (Halley and Krubitzer, 2019), thalamus can act as a power-

ful controller of cortex. Finally, we alsowant to stress that the simple optimization procedure suggested above can be easily extended

to continuously nonlinear dynamics (Logiaco and Escola, 2020).

After optimization, the resulting weights UVu indeed lead to a fast decay of the rate dynamics toward steady-state, which is sup-

ported by the fact that all eigenvalues of ~Jprep have real part significantly smaller than one (Figures 3C, S6A, S6D, and S6J). The

convergence is faster when increasing the rank of UVu (Figures 3D and S6C). The longer the preparation phase is, the closer the
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network activities get to the appropriate pattern cinit
m to start the nextmotif, and therefore themore accurate the upcomingmotif will be

(Figures S6G–S6I). In addition, consistently with recent experimental results (Al Borno et al., 2020), if the upcoming motif is ‘hard’ – in

our case, meaning that it requires a larger remapping of the cortical dynamics – a small variation of the activities relative to cinit
m at the

end of the preparatory period will lead to a larger variation of the output during motif execution. This is because it is more difficult to

optimize the cost CðuÞ for these movements (Equation 22) which means that their accuracy will be relatively more dependent on the

network activities being closer to cinit
m at the start of motif execution.

In addition, during motif preparation, the smoothness of the readout arises from a ‘slower’ eigenvalue (with a real part that is a little

larger, Figure S6A) that corresponds to an eigenvector that aligns with the readout (Figure S6B). Larger values of b cause this eigen-

value to have larger real part (Figure S6A), and an appropriate value of b creates a readout timescale that monotonically fills the gap

between motifs during motor preparation (Figure 4, b = 0:05). Therefore, while the initial state can be prepared quickly through fast

non-monotonic activity transients in single units, the readout can undergo a slightly slower and smoother evolution - more specif-

ically, an approximate exponential relaxation - that interpolates between two motifs (Figure S6F). Note that this interpolation mech-

anismwill work regardless of the values at which the previousmotif ends or the next motif starts. Also, note that this mechanism does

not enable a precise fit of the desired output during motif transitions -though nonlinear dynamics canmitigate this issue (Logiaco and

Escola, 2020)- which is the reason why we use short transition periods during which our network is prepared to produce the next

motif. Data shows that motor preparation can indeed be short (Lara et al., 2018b). This short preparation of the dynamic generator

circuit is however compatible with the planning of the movement occurring earlier in a separate effective ‘premotor’ circuit (Zimnik

and Churchland, 2021).

Our cost function Equation 22 is only designed for functional purposes, in line with our general approach. Without additional con-

straints, the synaptic weights of the loopsUVu tend to get large (Figure S6E). However, both terms of the cost function are impacted

surprisingly little by the scale of the resulting matrix UVu such that almost identical performances are observed over a wide range of

norms of this perturbation (Figures S6F–S6I). This scaling of the weights basically leaves unchanged the eigenvalues with larger real

part – which are the limiting factor for the speed of the dynamics – while scaling the norm of an ensemble of very negative eigenvalues

whose numbermatches the rank ofUVu (Figure S6D). As expected given the relative robustness of the loss relative to the norm of the

perturbation, it is also possible to constrain the norm of the perturbation during optimization, which leads to tighter bounds of the

eigenspectrum without sizably affecting the performance (Figures S6J–S6L).

4.2.5 Relation to more realistic neuronal dynamics
We are now going to relate the simplified rate equations that we used in this article (Equations 3 and. 4), to more constrained and

realistic neuronal dynamics including a reasonable timescale in thalamus (ten times faster than cortex, compatible with the absence

of recurrent excitation in thalamus and/or differences in synaptic channels’ timescales) and a rectifying non-linearity ensuring rate

positivity. More specifically, we will show that we can relate the simpler rate equations that we presented in Methods section

4.2.1 to the following model: 8><>:
_cabs = � cabs � cð Þ+ Jcc cabs½ �+ � cð Þ+ Jact

ct tact½ �+

_tact =
1

tt
� tact � tact
� �

+ Jact
tc cabs½ �+� � (Equation 28)

where the subscript ‘abs’ indicates that these variables are (mostly) positive and the subscript ‘act’ indicates the subset of thalamic

units that are interacting with cortex (and not silenced by the basal ganglia). In this section, we will explain how – under certain as-

sumptions – these rate equations can be mathematically related to both the population activity of spiking neurons and the simplified

switching linear dynamics we use in the main text. In the next section (STAR Methods Sec. 4.2.6), we will then describe a method-

ology for extending themain text’s results to the richer dynamics of Equation 28. The results of numerically implementing this method

to demonstrate that our framework can be extended to the more complex dynamics of Equation 28 are shown in Figure S7.

The ensemble of assumptions that we are making along the way, as well as their experimental and theoretical justifications, are

summarized in the table below.
Summary of model assumptions and their justifications

Assumption Source of evidence References

1 linear readout from recurrent motor cortical population

dynamics as an approximate motor output

anatomy/

electrophysiology

Harrison et al., 2012; Kaneko, 2013/Shenoy et al.,

2013; Churchland et al., 2012; Churchland and

Cunningham, 2014; Russo et al., 2018

2 quasi-linear input-output relation in balanced neural

populations; fit of motor cortical population activity

with linear dynamics during individual behaviors

theory/

electrophysiology

van Vreeswijk and Sompolinsky, 1996; 1998; Renart

et al., 2010/Churchland and Cunningham, 2014; Lara

et al., 2018a

3 non-recurrent thalamus bidirectionally connected to

cortex

anatomy Arcelli et al., 1997; Sherman, 2016; Harris et al., 2019

(Continued on next page)
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Assumption Source of evidence References

4 slower cortical dynamics (relative to thalamus)

because of cortical excitatory recurrence (absent in the

thalamus)

theory/

electrophysiology

Seung et al., 2000; Lim and Goldman, 2013/Shenoy

et al., 2013; Churchland and Cunningham, 2014

5 quasi-rectified linear tonic firing in thalamus electrophysiology Sherman, 2001; Devergnas et al., 2016; but see Kim

et al., 2017

6 strong inhibitory connections from basal ganglia to

thalamus

electrophysiology/

optogenetics

Deniau and Chevalier, 1985; but see Schwab et al.,

2020/Edgerton and Jaeger, 2014; Kim et al., 2017; Aoki

et al., 2019

7 sequence-element-related activity in basal ganglia: (1)

sustained during motifs and (2) phasic at switch times

electrophysiology/

optogenetics

Jin and Costa, 2010; Jin et al., 2014/Geddes et al.,

2018
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To link our tractable switching linear mathematical framework (Sec. 4.2.1) with more biologically plausible neuronal dynamics, we

first note that – under some plausible dynamical regimes – the firing rate in a population of spiking neurons can be well-approximated

using a two-stage process that leads to nonlinear rate equations (Ostojic and Brunel, 2011) that are similar to Equation 28. First, the

synaptic inputs are linearly filtered – for instance, for Leaky-Integrate-and-Fire neurons, with an exponential filter through feeding the

input into a first order linear differential equation – which gives rise to a ‘voltage-like’ variable. Second, this ‘voltage-like’ variable is

passed through a static non-linearity, giving rise to an effective rate variable. The static non-linearity can be qualitatively described as

rectified-linear above a certain threshold value q of the voltage-like variable v (symbolized as ½v� q�+ ). Directly following this frame-

work, we can write dynamics for cortical populations with ‘voltage-like’ variables v and resting voltage vrest; recurrently interacting

through the effective connectivity matrix Jcc; responding to a thalamic input resulting from the projection of the thalamic rates ½tabs�+
through the thalamocortical weights Jct, and to an input pm which stays constant during the motif m:

_v = � ðv� vrestÞ+ Jcc½v� q�+ + Jct½tabs�+ +pm: (Equation 29)

This equation directly maps to the nonlinear rate dynamics of Equation 28. Note that the connectivity matrices are ‘effective’ in the

sense that rate units can impact one another both positively and negatively. This effective connectivity may bemapped to a biological

network with separated inhibition and excitation (Gerstner et al., 2009), by assuming that each rate unit actually maps to two sub-

populations: one with excitatory neurons who have slower population dynamics described by Equation 29, and another one with

just inhibitory neurons that have faster dynamics (Mensi et al., 2012). Then, an effective excitatory connection between units naturally

map to a projection from the excitatory neurons of the sending unit to the excitatory neurons of the receiving unit. In addition, an effec-

tive inhibitory connection between populations can be mapped to a disynaptic pathway involving the excitatory neurons of the

sending population projecting toward the fast inhibitory neurons of the receiving population that inhibit their respective excitatory

‘neighbors’ (Gerstner et al., 2009).

We now turn to showing how these nonlinear rate equations relate to the simplified switching linear dynamics we use in the main

text. We will take the example of the dynamics during a particular motif m corresponding to a thalamic selection matrix Sm as in Equa-

tion 6, but the derivation directly generalizes to any thalamic selection matrix Ss with an arbitrary number and location of ones on the

diagonal.

We can define cabs = v� q and assume that the cortical dynamics stay in the linear regime to get:

_cabs = � ðcabs �cÞ+ Jccðcabs �cÞ+ Jct½tabs�+ ; (Equation 30)

where c = ðI� JccÞ�1 ðvrest � q +pmÞ. Following a similar model for the population firing rate of spiking neurons in the thalamus as for

cortex, we write the thalamic rates ½tabs�+ = ½vthal � qthal�+ as the rectification of a voltage-like variable tabs itself undergoing linear

dynamics which, in absence of input, revolve around a baseline t:

tt _tabs = �
�
tabs � t

�
+ Jtc cabs +qm (Equation 31)

The inputs to thalamus include cortical projections through the effective weights Jtc. Positive cortico-thalamic connections can occur

through direct projections from cortex, while inhibitory effective connections can correspond to an indirect cortical projection relayed

by the thalamic reticular nucleus (Arcelli et al., 1997). In addition, thalamus receives an input from the basal ganglia qm.

We consider the case for which qm consists of either sustained strong inhibition during amotif, or a complete release from inhibition

(zero drive) in a small subset of thalamic neurons which we will index as rows with the value 1 in the diagonal of an otherwise zero

matrix Sm. In addition, we consider the limit in which thalamus is very fast relative to cortex ðtt /0Þ. Indeed, thalamus lacks recurrent

excitation, making it react at the relatively fast timescales that are intrinsic to a single-neuron, while the recurrently connected cortical

populations can be much slower (Seung et al., 2000; Lim and Goldman, 2013). Hence, we assume that thalamus almost instantly

follows its input, so Equation 31 becomes:
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Sm tabs = Sm t+Sm Jtc cabs (Equation 32)

Finally, we assume that these released thalamic neurons indexed by 1’s in the diagonal of Sm then interact with cortex within the linear

regime, which allows us to write:

½tabs�+ = Sm tabs (Equation 33)

We can then finally write, from Equations 30, 32, and 33:

_c = � c+ ðJcc + JctSmJtcÞ c ðEquation 1Þ
where we defined c=cabs � am with amhðI� Jcc � Jct SmJtcÞ�1 ððI � JccÞ c + Jct Sm tÞ. Note that c is ‘centered’ around zero and thus

not (mostly) positive, unlike cabs. Note also that am is a motif-specific input that stays constant during the duration of the motif (or

alternatively during a phase of motif preparation, see the next section 4.2.6 for more details).

This is the equation for the cortical rates c that we used throughout the main text. We stress that this means that the target readout

patterns that we are displaying in themain text are deviations from amotif-specific baseline readout valuewu am. We also emphasize

that, for each cortical loop associated with the corticothalamic weight vector v and the thalamocortical weight vector u, our main text

theory only constrains the matrix uvu, leaving some freedom for the norm of the individual weight vectors. When displaying or using

individual loop weights, we therefore make the choice to scale these vectors such that the thalamocortical and corticothalamic

weight vectors have the same norm (i.e., we multiply u by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiku k kv kp

=ku k and v by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiku k kv kp

=kv k ).
Note that our framework can be generalized in several ways. First, there can be additional, non-plastic thalamic loops that interact

with cortex – either for the whole duration of some motif(s) or constantly – and that would simply take part, along with cortex, in an

effective ‘fixed’ recurrent network that the plastic thalamic loop would have tomodulate during amotif. Second, even though we only

considered here that all the ‘plastic’ thalamic loops that are not involved in producing the current motif are shut off by basal ganglia,

this assumption might be relaxed to some degree. For instance, the same framework could be applied to any scenario where the

thalamic neurons who are not involved in shaping the currently producedmotifs have dynamics that are dominated by strong approx-

imately constant external inputs that dwarf the feedback from cortex. Indeed, these driven thalamic neurons would then act as an

external constant input added to the effective cortical dynamics, whose effect could therefore easily be canceled by simple substrac-

tion of an ‘effective copy’ of this signal on the readout.

4.2.6 Implementing the more realistic dynamics
In this section, we will show that it is possible to find a dynamical regime of the more biologically constrained equations Equation 28

under which our simplified theoretically tractable framework is still valid to understand how thalamocortical loops support motor

sequencing. Importantly, the result of this approach gives a lower-bound on the performance of a more biologically plausible

network, under the strong constraints that our equations derived for centered linear dynamics still hold such that there is a clear map-

ping between the dynamics shown in themain text and themore complex dynamics studied here. In all likelihood, better performance

would occur if using an online learning rule that would account for the additional complexity of the dynamics (Logiaco and Escola,

2020). We however focus on preserving our theoretical framework to show that it can also give the right intuitions and explanations

when the dynamics includes more biological details.

More specifically, we will constrain our dynamics such that for a particular motif, our theory – which assumes an instantaneous

thalamus – is still used to set both the effective eigenspectrum (through the tuning of the corticothalamic weights v in Equation 2)

and the initial centered cortical rates cinit
m (as a function of the desired amplitudes am for the eigenmodes; Equation 16):8<: v=LudiagðLuÞ�1P+ 1 ðEquation 2Þ

cð0Þ=cinit
m h~R diag

�
~R
u
w
��1

am ; ðEquation 16Þ

where u is the thalamocortical weight vector from the single thalamic unit interacting with cortex during a motif, and v is the corre-

sponding corticothalamic weight vector. However, we will now describe how other variables of the network are going to be adjusted

to account for the reasonable thalamic timescale in Equation 28 (10 times faster than cortex, see the table at the beginning of the

STAR Methods section 4.2.5). This means that the timescale in thalamus induces deviations that we are able to treat as a correlated

and biased noise introduced in our ideal model (Equation 1). In addition, we will adjust the biases in Equation 28 to ensure that the

added rectification of the rates only minimally impact the dynamics.

To achieve this, we will first work with the linearized version of Equation 28, writing:8><>:
_cabs = � cabs � cð Þ+ Jcc cabs � cð Þ+ Jact

ct tact

_tact =
1

tt
� tact � tact
� �

+ Jact
tc cabs

� 
 (Equation 34)
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where we remind the reader that the index ‘act’ indicates the subset of the thalamic units that are interacting with cortex at some time

during a sequence (instead of being shut off by basal ganglia). Note that, in linewith Sec. 4.2.5, the vectors c and tact actually include a

motif-specific external input.

We can then express the dynamics using a single vector zabs to concatenate both the cortical and non-silent thalamic rates: for i%

N, ½zabs�i = ½cabs�i, and for i >N, ½zabs�i = ½tact�i. Similarly, we define a concatenated vector of biases z regrouping c and tact. Hence, we

can write:

_zabs = Meff zabs +Veff z ; (Equation 35)

where we defined the matrices Meff and Veff such that:

d for i%N and j%N, ½Meff�i;j = ½Jcc�i;j � dij and ½Veff�i;j = dij � ½Jcc�i;j
d for i%N and j > N, ½Meff�i;j = ½Jactct �i; ðj�NÞ and ½Veff�i;j = 0

d for i >N and j%N, ½Meff�i;j = 1
tt
½Jacttc �ði�NÞ; j and ½Veff�i;j = 0

d for i >N and j >N, ½Meff�i;j = � dij
tt

and ½Veff�i;j = dij
tt
.

Finally, we get:

_z = Meff z (Equation 36)

where z= zabs +b and bhM�1
eff Veff z is a bias that is fixed during a particular motif or during the preparatory period. We will refer to z

as the ‘centered rates’ (representing deviations of the rates above or below some average value). Finally, we define effective readout

weights weff for this effective z dynamics, such that ci%N, weff;i =wi and else weff;i = 0. We will now examine how to derive appro-

priate thalamocortical weight vectors and constant biases, first tackling the question of the motif dynamics and then addressing the

case of the preparatory period.

4.2.6.1 Motif dynamics

We will start by defining, for a given motif, a full vector of ideal initial conditions for the centered rates zm of the network as a natural

extension of the ideal initial centered rates derived in the instantaneous thalamus framework: for i%N, ½zm�i = ½cinit
m �i, and ½zm�N+ 1 =

vu cinit
m . (Note that the exact value of the initial thalamic rates has little impact on the circuit’s dynamics as thalamic units have a faster

timescale ensuring that they quickly follow their synaptic inputs.) Then, we can express the dynamics of z as a function of the eigen-

vectors and the eigenvalues of Meff such that zðtÞ = Reff diagðe leff tÞ Leff zm.

Tuning u to minimize the thalamic timescale effects while enforcing instantaneous-loop eigenvalue control with v

Now that we expressed centered z dynamics, we can write an equation to ensure that, during motif production, the readout is robust

to both noise in the initial conditions and network response deviations that accumulate over the course of motif production due to the

fact that the thalamus is not instantaneous. More precisely, while the idealized eigenspectrum is constrained by setting the thalamo-

cortical weight vectors v through Equation 2, the corticothalamic weight vector u is adjusted to minimize the following cost

function Cm:

Cm = Edz0


 Z t = tm

t = 0

				�wu
eff Reff diag

�
e leff t

�
Leff ðzm + dz0Þ

� � au
m eð~l�1Þt				2 dt�; (Equation 37)

where tm is the motif duration, au
m eð~l�1Þt = byðtÞ is the weighted eigenmode sum which would form the readout in the idealized instan-

taneous thalamic network governed by thematrix Jcc +uvu, and dz0 is a zero-centered and uncorrelated noise in the initial conditions

with a standard deviation sdz0 scaling as 5% of the square root of the mean squared activity norm during the motif (similarly to Equa-

tion 23).

After a few algebraic developments, we find:

8>>>>>>>>><>>>>>>>>>:

Cm =
wu

eff

tm
Reff



Leff diag s2

dz0
1

� �
+ zm zum

� �
Lu
eff

� �
1Leff

� �
Ru

eff

�2 Leff zm cE
m

� �u
~L
E

� �u� �
1B

� �
~R
E

� �u�
weff +

wu

tm
~R



~L cm cu

m
~L
u

� �
1L

�
~R
u
w

s2
dz0

= 0:052 1

tm Nz

zum Lu
eff Ru

eff Reff1Leff

� �� 

Leff zm

where the twiddled letters relate to the eigendecomposition of Jcc +uvu, and the upper E index indicates an extension of arrayswith a

last additional zero row (initial rates vector) or last additional zero row and column (left and right eigenvector matrix). Also, we intro-

duced ½Leff�i;j = eð½leff �i + ½leff �jÞ tm � 1
½leff �i + ½leff �j ; ½L�i;j = eð½

~l�i + ½~l�j � 2Þ tm�1
½~l�i + ½~l�j�2

(Equation 23) where ~l is the vector containing the eigenvalues of Jcc + uvu
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(note that ~l is independent of u); and ½B�i;j = eð½leff �i + ½~lE �j Þ tm � 1

½leff �i + ½~lE �j
where for j%N, ~l

E
h i

j
= ~l
� 


j
� 1 and ½~lE�N+1 = 0. Finally, we also defined Nz

as the number of elements in z, i.e., here N+ 1.

Hence, by optimizing the vector u to minimize the cost Cm while fixing the vectors v and cinit
m according to Equations 2 and 16, we

ensure that the effective network governing themotif dynamics is designed to ensure eigenvalue control in the limit of an infinitely fast

thalamus while correcting for the deviations due to the finite thalamic timescale.

Designing biases added to the rate equations to impose positive rates during motif production

Now that we have found thalamocortical weight vectors u and vwhich still perform a similar effective cortical eigenvalue control as in

the main text while accounting for the thalamus’ internal dynamics, we can consider the question of the biases in the rate dynamics

that impose positive rates zabs = z � M�1
eff Veff z in the circuit. Then, for a vector ε containing the desired positive lower bound of the

rates, we can write:

ct; zabsðtÞR ε 5� M�1
eff Veff z� εR max

t

�� Reff diag
�
e leff t

�
Leff zm

�
=bm ;

where the maximum is taken element-wise. We therefore set

�M�1
eff Veff z= ðbm + εÞ5
z = � V�1
eff Meff ðbm + εÞ ; (Equation 38)

where we chose ε= 0:1 in our simulations.

This ensures that the non-centered rate variables zabs stay positive while undergoing the dynamics in Equation 35 if, at the begin-

ning of motif m, these rates are exactly set to zabs m = zm � M�1
eff Veff z. However, a deviation from the right initial conditions can cause

the linear rate trajectories to go beneath zero. Having a good preparatory period will therefore prove critical to ensuring that the linear

dynamics solution during a motif stays close to the solution of a rectified linear dynamical system. Fortunately, as we will now show,

we can design an efficient thalamic preparatory network obeying the constraints of positive rates and non-instantaneous thalamus.

4.2.6.2 Preparatory period dynamics

We again first consider the centered rates zwith linear dynamics (Equation 36) to find thalamocortical connections accommodating a

non-instantaneous thalamus and then find the biases needed to maintain positivity of the non-centered rates.

Optimizing thalamocortical connectivity for motif preparation with a non-instantaneous thalamus

We optimize the loop weights Jacttc and Jactct – where we remind the reader that the index ‘act’ indicates that these matrices are

restricted to the subset of thalamic neurons engaged in motor preparation – such that zðtÞ from Equation 36 converges fast to its

steady-state (which is zero in the absence of an input). In addition, in keeping with the cost function in the case of an instantaneous

thalamus (Equation 27), we add a term to favor smoothness of the readout, to get the cost function:

Cp =
1

N+Nthal

Ez0

Z N

0

z tð Þ2 dt

 �

+ b Ez0

Z N

0

dt
d

dt
wu

effdz

� �2
" #
f
1

N+Nthal

Tr Reff Leff L
u
eff

� �
1A

� �
Ru

eff

� �
+ b wu

effReff Leff L
u
eff

� �
1G

� �
Ru

effweff

where Ai;j =
�1

leff½ �i + leff½ �j, Gij = leff½ �i leff½ �jAij, Nthal is the number of thalamic units in the preparatory network, and z0 are the random

initial conditions which are assumed to be centered and i.i.d. Note that Meff =Reff diag leffð Þ Leff now relates to the preparatory

circuit.

Biases able to enforce rate positivity in the effective preparatory network despite initial rates variability

We then consider which biases zprep to add to the preparatory dynamics (Equation 35) to get positive rates zabs = z �
M�1

eff Veff zprep.

We should note that at the beginning of the preparatory period, the cortical and thalamic rates will be non-negative if the just-

completed motif was started at its correct initial condition and driven by the input defined in Equation 38. Similarly, we can posit

that the cortical rates at the start of the upcoming motif will be positive as they too will be defined by Equation 38. Additionally, to

guarantee that, during the preparatory period, the cortical rates converge to the necessary initial configuration for the upcoming

motif, we will need to set their inputs to explicit values. This therefore leaves the inputs to the thalamic units as our only degrees

of freedom for ensuring rate positivity during the preparatory period. Here we describe a process for determining those thalamic

biases in a way that is agnostic to either the rates at the end of the prior motif or at the beginning of the upcoming motif. These

thalamic biases can then be used for all preparatory periods independent of the upcoming motif. We will proceed in two steps.
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1. To find biases for the thalamic units, first we proceed in this step by finding biases for both the cortical and thalamic units that

would ensure positivity on average. In step 2, we will then save the thalamic biases we find and replace the cortical biases with

the specific values needed for the upcoming motif.

Hence, we here treat the non-centered rates at the beginning of the preparatory period zprepabs 0 as an i.i.d. random vector with

mean mprep
zabs 0

and standard deviation sprep
zabs 0

. For the cortical units, we can simply estimate these statistics from the mean and

standard deviation of zabs over all units and all motifs at the end of six example motifs (the sinc function as in Figure 2 and

slow oscillating motifs as in Figure 4). In addition, we assume that the rates of the thalamic units are close to zero at the

beginning of the preparatory period, which would happen if, for example, at the end of the previous motif, the basal ganglia

signals just compensate for the cortical inputs. (Note again that the exact value of the initial thalamic rates is not critical for

the circuit’s dynamics as thalamic units have a faster timescale ensuring that they quickly follow their synaptic inputs.) We

then design a cost function Cp to find bias terms bprep
eff = � M�1

eff Veff z
prep such that the random variable:

zprepabs ðtÞ = Reff diag
�
e leff t

�
Leff z

prep
0 +bprep

eff

is likely to be positive at all times. The stochasticity of zprepabs ðtÞ emerges because zprep0 = zprepabs 0 � bprep
eff is a random vector with

mean mprep
z0

=m
prep
zabs0�bprep

eff and standard deviation sprep
z0

= sprep
zabs 0

. As a step to define the cost function Cp, we can express the

statistics of zprepabs ðtÞ at all times to find the vector of trajectories hlowðtÞ which we define as the values taken at three standard

deviations below the mean for each unit:8>>>>>>>>>>>>><>>>>>>>>>>>>>:

Ezprep
0

zprep tð Þ½ �=Reff diag e leff t
� �

Leff ðmprep
zabs0

� bprep
eff Þ= f tð Þ

Ezprep
0

zprep tð Þ � Ezprep
0

zprep tð Þ½ �
h i2

=

Reff diagðe leff tÞ Leff diagððsprep
zabs 0

Þ2Þ Lu
eff diagðe leff tÞ Ru

eff =gðtÞ

hlowðtÞ=bprep
eff + fðtÞ � 3 �

ffiffiffiffiffiffiffiffiffi
gðtÞ

p
To ensure that, under linear dynamics during the preparatory period, the rates stay as positive as possible, we therefore opti-

mize bprep
eff to minimize the sum of the square of the negative values of the vector of element-wise minima mintðhlowðtÞÞ = hmin

low :

Cp =
X

i s: t: hmin
low½ �

i
< 0

hmin
low

� 

i

� �2
where the dynamics of hlowðtÞ were computed over a duration of five cortical timescales.

2 In this second step, we will now use the thalamic biases we just found (the elements ½bprep
eff �i for i >N) and combine themwith the

cortical biases needed to ensure that the preparatory period converges to the correct rates for the upcoming motif.

We require that the cortical rates converge toward the following positive pattern to start upcoming motif m: ½zm +bm + ε�i%N (as

defined in Equation 38 and above). Similarly to themethods used in themain text, it is easy to see that this relies on designing an

additive input zprepm specific to the dynamics leading to a particular motif m:(Equation 39)

_zprepabs = Meff z
prep
abs +Veff z

prep
m 5 lim

t/N
zprepabs ðtÞ= �M�1

eff Veff z
prep
m = zabs m (Equation 39)

We then match the cortical steady-state rates expressed in Equation 36 to the next motif’s ideal initial pattern: we set, for i%N,

½zabs m�i = ½cm�i + ½bm + ε�i. Adding the thalamic biases that favor positive dynamics across motif transitions, we therefore set, for

Nprep Ri >N, ½zabs m�i = ½bprep
eff �i, where Nprep is the number of units in the preparatory network.

Hence, for each transition toward a particular motif m, we determined a vector zprepm = � V�1
eff Meff zabs m such that we can write

an efficient and mostly positive preparatory dynamics according to Equation 39.

4.2.6.3 Numerical implementation

The methodology developed above can be used to show that two major simplifications made in Equation 1: infinitely fast thalamus

and linear centered dynamics, can be relaxed while preserving the insights from the theoretical analysis that we present in the main

text.

More specifically, we can produce sequential dynamics using a reasonable dynamic timescale and positive rectified rates accord-

ing to Equation 28, by applying the non-linearity on top of themostly positive linear rate dynamics described above in Equation 34 that

is designed to approximately match the readout of a network with an infinitely fast thalamus. Note that we did not explicitly model the

details of the basal ganglia input to thalamus: instead, we simply assumed that thalamic units can be turned off very fast by their basal

ganglia inputs, while when these units start interacting with cortex their initial rates are assumed to be close to zero.

In addition, when simulating Equations 28 and 34, we have to think about the effect of the biases on the readout. For any motif,

adding the biases c and tact – regrouped into the vector z – to the differential equations transforms the centered dynamics z into offset
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dynamics. In order to recover the desired motifs, we simply remove the offset from the cortical readout at each time (Figures S7A and

S7B). By inducing a minimal modification of our theoretical framework, this strategy is in line with our aim to show that our simplified

centered dynamics – which we designed for the production of desired motifs – can be well-approximated in a particular regime of the

more biologically plausible dynamics. Other strategies involving more modifications of the dynamics would however be possible to

recover the desired network output, as we will discuss at the end of this section.

In Figure S7B, top, we show that adding the above-mentioned constraints: linear offset simulations with a plausible thalamic time-

scale (just 10 times faster than the cortical timescale in Equation 34), induces very small deviations (gray curves) compared to the

case of instantaneous thalamus (black curves) when starting motifs from their ideal initial rate patterns (Equation 16). Also, the finite

response timescale of thalamus does not prevent fast convergence to appropriate cortical initial conditions during the motifs’ pre-

paratory period using a small preparatory network (10% of the cortical network’s size with plausible synaptic weight magnitudes set

as for the green line of Figure S6E; Figure S7C, green curve).

We now turn to examining the effect of the nonlinear rectification of the rates (Equation 28). We show in the top panel of Figure S7C

that introducing a rectification in the positively biased linear rate dynamics of Equation 34 leads to minimal deviations during motifs

(cyan curve versus green line). Finally, in of Figures S7C and S7D, we show how introducing the rectifying non-linearity in the dy-

namics usually speeds the preparatory process.

These results successfully show that more plausible neural dynamics with rectified rates and a finite timescale in thalamus have a

dynamical regime that is successfully described by our simplified theoretical framework.

Note that the need for the readout offset correction may be avoided if, during motif production, the eigenvalue control would

include – in addition to eigenmodes for fitting the desired ‘centered’ motifs – an additional eigenvalue close to zero real and imag-

inary part (after accounting for the leak – i.e., this eigenvalue would be on the same vertical line as the desired eigenvalues of Fig-

ure 1E). This would permit the intrinsic production of a constant value added to the readout (controlled by the initial rates of the

motif, which would need to be optimized along with the biases as defined in Equation 38). This would also make the motif tran-

sitions smoother, as the change of the readout offset when preparing a new motif introduces a discontinuity in the readout. In

addition, the rectifying non-linearity does introduce some additional sways during transition times (compare the green and

cyan lines in the top panel of Figure S7B). These limitations are likely to resolve – or at least to become much less visible – if ad-

justing the synaptic weights with an online learning rule that would account for the constraints of the more plausible dynamics

(indeed smooth transitions have been shown in a nonlinear network constrained to have similar dynamics as described here

but trained with gradient descent (Logiaco and Escola, 2020)). The design of a biologically plausible learning rule for this circuit

is however beyond the scope of this article.

4.2.7 Numerics
The simulations were performed using MATLAB and Python. We numerically optimized Equation 22 and Equation 27 (we have ex-

perimented with either the square roots of these cost functions or the cost functions themselves, both versions give good results). As

discussed in STAR Methods Sec. 4.2.3, these equations can have multiple local minima. Thus, starting from different random initial-

izations for the optimization, we selected the best among the solutions we found to present in our figures.

These optimization procedures are relatively efficient:

d The cost functionCðuÞ given by Equation 22 requires the eigenvalues ~l and eigenvectors ~R and ~L of ~Jm. As we will clarify below,

these can be computed efficiently avoiding explicit eigendecomposition on each iteration of optimization.

First, because d = P+ 1, d is fully determined by Pwhich depends on the eigenvalues of Jcc and the target eigenvalues, but not on

u. As we explained in STARMethods Sec. 4.2.2 (Equation 13), this implies that allN eigenvalues of ~Jm are also fully determined and

independent of u. Thus L can be computed once prior to optimization of Equation 22.

Second, we are able to explicitly express the eigenvectors of the dynamics (Equation 19). These expressions depend onR, L, and

A, all of which can be computed prior to optimization, and on bu and bv which can be computed from u (and L and d) on each iter-

ation of optimization. Implementing the formulae given in Equation 18 requires onematrix multiplication each per iteration (in addi-

tion to other much cheaper operations). With ~R, ~L, andL in hand, the remaining operations to compute C are dominated by two

additional matrix multiplications (in Equations 22 and 23). Without the need for more computationally intensive operations (e.g.,

eigendecomposition or matrix inversion), the cost function C is efficient to optimize.

d For Equation 27, though we do not have explicit expressions for the eigenvalues or the eigenvectors, it is then possible to

compute the gradient of these expressions through the loop weight vectors analytically (Boeddeker et al., 2017). This consid-

erably speeds up the optimization.

When matching the target trajectory ym for one motif m to its approximation with a small number of eigenmodes bym =PK
i = 1a

des
i eðl

des
i �1Þt, we tried a few different numbers of non-zero eigenmodes K (typically between four and twenty, see Figures

S1A–S1E). For each value of K, we used MATLAB’s fmincon function with 50 different random starts to optimize the real and imag-

inary part of each amplitude ai and each eigenvalue ldesi tominimize themean square difference between ym and bym. Constraints were

added to discourage very large amplitudes ades
i (here, we impose kades 2 k < 18 because this bound approximately corresponds to
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the square of the maximum desired magnitude of the readout), very large real or imaginary parts of the eigenvalues ldesi (here, by

imposing that the maximal distance between these eigenvalues would be 2) or to find very similar eigenvalues which would tend

to lead to high eigenvector correlations (Sec. 4.2.3; here we imposed a conservative minimum distance of about 0.05 between

eigenvalues).

Unless otherwise stated, we used cortical matrices Jcc of size N = 500, and we made sure that Jcc � I was stable. More specif-

ically, we discarded the matrix if Jcc � I had positive eigenvalues, and we added a small positive ε to the leak during numerical sim-

ulations of the dynamics to ensure that no instability would arise due to numerical approximations during eigenvalue control with

target eigenvalues very close to, or on, the line Rel = 1.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using MATLAB. Sample sizes and p values are indicated.
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Figure S1: Tuned basis functions vs. linear reservoir for generating motifs
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Figure S.1: tuned basis functions vs. linear reservoir for generating motifs, related to Figure 1. A–E) Approxi-
mating each target motif by the sum of a small number of fully-tuned basis functions of the network dynamics: the
eigenmodes (see Figures 1 C-D for a visualization of these basis functions). Here, the exponential and oscillation
timescales as well as the initial amplitudes and phases of these eigenmodes are adjusted to each desired output. Such
a sum of fully-tuned eigenmodes corresponds to the network output that is generated when cortex interacts with a
thalamocortical loop whose weights are tuned for the production of a particular motif (i.e., as per Eq. 2 and Eq. 22).
Top: Example target motifs yµ (black) and their approximations ŷµ which are sums of eigenmodes (i.e., sums of
conjugate pairs of complex exponentials: ŷµ(t) =

∑K
i=1 α

des
i e(λ

des
i −1)t, with K = 4, K = 6, K = 8, K = 10 and

K = 20 corresponding to light blue to pink curves). Here, the parameters αdesi and λdesi are numerically optimized
to minimize the mean square error between the yµ and ŷµ (see Methods section 4.2.7 for details). Note that in
Figures 1 and 2 these parameters could instead be determined analytically by sampling the Fourier transform of
the mathematically well-defined sinc function (which typically requires many more eigenmodes than the numerical
procedure presented here because the analytical solution is a valid approximation over all time, while the numerical
solution is identified only for the desired motif duration). Note also that, in C and E, the curves for the larger values
of K – as well as the target motif – are hidden under the K = 8 curve. In D, the inset shows a magnified part of the
first upper triangle. Finally, note that in E, we show motif ‘C’ from Figure 4 – it is fit without any discernible error
for K ≥ 8. Middle: Real and imaginary parts of the parameters λdes1 − 1, . . . , λdesK − 1 used to match ŷµ to the cor-
responding target motif yµ, for different values of K. Note that increasingly large symbols are used for larger values
of K, in order to make all symbols visible in cases when the λdesi overlap for different values of K. Bottom: Real
and imaginary part of the αdesi (conventions as in the middle panels). Note that even if these values were constrained
to have a relatively small norm during the optimization (here,

∥∥αdes
∥∥2 < 18), the solution that is found to minimize

the error between desired output and weighted sum of tuned eigenmodes is characterized by magnitudes of the αdesi

that are most often ‘naturally’ smaller than the bound, especially for small values of K and if the maximum target
output is not very large. This illustrates how the tuning of the timescales of a few eigenmodes can lead to a powerful
and robust approximation of a wide variety target outputs. F–J) Approximating the same target motifs when only
tuning the initial activity pattern cinitµ of the isolated cortical network (whose eigenspectrum is shown in Figure 1E,
and which is a random reservoir network). This amounts to tuning the initial amplitude and phase of each eigenmode
but not their timescales. If no limitations are set on the norm of the initial activities, the least squared error solution
between the network output and the target motifs settles on extremely large norms for cinitµ which are unstable
with respect to noise in cinitµ (shown in panels K and L below). Here we show solutions for which the elements of
cinitµ were loosely bounded between [−50, 50] (i.e., a maximal initial activity norm of ≈ 103; compare to the much
smaller activities and norms for the thalamocortical network shown in Figure 4B, Figures S.6G–I, Figures 3E–F and
Figure S.3E). These solutions have some level of robustness to 1% noise in cinitµ (green curve), though they still are
not as accurate or robust as in the thalamocortical network where both eigenvalues and eigenvectors are controlled
(compare panel J to panel E for K ≥ 8 and to Figures S.6G–I). In order to find the appropriate cinitµ , we used a
constrained linear least square algorithm and selected the best solutions among 100 different random initializations
of the optimization. K, L) Least squared error solution – relying on the Moore–Penrose pseudoinverse – for two
example motifs (K is the difficult square-wave motif shown in A&F and L is motif ‘C’ shown in E&J). Left: network
readout, starting from cinitµ (red) or from a noisy version of cinitµ (green, adding a Gaussian vector whose expected
norm is 1% of the norm of cinitµ ). Right: Activity norm (top) and example units (bottom) with or without noise in
cinitµ . Notice that the activities are extremely large, and that their orientation to the readout is fine-tuned to get a
relatively accurate output if starting exactly from cinitµ . However, the output deviates wildly if some small amount
of noise is added to cinitµ .



Figure S2: Eigenvalue control through a rank-one perturbation
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Figure S.2: eigenvalue control through a rank-one perturbation, related to Figure 1. A,B,C) Top: eigenspectra of
the effective connectivity matrices consisting of a fixed recurrent cortical connectivity Jcc and a rank one perturbation
uvᵀ where u is a random vector and v is computed according to Eq. 2 (λ̃i, purple circles), compared with the desired
eigenvalues λdesi (green dots). The eigenspectrum of the unperturbed cortical connectivity matrix Jcc is given for
comparison (λi, red dots). Bottom: respective cumulative distribution functions for (i) the effective loop weights
uvᵀ and (ii) the recurrent cortical connectivity weights Jcc. Note that the three graphs have different scales for their
x-axis. A) The λdesi are the eigenvalues of a different random matrix from Jcc but with the same distribution of
entries. B) There are again N desired eigenvalues λdesi but many of them are very different from the eigenvalues of
Jcc. C) Only 20 desired eigenvalues λdesi are specified, all outside of the spectrum of Jcc. D) Left: eigenspectra of the
effective connectivity matrices for the same desired eigenvalues as in panel C, but starting from two different vectors
u1 and u2 and finding two different vectors v1 and v2 using Eq. 2 (cyan dots and blue circles). We also show the
eigenvalues of the unperturbed cortical matrix (red dots). Right: schematic illustrating the network configurations
giving these (identical) eigenspectra of the perturbed matrices. E) Left: eigenspectra of the effective connectivity
matrices for the same desired eigenvalues as in panel C (green dots), where the eigenvalue control is implemented by
tuning v either using ‘our method’ (Eq. 2, orange circles) or using the minimal norm solution for v (black circles, as
in (Schuessler et al. 2019)). We also show the eigenvalues of the initial recurrent cortical matrix (red dots). Middle:
boxplot showing the distribution of differences in mean squared norm of the (non-desired) eigenvalues between the
two methods over 100 networks (each of them with a random Jcc and u). Eq. 2 yields significantly smaller norms (the
p-value of a signed rank test is indicated). Right: boxplot showing the distribution of between-method differences
in maximum real part for the non-desired eigenvalues over the same 100 networks. Eq. 2 yields a distribution of the
maximum real part of the eigenvalues that is significantly shifted towards lower values (the p-value of a signed rank
test is indicated). F) Stability of eigenvalue control with different sizes N of the recurrent cortical matrix Jcc relative
to the number K of desired eigenvalues λdesi , and different distances between the eigenspectrum of Jcc and the desired
eigenvalues. Left: example eigenspectra (eigenvalues λi of the unperturbed cortical matrix Jcc: red dots; desired
eigenvalues λdesi : green dots; and eigenvalues λ̃i of the effective connectivity matrix J̃µ: blue circles) illustrating the
outcome of eigenvalue control for relatively larger (top row) vs. relatively smaller (bottom row) numbers of desired
eigenvalues. Left column: N = 500, original eigenspectrum of Jcc (as for other panels of this figure, and as in the
main text). Middle column: N = 500, shifting the eigenspectrum of Jcc by 0.5 to the left – i.e., away from the
desired eigenvalues – makes eigenvalue control harder such that fewer eigenvalues can be successfully controlled.
Right column: N = 100, original eigenspectrum of Jcc – reducing the size of Jcc also makes eigenvalue control more
difficult. The condition numbers of the matrix P with elements Pij = 1/(λdesi − λj) – which needs to be inverted
during eigenvalue control (Eq. 2) – are indicated. Right: plot summarizing the condition numbers of P as a function
of the number of desired eigenvalues K, for different sizes N and different shifts of the eigenspectrum of Jcc. For
a given K, the condition number is larger for smaller N or for larger shift of the eigenvalues of Jcc away from the
desired eigenvalues. The condition number of P predicts whether eigenvalue control will be successful. Circles and
stars indicate the examples illustrated on the left.



Figure S3: Non-normal properties of the motif production network
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Figure S.3: non-normal properties of the motif production network, related to Figure 2. A-E) Networks producing
the sinc function (main text Figures 1E–F and Figure 2). A) For a half-random thalamocortical perturbation (left),
cosine of angle between pairs of non-complex conjugate eigenvectors (right). Bright yellow and deep blue indicate
larger correlations. Eigenvectors are ordered such that the first ten (outlined by the pink stars) correspond to the
controlled eigenvalues, while subsequent indices correspond to non-controlled eigenvalues ordered from smallest to
largest eigenvalue norm. Note that the non-controlled eigenvalues with smallest norm are all at the center of the
bulk of the eigenspectrum. B) Same as A but in the case of a fully learned loop. C) Decrease of the Frobenius
norm of uvᵀ between half-random and fully-tuned loops (50 different Jcc and w). D) Cumulative distributions
of mean squared deviation due to initial noise in networks with fully tuned loops, separately along the readout
direction (pink) or along thirty different random directions (black, each line is the distribution over these random
directions for a given Jcc and w). E) Root mean square rate during noiseless motif production (starting from
cinitµ ) in networks with a half-random loop (1), after full optimization of the loop (2), or in matrices with the same
eigenspectrum as J̃µ but with either eigenvectors from random matrices (3) or orthogonal eigenvectors (4). F) For a
thalamocortical loop tuned to produce the motif ‘C’ from Figure 4 (inset), eigenspectrum of the effective matrix J̃µ
(purple circles) and target desired eigenvalues (green dots). The eigenvalues of the unperturbed cortical matrix Jcc

are also shown (red dots) as well as the limits of the eigenspectrum that Jcc would have if its size was infinite (red
circle). G,H) Properties of networks optimized for five oscillatory motifs (including the three motifs of Figure 4).
G) Distributions of the absolute values of the cosines between eigenvector angles, separately if (i) both eigenvectors
correspond to controlled eigenvalues (magenta), (ii) only one of the two eigenvectors of the pair corresponds to
a controlled eigenvalue (cyan), (iii) both eigenvectors correspond to uncontrolled eigenvalues (green). We further
differentiate between a half-random loop and a fully tuned loop. H) Root mean square error of the output in the
presence of 1% noise. Groups defined as in E.



Figure S4: Synaptic weight distributions of the motif production thalamocortical cir-
cuits

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

-6 -4 -2 0 2 4 6

Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

Jcc
uvT (half random)
Gauss. match. uvT

A B C D

E F G H

-2 -1 0 1 2

Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

Jcc
uvT(fully learned)
Gauss. match. uvT

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

Jcc
uvT (half random)
Gauss. match. uvT

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

Jcc
uvT(fully learned)
Gauss. match. uvT

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Synaptic weights

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cu
m

la
tiv

e 
pr

ob
ab

ili
ty

si
nc

 p
ro

du
ct

io
n 

(F
ig

.2
)

m
ot

if 
C 

pr
od

uc
tio

n 
(�

g.
 4

)

Jcc
{u,v} (half random)
Gauss. match.{u,v}

Jcc
{u,v} (half random)
Gauss. match.{u,v}

Jcc
{u,v}(fully learned)
Gauss. match.{u,v}

Jcc
{u,v}(fully learned)
Gauss. match.{u,v}

Half-random loop Fully-tuned loop

E�ective loop weights Individual projection weights E�ective loop weights Individual projection weights

Figure S.4: synaptic weight distributions of the motif production thalamocortical circuits, related to Figure 2.
Cumulative distribution functions (cdfs) for the thalamocortical networks’ weights, during (i) the production of the
sinc function as in Figure 2 (panels A–D), (ii) the production of motif ‘C’ as in Figure 4 (panels E–H). As a
reference, the cdf for the weights in Jcc is shown in red in all panels (i.e., a particular drawing from a centered
Gaussian distribution with standard deviation 1/

√
N where N = 500 is the cortical network’s size). In all panels,

the blue curve is the cdf for the weights of a rank-one perturbation tuned for motif production: either half-tuned
weights which set the target eigenvalues (panels A &B and E &F) or fully-tuned weights which are also optimized
for noise robustness (panels C &D and G &H). In addition, we show both the effective perturbation weights (i.e.,
the entries of uvᵀ; panels A, C, E and G) or the individual weights between units (i.e., the mixture distribution
gathering the entries of u and v, symbolized by {u,v}; panels B, D, F and H). Note that there is a certain degree
of freedom for choosing the norm of the individual vectors u and v as multiplying one vector by a value and dividing
the other by the same value leaves the perturbation uvᵀ unchanged. Here, we chose a normalization factor such that
the vectors u and v have the same norm.



Figure S5: Robustness relative to small levels of noise in the weights
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Figure S.5: robustness relative to small levels of noise in the weights, related to Figure 2. Dynamics of the
thalamocortical circuit in the presence of small levels of synaptic noise (noise matrix with Frobenius norm 0.1% of
Jcc’s Frobenius norm). A-D) Production of an ‘easier’ motif relying on K = 8 eigenmodes (motif ‘C’ from Figure 4);
E-I) production of a ‘harder’ motif relying on K = 20 eigenmodes (the motif from Figure 2). A,C,E,H) Half random
thalamocortical loop (eigenvalues controlled by tuning v using Eq. 2); B,D,G,I) fully tuned loop (additionally tuning
u to improve the robustness to noise in the activities by optimizing C(u); Eq. 22). A,B,E,G) Eigenspectra of J̃µ
in presence of noise vs. without noise. Note that we use the same noise between the half-random and fully-tuned
loop cases. F) In the case of the larger modulation of J̃µ (20 controlled eigenvalues), root mean square norm of the
difference between the eigenvalues between the noisy and noiseless matrices, for 50 draws of Jcc, their associated
half-random and fully-tuned loops, and the noise. The difference is significantly smaller in the fully-tuned case. The
black line corresponds to the eigenspectra in panels E and G. C,D,H,I) Left: network output, using the original
initial activities cinitµ , in the noiseless case (green), when adding noise in the weights (red), and for noisy weights in
five instances of noisy cinitµ (black). Right: same as left, with the difference that for the red and black curves the
initial activities are remapped to adapt to the change in the eigenvectors (using Eq. 16 with the eigenvectors of the
noisy J̃µ) to solely visualize the effect of the modifications of the eigenspectrum. The level of noise in the initial rates
was 5% in panels C&D; and 1% in H&I.



Figure S6: Dynamics and loop weights of the motor preparation network
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Figure S.6: dynamics and loop weights of the motor preparation network, related to Figure 3. Analysis of the
thalamic preparatory network (for all but panel C: 50 loops for 500 cortical units). A–C) Effect of the parameter
β after optimization of Eq. 27. A) Eigenspectra of Jcc + UVᵀ; increasing β mostly increases the real part of
the rightmost (real) eigenvalue. B) Cosine of angle between the eigenvector and the readout, as a function of the
exponential decay timescale. The slowest eigenmode is aligned with the readout. C) For β = 0, convergence time
(number of cortical timescales such that the square root of the expected square norm of the activity decays to the
indicated fraction of its initial value). These times are similar to those for β = 0.05 shown in Figure 3D. D–F) Effect
of scaling ||UVᵀ|| reached after optimizing Eq. 27 with β = 0.5. D) The left outliers of the eigenspectrum – which are
equal in number to the rank of UVᵀ – become smaller when reducing the scale of the perturbation compared to their
original large norm after optimization; however the rightmost part of the spectrum is almost unchanged (inset) and,
importantly, remains shifted to the left of the stability line. E) Distribution of the perturbation weights (entries of the
matrices U and V – whose corresponding columns are chosen to have the same norm without loss of generalization)
for the same scalings of ||UVᵀ|| as in panel D. F) Square root of expected squared activity norms, single unit
examples, and readout when starting with random initial activities of norm one. The readout is smoother and slower
to decay than the activity norm or the single units. G–I) Readout and activities when preparing and executing
motif ‘C’ from Figure 4 following a preparatory duration of 10, 5 and 3 timescales for G, H, and I respectively
(as indicated by a vertical black line). Different lines of the same color indicate different initial conditions. J–L)
Optimizing Eq. 27 while constraining the solution to obey ||UVᵀ||fro = ||Jcc||fro, for β = 0.5 (except for the bottom
panel of L which also shows β = 0). J) Eigenspectra of the perturbed matrix Jcc + UVᵀ (notice the absence of
eigenvalues with very negative real part as in panel D) and of Jcc. K) Corresponding synaptic weight distributions.
L) Normalized cortical activity norm and readout trajectories (which, for the latter, contrast β = 0.05 which is
smoother with β = 0 which is not) over different random initial conditions.



Figure S7: More biologically plausible dynamics (positive rates and non-instantaneous
thalamus)
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Figure S.7: more biologically plausible dynamics (positive rates and non-instantaneous thalamus), related to
Figure 4. A) Schematic showing the added inputs to the dynamics (for motif µ,z̄prep

mu during preparation – top – and
z̄
mu during execution – bottom) to shift it such that the activities stay close to the linear regime, as well as the bias

(dµ) that is added to the cortical readout to form the total output. This bias removes the offset of the dynamics
induced by shifting the activities to positive values. Note that the necessity of this bias added to the readout is a
consequence of strongly constraining the dynamics to have very similar eigenspectra as in the main text, rather than
a strict limitation of the framework (see 4.2.6.3). B) First row: output for a network trained to produce different
sequences, while accounting for important biological constraints, as compared to the desired sequence (black). Second
and third rows: rates of the cortical and thalamic units, respectively. Fourth row: constant dµ added to the cortical
readout wᵀc at all times to form the total network output. First, thalamic units are constrained to be realistically fast
(10 times faster than the cortical units). The eigenvalues are still constrained using the same theoretical framework as
in the main text (Eq. 2) which assumes an idealized network with infinitely fast thalamic responses, but the deviations
induced by the thalamic timescale are interpreted as a biased noise whose effects on the readout are minimized along
with the effect of initial rates’ noise (Eq. 37). The effect of introducing the thalamic timescale on motif production
is visible by comparing the black target readout with the grey lines, which show the cortical readout when exactly
adjusting the rates to their ideal values at the beginning of each motif. In addition, the rates are constrained to be
mostly positive in the linear regime by adding motif-specific constant inputs to the dynamics, and we set the cortical
rate pattern at the beginning of each motif using a preparatory thalamic network. The green line is the readout of
these offset linear dynamics, while the cyan line is the result when additionally rectifying the rates below zero. Note
that we used a restricted number of thalamic units to optimize the preparatory network (10% of the cortical size
or 50 units), and the norm of the thalamic preparatory perturbation weights was set to ten times the norm of the
cortical weight matrix (as in Figure S.6D–E). See Methods Sec. 4.2.6.3 for details. C) Details of the effectiveness
of the preparatory network constrained by the presence of a thalamic timescale and of constant inputs setting the
rates to mostly positive values during linear dynamics. The x-axis is restricted to the start of the preparatory period
which links two motifs, and 36 motif transitions are illustrated. Each trace shows the euclidean distance between
the cortical rates and the target cortical rate pattern for starting the next motif, relative to the norm of the target
cortical pattern. The green lines correspond to offset linear dynamics while the rectified dynamics are shown in cyan.
D) Difference of final distance from the target rates between rectified and linear dynamics in C, showing that the
rectified dynamics often cause the cortical rates to converge faster than in the case of linear dynamics.
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