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Modeling studies are now a significant part of mainstream research in motor 

control. Novel and classical modeling techniques used in recent work on 

small and large motor systems illustrate the different roles that models play in 

furthering our understanding of motor systems. The models presented reveal 

single neuron short-term memory, unexpected effects of reciprocal inhibition 

and methods for decoding activity in large populations of neurons. 
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Introduction 

Theoretical methods, including Inathematical nnaiyses 
and computer simulations, have been used to illuminate 
numerous problems in motor control [l-3,3’]. The use 
of theory so pervades modern work in this field that it 
is impossible to do justice to its scope in a brief review. 
Theoretical work is best discussed in the context of 
the neurobiological problem it is meant to illuminate. 
Indeed, it is now conmlorl to see computational 
models of all kinds embedded within papers describing 
fundamental experimental findings. We cannot possibly 
review all areas of motor control in which significant 
theoretical work is being done. Rather, we will LISA  

a small nunlber of examples (often chosen from our 
own work for the usual obvious reasons) to illustrate the 
different roles that modeling can play in enhancing and 
consolidating our understanding of experimental data, 
and in suggesting new ideas and directions. 

There are at least three quite diEemit functions that 
models serve in studies of the nervous system. each 
with a diEerent relationship to experimental data 
and prediction. Confirmatory models can detcrmme 
whether existing experimental data are suflicient to 
account for the observed behavior of a system. These 
models are built to match data closely and are usefL1 
for pinpointing shortcomings or discovering missing 
COIIlpoIlClltS. Common confmnntory models include 
conductance-based models ofsiugle neurons constructed 
from biophysical data characterizing membrane currents 
(see ~5~*.f~*,7**,8~*,~~,,,lo,l I**, lP] for recent esnliiplcc). 
These are often used to see whether a set of measured 
conductances is complete or accurate enough to account 
for the behavior of a given neuron. 

Speculative models tend to be more loosely based on 
experimental data and attempt to address fundamentally 
puzzling and unanswered questions in neuroscience. 
Such models can be applied in two opposite ways. First, 

they can be used to suggest the neural mechanisnls 
underlying a particular behavior. We will discuss a 
particular oxample closely related to a problem that arises 
during the construction of confirmatory couductnnce- 
based models [13-l 51. Alternatively, speculative model\ 
can take a known mechanism, such as an identiticd 
property of a channel, receptor, or cell, and esplorc 
its logical and behavioral conscqueuces. To illustrate 
this we will present a number of differcut ~sa~~~plc~ 
[16,17”,18”,1V’,20-27,28”,29’,3~)*]. In either case. 
speculative models (at lcast good ones) should point to 
new research directions and espcrimcnts. 

Finally, modeling can be used csseutinlly as a s+ 
phisticated form of data analysis. We call such C.SCS 
interpretive models. An exanlplc of this type of \vork 
is the application of decoding methods to ncurounl 
responses [31,32,33**,34-36,37*]. as described in the 
last section of this review, One consequence of a LWM 

interpretive model is that, often, the manner in which 
data are collected is nlodified. 

Dynamics of single neurons 

Neurons that arc intrinsically oscillatory or displ.~y 
conditional oscillatory propertie\ that dcpcnd OII the 

presence of modulatory substances are com~l~only found 

in rhythmic motor systems (see I.%]), as well as in I~I:UI) 

other brain regions. Computational models of o~illator\ 
neurons have a long history. Recent theorctlcal work 
[7**,8**,16] on neuron RI 5 of+lyri~~ and its modulatior~ 
by nrurotrailsiiiitters provides ‘1 particularly inlprc\\ivc 
illustration of the remnrkablc dynamic repertoire of 
realistic model neurons [3’~,-10*,41.12**]. (Lulavicr c’t 
J. [ 161 showed that a semi-realistic, condu~tnllct~~b3\~~~ 
model of 1~ 15 has a number of stable oscillatory II~O~C~ 

(Fig. la), and that transient synaptic inputs cm switch 
among these modes. A co~~seq~x~~c of thic i\ that .I 

Abbreviations 
[Caz+]i-concentration of intracellular Ca I+; IH-hyperpolariration-activated inward conductance; IPSP-inhibitory postsynapc potenti,ll. 
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la) (b) 

Fig .  1 .  Intrinsic cellular short-term memory. (a) Model of the R15 neuron from Aplpi~ displays multiple modes of activity for a given set 
of parameters. These include tonic firing (top) and bursting (middle, bottom). Reproduced with permission from 1161. (b) The R15 model 
is swtched stably from bursting mode to tonic firing mode by a transient inhibitory input. Modifted from [7**]. (c) Cultured stomatogastric 
ganglion neuron into which a Kvl.3 conductance has been added using the dynamic clamp. A short depolarization triggers tonic firing. 
A lorlger depolarization triggers a switch from tonic firing to bursting. A subsequent short depolarization elicits bursting. G, modulatory 
conductance; I, current injected into the cell; V, membrane potential. Modified irom [45-I. 

transient synaptic input can markedly alter the firing 
pattern of a neuron, long after the synaptic input is 
terminated (Fig. lb). The model was also studied with its 
balance of conductances altered to simulate the effects of 
modulatory substances such as dopatnine and serotonin 
[7**,8”]. These studies explored alterations in neuronal 
activity that come from paratneter changes, such as 
those produced by neurotnodulators, superimposed on 
a model that can also display mode changes triggered 
by transient events. This is an example of a model 
that was originally conftrtttatory, becoming speculative 
and serving a predictive role to direct new experiments. 

The R15 model can be bwitched atttong several 
stable modes of operation by transient synaptic input, 
and it thus ef!Gectively ‘stores’ infortnation. In other 
words, the R15 model i\ an example of a ‘short-term 
memory tnechanisn~ that depends solely on the intrinsic 
properties of a single neuron. WC will discuss another 
exatttple of intrinsic, cellular short-term tnetttory below. 

Conductance-based models: problems and 
solutions 

portant roles in the dynamics of a given neuron. Indeed, 
the most interesting neurons to study--those that take 
part in complex functions (e.g. [5”,6*,41,42”]) -are 
likely to have the most complex intrinsic dynamics and 
are thus the most difftcult to characterize completely. 
Second, conductance-based models are notoriously 
sensitive to the specific values of their numerous free 
parameters (e.g. [5”,6’,7”,8”,~,10,1 1”,12”,41,42”]). 
Both these problems make it difElcult to trust the validity 
of such a model if one frankly assesses the potential 
impact of the errors or inadequacies of the biological 
data from which it is built. These problems become 
evett more severe when single-cotnpartntent models 
are extended to tttulti-compartment tttodels with spatial 
structure. 

These problems led us to propose two new approaches. 
To address the d&c&y of characterizing all of the 
cottductnnces in a neuron, we developed the dynamic 
clamp method [4X,44]. In response to the excessive 
sensitivity of conductance-based models to parameter 
values, we developed a class of tttodels that ‘tune’ 
thetnsclves so that they robustly maintain constant 
activity levels despite perturbations [ 13-l 51. 

Despite a number of impressive successes, such as 
the work on R15 described above, conductance-based 
models are frequently only partially satisfying for two 
fundamental reasons. First, it is often difficult or even 
impossible to isolate and characterize adequately all the 
voltage- and time-dependent couductances that play itn- 

The dynamic clamp 

The dynatttic clamp technique is based on the premise 
that, although it tnay be impossible to characterize 
all the conductances contributing to a given neuron’s 
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behavior, it is usually possible to measure some important 
conductances quite accurately. In such a situation, 
it is possible to assess the role of the measured 
conductances by using a hybrid computer-biological 
‘modeling’ technique. The dynamic clamp is essentially a 
computer-controlled discontinuous current clamp. The 
membrane potential of a neuron is monitored and then 
sent to a computer that is programmed with equations 
describing the voltage dependence and dynamics of 
a particular current [43,44]. The current that would 
flow through the membrane at the recorded potential, 
as described by programmed equations, is computed 
in real time and injected into the cell. This accurately 
introduces the current corresponding to the modeled 
membrane conductance into the neuron [43,44J. The 
resulting hybrid system gives the experimenter complete 
control over one or more conductances in a biological 
neuron without having to resort to pharmacological 
manipulations. One of the major advantages of dynamic 
clamp simulations, compared to conventional models, 
is that the critical parameters for all the poorly 
characterized currents are properly specified by the 
neuron itself, so they do not have to be either measured 
or modeled. When small changes in parameters produce 
large effects in modeling studies, the investigator is often 
uncertain whether the sensitivity is biologically relevant. 
Because dynamic clamp experiments use biological 
neurons as their modeling platform, this problem is 
alleviated. 

Figure lc shows the use of the dynamic clamp to study 
the consequence of adding a Kv1.3 conductance to 
a cultured stomatogastric ganglion neuron [19*,45*]. 
Kv1.3 is a slowly and cumulatively inactivating K+ 
conductance. Conventional simulations [19*] showed 
that when Kv1.3 is added to a Hodgkin-Huxley model 
neuron, it produces a short-term memory effect. To see 
if a similar phenomenon could occur in a biological 
neuron, we used the dynamic clamp to add the Kv1.3 
current to a cell that did not express this conductance 
itself [45-l. Cultured stomatogastric ganglion neurons 
can fire tonically or in bursts, depending on the balance 
of their conductances [5”]. The cultured stomatogastric 
ganglion neuron shown in Figure lc displayed bursting 
behavior in the absence of Kv1.3 (not shown, but 
see [45-l). When Kv1.3 was added using the dynamic 
clamp (Fig. lc), the neuron fired tonically when it 
was depolarized for a short period of time. However, 
when the neuron was depolarized for ionger, Kvl.3 
inactivated slowly, resulting in the neuron moving into 
a bursting regime. The neuron then remained bursting 
as long as the depolarization was maintained. Thus, 
with an added Kvl.3 conductance, the stomatogastric 
neuron exhibited the same sort of mode switching as 
the R15 model discussed previously. Furthermore, the 
cell displayed another form of short-term memory. If 
the depolarization was removed, the neuron stopped 
firing. However, because the recovery from inactivation 
of Kv 1.3 is very slow, subsequent depolarization (Fig. tc) 
still elicited bursting activity. Only a prolonged period 

(many seconds) of hyperpolarization caused a return to 
the tonic firing mode. Thus, as a consequence of the 
slow kinetics of Kv1.3, the neuron retains information 
about its prior history of depolarization. 

Self-tuning models 

Because conductance-based models are capriciously 
sensitive to parameter values, we reasoned that mech- 
anisms must exist in biological neurons to ensure 
robust behavior throughout the lifetime of the cell 
(which in most organisms is much longer than the 
lifetime of any of the channel proteins that determine 
the cell’s excitability). We thus constructed speculative 
models designed to adjust their parameters automatically 
to maintain robustly a given pattern of activity. In 
these models [ 13-151, the maximal conductances of 
membrane currents are not fixed parameters, as in most 
neuronal models, but are dynamic variables that depend 
on the activity of the neuron. 

The basic idea of these models is a negative feedback 
between the electrical activity of the neuron aud its 
balance of conductances [13-151. In such models, the 
concentration of intracellular Ca2+ ([Caz+],) is used 
as a measure of activity. The maximal conductances 
of membrane currents are slowly modified in a Ca?+- 
dependent mamier because [Ca*+]; is known to follow 
activity and to influence many of the processes that 
alter channel expression and function. However, It 
should be stressed that in these first-generation, highly 
speculative models, [Caz+]i as a measure of electrical 
activity is ‘standing in’ for a complex network of 
unspecified biochemical and molecular processes. There 
are three important results of these models: first, they 
can self-assemble the conductames needed to produce 
a target pattern of electrical activity [ 12**,15]; second, 
in response to perturbations, they adjust the balance of 
their conductances to n~aintain stable activity patterns 
[l P, 151; and third, a non-uniform distribution of 
membrane conductances can arise in a spatially extended 
model neuron [14]. 

The most important function of a speculative modcl 

is to suggest new directions for experimental work. 
Motivated by these models, Turrigiano rt 01. [5**,-16**1 
carried out experiments with cultured stomatogastric 
ganglion neurons that initially showed bursting be- 
havior as in Figure lc. In these experiments, the 
bursting neurons were driven with strong, rhythnlic 
hyperpolarizations that elicited rebound bursts. After a 
prolonged period of such stimulation, the neurons lost 
their ability to burst and only fired tonically in response 
to depolarization. The ratio of outward conductances to 
inward conductances is greater in tonically firing than 
bursting neurons [5**]. The additional activity provided 
by the external rhythmic drive led to an increase in 
this ratio, as predicted by the model. The notion that 
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(a) Synchronous firing (b) Alternating bursts (c) Alternating spiking 
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Fig. 2. The dynamic clamp was used to create reciprocal inhibitory synapses between two gastric mill neurons (labelled 1 and 2) of the crab 
stomatogastric ganglion. (The small black circles in the cartoon at the top of the figure denote chemical inhibitory connections.) (a-c) Simul- 
taneous intracellular recordings from the two neurons. The threshold for transmitter release is indicated by the dotted lines. The parameters 
controlling the synaptic connections were modified to produce the different patterns. (a) Almost synchronous firing. (b) A stable half-center 
oscillator shows alternating bursts of action potentials. (c) The circuit displays alternating spiking. Data provided by AA Sharp and FK Skinner. 

cells might regulate the balance of their conductances is 
also ,supported by recent work by Lindscll and Moody 
[47**,48*]. They injected Na+ channel mRNA into 
Xerqrrs lacljis oocytes and found that this influenced the 
cxprcssion of K+ chanrlels. 

Reciprocal inhibition: models and experiments 

Reciprocal inhibition is a common circuit element in 
many portions of the nervous system where it plays a 
number of roles, such as lateral inhibition in sensory 
systems. 111 motor systems, half-center oscillators formed 
by two reciprocally inhibitory neurons are common 
circuit components [4Y*], and they have been the 
subject of extensive theoretical [50,51,52’,53,54’] and 
experimental (reviewed in [49-j) study. Theoretical work 
on reciprocal inhibition has been done at a variety 
of levels, and it is interesting to compare the kinds of 
insights obtained with these di&rent approaches. 

Many experimentalists assume that reciprocal inhibition 
will automatically lead to alternation between inhibitory 
pairs, and indeed alternation is commonly found in 
motor systems [4Y*]. However, theoretical studies clearly 
demonstrate that reciprocal inhibition can also lead to 
synchrony (17”,18”,51 ]_ For example, when the time 
course oithe inhibition is slow relative to the time course 
of the spikes that trigger the inhibition, synchrony rather 
than alternation is the outcome [17”,18”]. We recently 
used the dynamic clamp to construct reciprocally 
inhibitory two-cell circuits (AA Sharp, FK Skinrler, 
E Ma&r, unpublished data), These experiments used 
two stomatogastric ganglion neurons that were not 
biologically coupled. The dynamic clamp was used to 

construct artificial inhibitory synapses between the two 
cells, thus giving us complete control over the synaptic 
threshold, time course and conductance. Figure 2 
illustrates three of the many different circuit outputs 
produced when the synaptic parameters defining the 
inhibitory coupling were varied. It also illustrates the use 
of the dynamic clamp to construct functional circuits and 
then to study the circuit dynamics that result when the 
strength and time course of the synaptic connections are 
altered. 

The most complete description of a biological half- 
center oscillator comes from work on the leech heart- 
beat. The properties of both the cells and their recip- 
rocally inhibitory synaptic cormections were first meas- 
ured [55,56’,57,58**] and then modeled [10,11”,12”]. 
Calabrese and his colleagues [55,56*,57,58”] focus their 
attention on the mechanisms underlying the transition 
between the ‘on’ and the ‘off’ cells, and the influence 
of a number of ionic and synaptic conductances on the 
oscillator period that results from those transitions. In this 
work, using highly detailed models, it is possible to see 
directly the roles played by graded and spike-mediated 
synaptic transmission. 

How well do the insights from the simple models 
of reciprocal inhlbltlon capture the dynamics of real 
biological systems, and how well do specific systems 
provide general insights into the operation of neural 
circuits? First, detailed analyses of a single experimental 
preparation are unlikely to illuminate all the logical 
possibilities in a given circuit configuration. For ex- 
ample, the leech heartbeat system is built to produce 
alternation between the reciprocally inhibitory pairs of 
neurons. Therefore, if it (or other systems in which 
alternation is strongly favored) were studied alone, one 
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might draw the erroneous conclusion that alternation is a 
necessary consequence of this type of circuit. In this case, 
a speculative theory could define the universe of possible 
outcomes of a specific circuit architecture, providing 
the experinlentalist with clues about the variety of 
possible outcomes under different conditions. However, 
speculative theoretical work can also be misleadiug in a 
specific experimental situation because of its inherent 
simplification. For example, in simplified models with 
reciprocal inhibition, it is easy and helpfL1 to define 
different modes of circuit operation, release and escape 
[51,52*]. However, this distinction was blurred in the 
leech biological half-center oscillator because of the 
presence of a large number of overlapping dynamical 
processes [lO,ll**]. 

Interpreting neuronal activity in large networks 

In most animals, motor activity is controlled by the 
firing of large numbers of neurons. Dealing with 
the quantity of data that can be recorded from such 
systems, and understanding how the activity of large 
neuronal populations correlates with behavior requires 
sophisticated analytic tools. This is where the third class 
of ‘models’, those involving interpretive techniques for 
analyzing data, can be of great value. The application 
of decoding methods to the analysis of neuronal firing 
is a prime example of interpretive theoretical work iu 
neuroscience. 

Neuronal decoding can be thought of as a method 
for compressing such large data sets into a compact 
form that is more directly related to the behavior being 
studied. The basic idea is to extract an estimate of the 
related stimulus or motor activity from the spike trains 
of one or more recorded neurons. A variety of methods 
exist for doing this (reviewed in [33**,59”]). Population 
decoding was developed initially in studies of limb 
movenient in primates 1341 and studies of neurons iu the 
superior colliculus encoding saccade direction [35,X)]. 
Decoding methods have also been used to analyze the 
information contained in spike trains of single neurons 
[31,32,60]. For single neurons, estimates of the stimulus 
are generated by integrating the spike train multiplied by 
an optimal integration keruel. For population decoding 
a similar technique could be applied, but typically spikes 
are simply counted over a fixed-size time window to 
determine a firing rate for each cell. Use of an optimal 
integration kernel, rather than a simple spike counting 
procedure, would probably produce better results [XV*]. 

As motor acts involve movements through space, the 
neural representation of spatial vectors is of particular 
interest for the study of motor systems. Spatial vectors, 
such as the direction of an arm movement, are repre- 
sented nlathenlatically by specifying their projections 
along orthogonal, Cartesian coordinate axes. Many 
neuronal circuits appear to use a similar represeutation 

[59”,61,62’] because the firing rate of each neurou 
is proportional to the projection of the coded vector 
onto an axis or ‘preferred direction’ particular to that 
cell. The population vector decoding method [31] 
is based on the standard formula for reconstructing 
a vector from its components. However, thcrc i\ a 
complication with ueurai coding of dircctiou that 
is not present in the mud Cartesian system. The 
preferred directions defined by the ueurons are rarely 
orthogonal [W*,fd,fvt]. Corrections cau be ulade t<)r 
this lack of orthogonality and these produce a draulatic 
improvement in the quality of the decoding [su**]. 
Figure 3 shows the root-mean-squared average differcucc 
between the direction of a monkey’s arm movement 
and the direction decoded from recordings of ucurons 
in primary motor cortex. This illustrates the dramnt~c 
ditlerence between a simple vector suumatiou aud a 
more optimal decoding strategy [59**] 
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Fig. 3. The accuracy of two neuronal decoding schemes as a fun- 
tion of the number of cells used in the decoding. Earh of the data 
points shows the root-mean-squared average difference hetwcen 
the angular direction decoded from the recorded neurons and 
the actual direction of movement during a reaching task. Data 
were provided by C Pellizzcr and A Ceorgopoulos from recortl- 
ings oi 189 directionally selective neurons in the motor cortex of 
monkeys. Animals were trained to reach for the eight corner5 of a 
cube. Open circles (Vector) represent results derived from a method 
equivalent to the Cartesian representation of a vector [+I]. ISlat k 
circles COLE, optimal linear estimator) depict results obtained from 
a method that corrects ior correlations between the iiring rates oi thct 
neurons raused, for example, by the fact that their preierred movc- 
ment directions are not orthogonal 159”l. Modified from ]59”]. 

In the past few years, a number of efticicut aud accurate 
decoding methods have been developed aud studied 
[5’9**,63-70,71*]. A good general method for population 
decoding is to flud the movement direction that provides 
the best match to the evoked activity ou the basi\ of 
average-response tuning curves measured for the system. 
This is essentially the ‘maximum likelihood’ method 
apphrd to ueuronal decoding. 111 addition to their 
application to experimental data, decoding methods have 
played au important role in a nunlbcr of speculative 
modeling studies investigating how motor nctiouc arc 
generated and controlled [2C~27,2X’*,2~,‘,30°J. 

In light of the success of the population vector in 
prcdictiug movement direction, it was temptiug to 
assume that activity iu motor cortex represents the 
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Cartesian coordinates of movement direction. However 
recent theoretical and experimental work supports a 
broader and, in many ways, more interesting point of 
view. The ability to decode movement parameters such 
as direction from the activity of a set of neurons with 
a population vector relies primarily 011 the Let that 
all directions are equally represented in motor cortex 
[72,7.3”,74”]. In p. 2r icu ar, t . 1 it does not depend on 
the precise shape of the neuronal tuning curves and it 
cannot uniquely characterize what coordinate system 
is being used [7P]. Furthermore, responses in motor 
cortex depend on a number of factors in addition to the 
direction of movement [75-79,80”]. Specifically, effects 
of initial hand position 1781, external loads [79] and 
posture [HO”] have been studied. These dependencies 
complicate both the application and the interpretation 
of population vector decoding. 

The fact that motor cortex encodes a number of 
nlovemen-related parameters complicates, but does uot 
preclude, the possibility ofdecoding movement direction 
from population activity. Rather, it supports the idea 
that a neural population can sinlultaneously represent a 
number of parameters related to movement kinematics 
and dynamics in a coordinate-independent manner. 
Downstream networks (or experimentalists decoding 
their recordings) can read out virtually any combination 
of these quantities [74**]. Thus, the fact that the direction 
of an arlll movement can be decoded from motor cortex 
firing does not preclude the possibility that other relevant 
parameters- such as joint angles, muscle tension, 
non-Cartesian coordinates or nlovement coordinates in 
a variety of body-part centered systems-can also be 
represented by the same neuronal population. Instead, it 
is likely that a wide variety of signals are simultaneously 
read out by downstream networks, each of which 
extraits the inforuiation most relevant to its particular 
function. 

Conclusions 

Theoretical methods of all kinds provide tools with 
which ncuroscientists can explore the logical conse- 
quences of a set of assumptions, validate the adequacy of 
their data, and improve the analysis and understanding of 
its implications. As with all methods, the extent to which 
fundamental insight follows the application of theory to 
a pro’blem in neuroscience depends on the dexterity with 
which both experimental and theoretical investigators 
can extract knowledge from an often recalcitrant world. 
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