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Synopsis. The stomatogastric nervous system of decapod crustaceans is 
an ideal system for the study of the processes underlying the generation 
of rhythmic movements by the nervous system. In this chapter we review 
recent work that uses mathematical analyses and computer simulations 
to understand: 1) the role of individual currents in controlling the activity 
of neurons, and 2) the effects of electrical coupling on the activity of 
neuronal oscillators. The aim of this review is to highlight, for the phys- 
iologist, what these studies have taught us about the organization and 
function of single cell and multicellular neuronal oscillators. 

Introduction 

The reductionist approach to neurosci? 
ence has taught us to seek to understand the 
nervous system by attempting to identify, 
isolate, and analyze each of its components. 
At the level of cellular biophysics this has 
led to the study of single ionic currents and 
the second messenger systems that underlie 

many of these processes. At the level of sys? 
tems neuroscience, the reductionist 

approach has led us to attempt to identify 
the neurons involved in a given behavior 
and to define the connections among them. 
In both cellular and systems neuroscience, 
however, it is always easier to define the 
individual components of a system, than it 
is to understand what each identified com? 

ponent, be it a current or a neuron, con- 
tributes to the dynamic activity ofthe whole. 

Indeed, conventional electrophysiological 
and biophysical methods are almost totally 
inadequate to analyze the role individual 
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components play in defining the activity of 
a system. On the other hand, this is an area 
where mathematical and computer models 
can provide substantial insights. 

The crustacean stomatogastric ganglion 
(STG) contains 30 neurons, and generates 
two motor patterns, the pyloric rhythm 
(period ?1 see) and the gastric rhythm 
(period 5-10 see). The pyloric rhythm con- 
sists of repeating bursts of action potentials 
in the motor neurons that innervate muscles 
that alternately dilate and constrict the 

pyloric valve. The pyloric rhythm depends 
for its rhythmicity on a bursting pacemaker 
neuron, the Anterior Burster (AB) neuron. 
The AB neuron is electrically coupled to the 

Pyloric Dilator (PD) neurons, which there? 
fore fire in bursts. Inhibitory connections 
from the pacemaker group (AB and PD neu? 

rons) cause the constrictor neurons (Lateral 
Pyloric (LP) and Pyloric (PY) neurons) to 
fire out of phase with the dilator neurons. 

In this article, we will describe our first 

attempts to construct models ofthe neurons 
and networks in the STG. For each exam? 

ple, rather than describe the form of the 
model in detail (these are described else- 

where), we will describe the neurobiological 
problem that led us to formulate the model, 
summarize the salient features ofthe model, 
and then focus on what experimental neu- 
roscientists can learn from this enterprise. 

\9 
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Cellular Models 

AB neuron 

The amplitude and frequency of the 
membrane potential oscillations of the AB 
neuron are modulated in characteristic and 
different ways by a large number of both 

peptidergic and aminergic neurotransmit- 
ters (Marder and Eisen, 1984&; Flamm and 

Harris-Warrick, 1986; Hooper and Marder, 
1987). Because the AB neuron is a target 
for so many different neuromodulatory sub? 

stances, it is interesting to determine, for 

each, the mechanism underlying the mod- 
ulation of burst amplitude and frequency 
(Harris-Warrick and Flamm, 1987). There 
are at least two different classes of general 
mechanisms by which such a large number 
of neuromodulatory substances could induce 

specific changes in AB neuron activity. First, 
the AB neuron's rhythmic oscillations could, 
in all cases, depend on the same ensemble 
of conductances, with the changes induced 

by neuromodulatory substances resulting 
from only quantitative alterations in the 

expression of these conductances. Second, 
AB neuron oscillations could arise from 

qualitatively different sets of conductances, 
each set induced by different neuromodu? 
lators. The ultimate answer to this question 
requires the complete description ofthe ionic 
currents found in the AB neuron, as well as 
an analysis ofthe mechanisms by which each 

modulatory substance influences the AB 
neuron. Although we are far from having 
these data, a first attempt to model the 

activity ofthe AB neuron gives us some new 

insights into this problem. 
Harris-Warrick and Flamm (1987) com? 

pared the AB neuron bursts obtained in the 

presence of three different amines, seroto? 

nin, octopamine, and dopamine. These 
workers noted that under a given set of 

experimental conditions TTX failed to 
abolish dopamine-enhanced bursts, but 

suppressed serotonin-enhanced bursts. 
From these and other observations, Harris- 
Warrick and Flamm (1987) suggested that 
there might be an essential difference in the 
nature of the burst generating mechanism 
found in the presence of these different 
amines. Partly motivated by these data, 

Epstein and Marder (1990) constructed an 

ad hoc model of an AB-like burster. This 
model was not based on specific data from 

biophysical studies of AB neurons, but is 
an isopotential, conductance-based model 
that contains five ionic currents found in 

almost all central nervous system neurons. 
This "AB" model consists of a Hodgkin- 

Huxley type TTX-sensitive Na+ current, a 

delayed-rectifier K+ current, a voltage- 
dependent Ca++ current, a Ca++-dependent 
K+ current, and a Cl" leakage current. 

Epstein and Marder (1990) showed that 
variations in the values ofthe maximal con- 
ductances ofthe Na+, Ca++ and Cl" leakage 
currents produced bursts with significantly 
different waveforms (Fig. IA, B) and cur? 

rent-voltage properties. In one form of the 
model (Fig. IA), the Ca++ conductance is 

low, and when TTX application was sim? 
ulated by turning off the Na+ conductance, 
bursting was suppressed (not shown). In 
another form ofthe model in which the Ca++ 
conductance is higher, bursting persists in 
the absence of the Na+ current (Fig. 1C). 
The currents active during bursting in these 
forms of the model are shown in Figure 
1D, E. 

This model, although not specifically 
based on real biophysical data from the AB 

neuron, teaches us several things. First, even 
a relatively modest change in the balance of 
conductances of a neuron can produce 
markedly different behavior under current 

clamp conditions. Although the two forms 
of the model respond qualitatively differ- 

ently to the simulation of TTX application, 
this effect is produced by a relatively minor 
difference in the maximal Ca++ and leakage 
conductances in the two forms ofthe model. 
No new conductances are involved, and 
these changes are well within the kinds of 
effects produced by modulatory substances 
in many tissues. Thus, the apparent quali? 
tative difference in the behavior of the bio? 

logical AB neuron in the presence of dopa? 
mine (in which bursting continues in the 

presence of TTX) and serotonin (in which 

bursting is suppressed by TTX) (Harris- 
Warrick and Flamm, 1987) may result from 
a modest quantitative difference in the Ca++ 
current which participates in bursting in both 
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Fig. 1. Multiple forms of a burster. A. Epstein and Marder (1990) model with maximal conductances (mmho/ 
cm2): Na+ = 100; Ca++ = 0.08; CL = 0.11. B. Epstein and Marder (1990) with maximal conductances (mmho/ 
cm2): Na+ = 8; Ca++ = 0.12; CL = 0.18. All other parameters are the same for the two models. C. Conductances 
as in (B) with the Na+ conductance set to 0. D. Currents flowing during burst shown in (A). E. Currents flowing 
during burst of (B). Adapted from Figs. 2, 3, 4, and 8 of Epstein and Marder (1990). 

cases, rather than indicating that bursting 
in the two amines occurs by qualitatively 
different mechanisms. Support for this 

interpretation comes from recent work of 
Johnson et al (1992) who showed that sero- 
tonin-activated bursting persists in the pres? 
ence of TTX when the temperature is ele- 
vated. This may occur if the higher 
temperature increases the Ca++ current, for 

example. In summary, a relatively minor 
modification of the ratio of the maximal 
conductances of the currents involved in 
burst generation can markedly influence the 

dynamic activity of the neuron. 
The work of Epstein and Marder (1990) 

makes another interesting point. In this 
model the only Na+ current is the early 
inward Hodgkin-Huxley, TTX-sensitive 
current. Although this current activates and 
inactivates rapidly, enough current remains 
at the relatively hyperpolarized membrane 

potentials of the slow oscillations for it to 

play a significant role in burst generation 
{e.g., Fig. 1E). It has often been assumed in 
the analysis of burst generation (Benson and 

Adams, 1987, 1989), that the TTX-sensi? 
tive Na+ current which participates in burst- 

ing is a different current than that respon? 
sible for rapid action potentials. Our results 

suggest that in certain neurons the fast Na+ 
current may play both roles. 

LP neuron 

Although the ad hoc model of the AB 
neuron brought us insight into several phys? 
iological processes, we wished to construct 
models that were based on the actual con? 
ductances measured from a real STG neu? 
ron. Therefore Golowasch and Marder 

(1992a) undertook a study ofthe conduc? 
tances found in the Lateral Pyloric (LP) neu? 
ron ofthe crab, Cancer borealis. Each STG 
has a single LP neuron which is also subject 
to a host of neuromodulatory influences 

(Hooper and Marder, 1987; Nusbaum and 

Marder, 1988, 1989a, b; Golowasch and 

Marder, 1991*). 
Using conventional two-electrode volt? 

age clamp methods, Golowasch and Marder 

(1992a) characterized many ofthe major 
voltage- and time-dependent conductances 
in the LP neuron. The LP neuron shows 
three outward currents, a delayed-rectifier 
K+ current (ID), a fast transient K+ current 
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Fig. 2. Proctolin responses ofthe biological and model 
LP neurons. A. Intracellular recording from an LP neu? 
ron isolated from presynaptic inputs from the pyloric 
network by application of 105 M picrotoxin and a 
sucrose block on the input nerve. Proctolin was applied 
at the upward arrow from a puffer pipette (0.5 see puff). 
Note the slight depolarization and the increase in firing 
frequency. B. Response of the model LP neuron to a 
simulated proctolin puff (at the arrow). Once again, 
note the slight depolarization and the increase in firing 
frequency. Time tics are 1 see. 

(IA), and a Ca++-activated K+ current (IoCa)- 
The inward currents displayed by the LP 
neuron include a hyperpolarization acti- 
vated slow inward current (IH), a voltage- 
dependent Ca++ current (ICa), and a Hodg- 
kin-Huxley type TTX-sensitive Na+ current 

(INa) (Golowasch and Marder, 1992a). To 
construct a model of the LP neuron, each 
of these currents was fit with equations of 
the general form of the Hodgkin-Huxley 
equations (Buchholtz et al, 1992), and then 
a model neuron was constructed by com- 

bining these with a leakage conductance and 

capacitance. The activity of the model LP 
neuron was compared to the activity ofthe 

biological LP neuron by simulating a series 
of current and voltage-clamp experiments 
similar to those performed with the real 
neuron (Buchholtz et al, 1992; Golowasch 

etal, 1992). 
One of the comparisons between the 

model neuron and real neuron can be seen 
in Figure 2, which compares the response 
of the biological and model neurons to the 

application of the peptide proctolin (the 
proctolin current was simulated from bio? 

physical measurements, Golowasch and 

Marder, 1992&; Golowasch et al, 1992). 
Proctolin is a peptide known to have impor? 
tant modulatory actions on the pyloric 
rhythm (Hooper and Marder, 1987; Nus- 
baum and Marder, 1989a, b). Figure 2A 
shows the response ofthe biological neuron 
to a pufFof proctolin (arrow). Note the slight 
depolarization, and the sharp increase in the 

frequency of the LP neuron action poten? 
tials. In Figure 2B, the same experiment was 
simulated by turning on (arrow) the proc? 
tolin current in the model neuron. Note 

again the increase in firing frequency and 
the slight depolarization of the membrane 

potential. The similarity in the responses of 
the model and the real neurons is gratifying, 
but does not in itself provide any insight 
into the roles of each ofthe membrane cur? 
rents in controlling membrane excitability. 

Insight into the roles of each of the con? 
ductances in controlling the activity of the 
neuron can be obtained by examining the 

plots ofthe individual currents during ongo- 
ing rhythmic activity (Fig. 3). In the absence 
of the proctolin current, note that the out- 
ward current due to the activity ofthe Ca++- 
activated K+ current contributes signifi? 
cantly to the repolarization of the action 

potential, while the delayed rectifier con? 
tributes considerably less. Interestingly, 
when the proctolin current is turned on, and 
the neuron is thus slightly depolarized, the 
relative contributions ofthe Ca++-activated 
K+ current and the delayed rectifier to the 

repolarization of the action potentials 
changes. Thus even a small current that pro- 
duces only a modest change in membrane 

potential may have pronounced effects on 
the role of each current in shaping the activ? 

ity of the neuron, in ways that are impos? 
sible to see unless one has a model in which 
the activity of each current can be visualized 

during ongoing activity. 

Reduction of Complex Models 

Although detailed conductance-based and 

multicompartmental models allow the 

investigator to see what each variable in a 
model is doing at all times and to ask what 
each component of a model is providing to 
the output of the system, they also have 
several major disadvantages. Most signifi? 
cantly, as the number of dynamical vari- 
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Fig. 3. Computer models allow the examination ofthe roles of individual membrane currents. Left: Activity 
of the membrane currents in the model LP neuron during spontaneous activity in the absence of the proctolin 
current. Right: Activity in the model LP neuron in the presence of the proctolin current, which depolarizes the 
neuron, and causes it to fire more rapidly. Comparison of left and right shows that the relative contributions of 
i0(Ca) and id currents to spike repolarization have changed. Modified from Golowasch et al, 1992. 

ables in a model increases, our ability to 

analyze the behavior ofthe model in formal 

analytic terms decreases. Therefore, the ideal 
situation is a model that retains the essential 
features of a full, realistic model, but is as 

simple as possible. Over the years a number 
of simplified neuron models have been used 
for simulations of neurons and neural net? 
works. However, in most cases, these sim? 

plified models have been ad hoc, and their 

parameters bear little or no relation to the 

underlying biological properties ofthe neu? 
rons that they are meant to represent. 

To remedy this situation, Kepler et al. 

(1991, 1992) have developed a method to 
do systematic reductions of realistic con- 
ductance-based models. Kepler et al {1991, 
1992) start out with the full Hodgkin-Hux- 
ley equations for an action potential. Using 
a method of calculating "equivalent poten- 

tials" they are able to reduce the four Hodg- 
kin-Huxley equations to a model with only 
two dynamic equations. Figure 4A com- 

pares the behavior ofthe full Hodgkin-Hux- 
ley equations to that of the reduced model 
and illustrates that although the model has 
been reduced, this has been accomplished 
without sacrificing the essential character? 
istics of the neuron's electrical activity. To 
test further this method, Kepler et al. (1991, 
1992) introduce an "A current" (IA of Con- 
nor and Stevens, 1971). Figure 4B compares 
the activity of a six equation model in which 
the activity of these three conductances is 

fully simulated, and a reduction of this 
model with only three dynamical variables. 
Once again, the reduced model behaves 
almost identically to the full model. 

The general purpose of developing this 
method of reducing full models is not com- 
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Fig. 4. Comparison of reduced and full models. Top panel: Simulation of full Hodgkin-Huxley model (solid 
lines) for the squid axon in response to a release from tonic hyperpolarization. Superimposed is the simulation 
ofthe reduced Hodgkin-Huxley model (dashed lines) in response to the same stimulus paradigm. Note that the 
reduced model duplicates the behavior of the full model (solid and dashed lines almost perfectly superimpose). 
Bottom panel: Simultaneous plot ofthe full model (six differential equations) of Connor et al. (1977) (solid line) 
and the reduced model (three equations) (dashed lines). The bottom trace of this panel shows the same randomly 
fiuctuating current imposed on both models to probe their response to perturbation. Note that the reduced model 
and the full model track almost perfectly. Modified from Kepler et al. (1991). 

putational ease, as the increasing speed and 
size of computers are making simulations 
of even large numbers of complicated neu? 
rons tractable. Instead, we hope that these 
reduction techniques will bring these mod? 
els to an intellectually accessible point and 
allow us to identify which features of the 

complete models (and of the neurons they 
represent) are responsible for different 

aspects of the neuron's activity and mod? 
ulation. Given that these reductions are from 

biologically realistic models, we have good 
reason to hope that the associations we make 
between specific features of the reduced 
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models and specific aspects of neuronal 

activity will be correct. Moreover, with these 

predictions from the models to guide us, it 
should be relatively easy to test them in 

experiments on real neurons. 

Network Models 

Although recent years have seen an explo- 
sion in our understanding of the role of 

modulatory substances and neurons in the 
control ofthe neuronal networks in the STG 

(Marder and Nusbaum, 1989; Harris-War- 
rick and Marder, 1991), we are far from 

understanding the role each individual neu? 
ron and synaptic connection in the STG 

plays in shaping the motor patterns pro? 
duced by the STG. As part of an ongcing 
program to develop a network model ofthe 
central pattern generating networks in the 

STG, we began by modeling the two celled 
network formed by the electrically coupled 
AB and PD neurons. Although the AB and 
PD neurons burst synchronously during 
ongoing rhythmic activity because they are 

electrically coupled, the AB and PD neurons 
differ in terms of their membrane properties 
(Bal et al, 1988), their responses to inputs 
(Marder and Eisen, 19846), and the neu- 
rotransmitters that they release (Marder and 

Eisen, 1984a). We describe below data that 
show that the PD neuron shapes both the 

frequency and the waveform ofthe AB neu? 
ron oscillations, thus demonstrating that the 

pacemaker for the pyloric rhythm is a net? 
work of several electrically coupled neu? 
rons. 

The role ofelectrical coupling in 

frequency control 

The first intimation that frequency con? 
trol in the pyloric network results from an 
interaction between the intrinsic frequency 
of the AB neuron and network interactions 
came from the work of Hooper and Marder 

(1987). These authors noted that the iso? 
lated AB neuron in the presence of proctolin 
produced bursts at about 2Hz, while the full 

pyloric network in proctolin cycled at a fre? 

quency of about 1Hz. Thus an electrically 
coupled neuron could decrease the intrinsic 

frequency of an oscillatory pacemaker neu? 
ron (Hooper and Marder, 1987). 

However, this qualitative understanding, 

Fig. 5. Oscillator waveform is important in deter? 
mining the effect of an electrically coupled neuron on 
oscillator frequency. This figure shows the oscillator 
neuron's membrane potential for both cases described, 
in this case with coupling coefficient = 0. Dotted hor? 
izontal lines are shown for reference and correspond 
to the membrane potential of the hyperpolarized cell 
to which the cell was coupled in the example described 
in the text. 

obtained with physiological data alone, is 

only part ofthe story. Kepler et al. (1990) 
modeled the AB neuron using a Fitzhugh 
(1961) model, and then coupled the model 
AB neuron to a non-oscillatory PD neuron. 
In this simple model it is apparent that the 
effect ofthe non-oscillatory electrically cou? 

pled neuron depends critically on the wave? 
form of the oscillator (Fig. 5). When the 

oscillatory neuron depolarizes slowly and 

hyperpolarizes quickly (Fig. 5, top), an inac? 

tive, hyperpolarized, electrically coupled 
neuron lengthens the intrinsic period ofthe 

oscillatory neuron. However, when the 

oscillatory neuron depolarizes quickly and 

hyperpolarizes slowly (Fig. 5, bottom), an 

inactive, hyperpolarized, electrically cou? 

pled neuron shortens the intrinsic period of 
the oscillatory neuron (see Fig. 1 in Kepler 
et al, 1990). A qualitative explanation for 
this follows. The hyperpolarized, inactive 
neuron is effectively injecting outward cur? 
rent through the electrical junction into the 
oscillator throughout the oscillator cycle. 
When the oscillator depolarizes slowly and 

hyperpolarizes rapidly, the additional out? 
ward current from the coupled cell retards 
the depolarization ofthe oscillator more than 
it speeds up the repolarization of the oscil- 
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lator, so the cycle period increases (Fig. 5, 

top). However, when the oscillator depo- 
larizes rapidly and hyperpolarizes slowly, 
the outward current from the coupled cell 

slows the depolarization but speeds up the 

repolarization more (allowing the next burst 

to occur earlier). Therefore the cycle period 
decreases. A quantitative calculation ofthe 

effect of the coupled neuron on the fre? 

quency of the oscillator requires knowing 
the coupling conductance between the neu? 

rons, and the membrane potentials and con? 

ductances ofthe individual neurons (Kepler 
etal, 1990). 

The implications of this finding for phys? 

iology are several. First, it is becoming clear 

that neurons with conditional oscillatory 

properties are important in many brain 

regions. We are starting to understand the 

role of oscillatory processes not only in the 

generation of rhythmic movements, but in 

higher order sensory processing as well. 

Understanding the way in which electrical 

coupling can modify the frequency of these 

oscillatory processes is fundamental to 

understanding how oscillatory processes are 

used in neural computations of all kinds 

(Marder et al, 1992). Second, many mod- 

ulatory substances modulate the plateau 
phase of action potentials, or change the 

shape of neuronal bursts. As our knowledge 
of the effect of modulatory substances on 
conditional oscillatory neurons progresses, 
it is important to bear in mind that sub? 
stances that change the waveform of an 

oscillatory neuron will produce a change in 

frequency as well, if that oscillatory neuron 
is electrically coupled to other neurons. 

Third, there is growing evidence that elec? 
trical connections themselves are subject to 

modulatory substances (Dowling, 1989). 
Thus, in a network in which the frequency 
of an oscillatory neuron is controlled through 
coupling to other neurons, the frequency of 
that oscillatory neuron may be influenced 

by modulation of the electrical coupling in 
the network. 

The role of electrical coupling in duty 
cycle modulation 

The PD neurons also change the character 
of the AB neuron burst. Figure 6B shows 
an experiment in which the membrane 

potential and frequency of an isolated AB 

neuron are manipulated by the injection of 

current into the cell body. Note that the 
burst duration remains constant, while the 
interburst interval expands. However, if the 
AB neuron membrane potential is moved 
when the PD neurons are present, a com? 

pletely different relationship is seen (Fig. 
6A). Here, as the frequency is decreased, the 
burst duration of the AB/PD pacemaker 

group increases along with the interburst 

interval, and we see that the pacemaker 
group maintains an approximately constant 

duty cycle (ratio ofthe duration ofthe oscil? 
lator burst to the cycle period). These data 
are summarized in Figure 6C. 

To understand how the PD neurons 
transform the AB neuron burst from one in 
which burst duration remains constant to 
one in which duty cycle remains constant, 
Abbott et al (1991) developed simple mod? 
els of the AB and PD neurons that retain 
the essential properties of these neurons 
when isolated, and then coupled them 

together electrically. The AB neuron is rep? 
resented as a simple oscillator; the model 
AB neuron when isolated maintains con? 
stant burst duration as current is injected 
(Fig. 6E), just like the biological AB neuron. 
The PD neuron is represented as a neuron 
that can either oscillate significantly more 

slowly than the AB neuron, or fire tonically. 
Most critically, the model PD neuron has a 

slowly activating and inactivating current, 
which operates on a time scale considerably 
slower than the currents that control the 
burst in the AB neuron. When the model 
AB and PD neurons are coupled electrically, 
we see that the coupled network now behaves 
as a constant duty cycle oscillator (Fig. 6D, 
F). This occurs because the slow current of 
the PD neuron oscillates around an average 
value as the AB-PD ensemble oscillates; this 

average value is unchanging when the 
increase of the current during the depolar? 
ized part of the AB-PD oscillation equals 
the decline ofthe current during the hyper? 
polarized part. This current acts as a duty 
cycle governor because any time the duty 
cycle changes, the average value of this cur? 
rent acts to compensate for this change until 
the ratio burst duration to interburst inter? 
val is restored to the original value (Abbott 
etal, 1991). 

This model is satisfying, since very simple 
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Fig. 6. Electrical coupling to the PD neurons changes the AB neuron from a constant burst duration to constant 

duty cycle pacemaker. A. Simultaneous intracellular recordings from the AB and PD neurons when the AB 
neuron was depolarized (top two traces), with no injected current (middle two traces), and with the AB neuron 

hyperpolarized (bottom two traces). B. Intracellular recording from isolated AB neuron. Top trace, depolarized; 
middle trace, no injected current; bottom trace, hyperpolarized. C. Plot of burst duration as a function of cycle 
period of data from the biological experiments. D. Model AB and PD neurons electrically coupled. Top two 

traces, depolarizing current added to the AB neuron; middle two traces, no injected current; bottom two traces, 
AB neuron hyperpolarized. E. Model AB neuron in the absence of PD neuron. Top, depolarized AB; middle, 
no injected current; bottom, AB hyperpolarized. F. Plot of burst duration as a function of cycle period for the 
model shown in D and E, above. 

models of the individual neurons are suffi? 

cient to account for the phenomenon of 

interest. In this case we are able to use car- 
icatures of neurons to represent their essen? 

tial features and obtain the insight that the 

physiological data can arise simply from the 

constituent components. Specifically, we are 
able to represent the salient feature of the 

physiological difference between AB and PD 

neurons: AB neurons can generate "con- 
ventional" high frequency bursts when iso? 
lated from the PD neurons, but the PD neu? 

rons generate only slow oscillations with an 

irregular period when isolated from the AB 

neurons (Bal et al, 1988). This model does 

not require that we know the nature of the 
ionic conductances in either the PD or the 
AB neurons, but only their general char- 

acteristics. It should be stressed that this 

kind of model cannot provide any insight 
into the identities of the ionic currents in 

the PD and AB neurons that underly these 

caricatures. For this we will need to develop 
conductance-based models, such as that for 

the LP neuron discussed above. In that case 

it will be possible to associate specific con? 

ductances with specific aspects ofthe behav? 

ior of the physiological neurons and the 

simple models. 

Although we do not know which ionic 

currents are responsible for the transfor- 

mation ofthe AB neuron burst by the elec- 

trical coupling to the PD neuron, this has 

nonetheless important implications for 

understanding the pyloric rhythm. The full 

pyloric rhythm consists of the activity of 
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five classes of motor neurons that fire with 

stereotyped phase relationships. Under 
standard control conditions the full pyloric 
rhythm maintains approximately fixed 

phase relationships among its elements over 
a significant frequency range (Eisen and 

Marder, 1984). The ability ofthe pacemaker 
ensemble to maintain constant duty cycles 
at different frequencies explains at least par? 
tially how the full network maintains fixed 

phase relationships at different frequencies. 
To maintain fixed phase relationships, the 
neurons must all begin to fire later in the 

cycle as the cycle period increases. Because 
the pacemaker ensemble releases transmit- 
ter in a graded fashion during the burst, as 
the duration of the pacemaker burst 

increases, the time during which inhibitory 
transmitter is released is extended. This in 
turn will retard the onset of firing of the 
follower neurons inhibited by the pace? 
maker network. Thus the maintenance of 
constant phase in these follower neurons 

depends heavily on the ability of the pace? 
maker ensemble to maintain a constant duty 
cycle as frequency is changed. 

Conclusions 

We have used models of several kinds to 

represent the neurons in the pyloric network 
ofthe STG. Some of these models are based 
on real ionic conductances, others are car- 
icatures of neurons, rather than realistic rep- 
resentations. However, in each case the 
model allowed us to articulate new and dif? 
ferent insights into the electrophysiological 
and biophysical processes underlying the 

generation of rhythmic movements. 

First, we have shown that major changes 
in neuronal activity can stern both from 
modest quantitative changes in existing 
conductances and from the induction of 

small, novel conductances. Models help us 
understand how even small currents or small 

changes in currents can, under certain cir- 

cumstances, produce large changes in the 

activity of the neuron. 

Second, we have shown that whether elec? 

trically coupling non-oscillatory neurons to 

oscillatory neurons increases or decreases 
the oscillator frequency depends on the 
waveform of the oscillator and the mem? 
brane potential of the non-oscillator. Con- 

sequently, the effect of electrical coupling, 
and of neuromodulatory changes in oscil? 
lator waveform, neuronal membrane poten? 
tial, and the strength of electrical coupling, 
can only be predicted if one has relatively 
detailed knowledge of the neurons and the 

circuitry involved. 

Third, we have proposed a simple mech? 
anism for the production of constant duty 
cycles at different oscillator frequencies, and 

argue that this helps maintain constant phase 
relationships for the pyloric network as a 
whole. While this proposal must be tested 

physiologically, it illustrates how even 

extremely simple models can suggest solu? 
tions to difficult neurobiological problems. 
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