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Modeling studies are now a significant part of mainstream research in motor

control. Novel and classical modeling techniques used in recent work on

small and large motor systems illustrate the different roles that models play in

furthering our understanding of motor systems. The models presented reveal

single neuron short-term memory, unexpected effects of reciprocal inhibition
and methods for decoding activity in large populations of neurons.
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Introduction

Theoretical methods, including mathematical analyses
and computer simulations, have been used to illuminate
numerous problems in motor control [1-3,4*]. The use
of theory so pervades modern work in this field that it
is impossible to do justice to its scope in a brief review,
Theoretical work is best discussed in the context of
the neurobiological problem it is meant to illuminate.
Indeed, it is now common to see computational
models of all kinds embedded within papers describing
fundamental experimental findings. We cannot possibly
review all areas of motor control in which significant
theoretical work is being done. Rather, we will use
a small number of examples (often chosen from our
own work for the usual obvious reasons) to illustrate the
different roles that modeling can play in enhancing and
consolidating our understanding of experimental data,
and in suggesting new ideas and directions.

There are at least three quite ditferent functions that
models serve in studies of the nervous system, each
with a different relationship to experimental data
and prediction. Confirmatory models can determine
whether existing experimental data are sufficient to
account for the observed behavior of a system. These
models are built to match data closely and are useful
for pinpointing shortcomings or discovering missing
components. Common confirmatory models include
conductance-based models of single neurons constructed
from biophysical data characterizing membrane currents
(see |5°%.6%,7+,82,9,10,11%%,12°¢] for recent examples).
These are often used to see whether a set of measured
conductances is complete or accurate enough to account
for the behavior of a given neuron.

Speculative models tend to be more loosely based on
experimental data and attempt to address tundamentally
puzzling and unanswered questions in mneuroscience.
Such models can be applied in two opposite ways. First,

they can be used to suggest the neural mechanisis
underlying a particular behavior. We will discuss a
particular example closely related to a problem that arises
during the construction of confirmatory conductance-
based models [13—15]. Alternatively, speculative models
can take a known mechanism, such as an identtied
property of a channel, receptor, or cell, and explore
its logical and behavioral consequences. To illustrate
this we will present a number of different examples
[16,17%2,18°°,19°,20-27,28%2,29* 30°]. In either case,
speculative models (at least good ones) should point to
new research directions and experiments.

Finally, modeling can be used essentially as a so-
phisticated form of data analysis. We call such cases
interpretive models. An example of this type of work
is the application of decoding methods to necuronal
responses [31,32,33%%,34-36,37¢], as described in the
last section of this review. One consequence of a usetul
interpretive model is that, often, the manner in which
data are collected is moditied.

Dynamics of single neurons

Neurons that are intrinsically oscillatory or display
conditional oscillatory properties that depend on the
presence of modulatory substances are commonly found
in rhythmic motor systems (sec [38]), as well as in many
other brain regions. Computational models of oscillatory
neurons have a long history. Recent theoretical work
[7°°,8°%,16] on neuron R 15 of Aplysia and its modulation
by neurotransmitters provides a particularly impressive
illustration of the remarkable dynamic repertoire of
realistic model neurons [39,40°,41,42¢¢]. Canavier et
al. |16] showed that a semi-realistic, conductance-based
model of R15 has a number of stable oscillatory modes
(Fig. 1a), and that transient synaptic inputs can switch
among these modes. A consequence of this is that a
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Fig. 1. Intrinsic cellular short-term memory. (a) Model of the R15 neuron from Aplysia displays multiple modes of activity for a given set
of parameters. These include tonic firing (top) and bursting (middle, bottom). Reproduced with permission from [16]. (b) The R15 model
is switched stably from bursting mode to tonic firing mode by a transient inhibitory input. Modified from {7*¢]. (¢} Cultured stomatogastric
ganglion neuron into which a Kv1.3 conductance has been added using the dynamic clamp. A short depolarization triggers tonic firing.
A longer depolarization triggers a switch from tonic firing to bursting. A subsequent short depolarization elicits bursting. G, modulatory
conductance; 1, current injected into the cell; V, membrane potential. Modified from [45°].

transient synaptic input can markedly alter the firing
pattern of a neuron, long after the synaptic input is
terminated (Fig. 1b). The model was also studied with its
balance of conductances altered to simulate the effects of
modulatory substances such as dopamine and serotonin
[7#+,8°¢]. These studies explored alterations in neuronal
activity that come from parameter changes, such as
those produced by neuromodulators, superimposed on
a model that can also display mode changes triggered
by transient events. This is an example of a model
that was originally confirmatory, becoming speculative
and serving a predictive role to direct new experiments.

The R15 model can be switched among several
stable modes of operation by transient synaptic input,
and it thus effectively ‘stores’ information. In other
words, the R15 model is an example of a ‘short-term
memory mechanism that depends solely on the intrinsic
properties of a single neuron. We will discuss another
example of intrinsic, cellular short-term memory below.

Conductance-based models: problems and
solutions

Despite a number of impressive successes, such as
the work on R 15 described above, conductance-based
models are frequently only partially satisfying tor two
fundamental reasons. First, it is often difficult or even
impossible to isolate and characterize adequately all the
voltage- and time-dependent conductances that play im-

portant roles in the dynamics of a given neuron. Indeed,
the most interesting neurons to study — those that take
part in complex functions (e.g. [5%,6°,41,42¢%°]) —are
likely to have the most complex intrinsic dynamics and
are thus the most difficult to characterize completely.
Second, conductance-based models are notoriously
sensitive to the specific values of their numerous free
parameters (e.g. [5°%,6%,7°0.8°,9,10,11¢%,12°¢ 41,42¢°]).
Both these problems make it dithicult to trust the validity
of such a model if one frankly assesses the potential
impact of the errors or inadequacies of the biological
data from which it is built. These problems become
even more severe when single-compartment models
are extended to multi-compartment models with spatial
structure.

These problems led us to propose two new approaches.
To address the difficulty of characterizing all of the
conductances in a neuron, we developed the dynamic
clamp method [43,44]. In response to the excessive
sensitivity of conductance-based models to parameter
values, we developed a class of models that ‘tune’
themselves so that they robustly maintain constant
activity levels despite perturbations [13-15].

The dynamic clamp

The dynamic clamp technique is based on the premise
that, although it may be impossible to characterize
all the conductances contributing to a given neuron’s
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behavior, it is usually possible to measure some important
conductances quite accurately. In such a situation,
it is possible to assess the role of the measured
conductances by using a hybrid computer-biological
‘modeling’ technique. The dynamic clamp is essentially a
computer-controlled discontinuous current clamp. The
membrane potential of a neuron is monitored and then
sent to a computer that is programmed with equations
describing the voltage dependence and dynamics of
a particular current [43,44]. The current that would
flow through the membrane at the recorded potential,
as described by programmed equations, is computed
in real time and injected into the cell. This accurately
introduces the current corresponding to the modeled
membrane conductance into the neuron [43,44]. The
resulting hybrid system gives the experimenter complete
control over one or more conductances in a biological
neuron without having to resort to pharmacological
manipulations. One of the major advantages of dynamic
clamp simulations, compared to conventional models,
is that the critical parameters for all the poorly
characterized currents are properly specified by the
neuron itself, so they do not have to be either measured
or modeled. When small changes in parameters produce
large effects in modeling studies, the investigator is often
uncertain whether the sensitivity is biologically relevant.
Because dynamic clamp experiments use biological
neurons as their modeling platform, this problem is
alleviated.

Figure 1c shows the use of the dynamic clamp to study
the consequence of adding a Kv1.3 conductance to
a cultured stomatogastric ganglion neuron [19¢45°].
Kv1.3 is a slowly and cumulatively inactivating K*
conductance. Conventional simulations [19¢] showed
that when Kv1.3 is added to a Hodgkin—Huxley model
neuron, it produces a short-term memory effect. To see
if a similar phenomenon could occur in a biological
neuron, we used the dynamic clamp to add the Kv1.3
current to a cell that did not express this conductance
itself [45¢]. Cultured stomatogastric ganglion neurons
can fire tonically or in bursts, depending on the balance
of their conductances [5**]. The cultured stomatogastric
ganglion neuron shown in Figure 1c displayed bursting
behavior in the absence of Kv1.3 (not shown, but
see [45¢]). When Kv1.3 was added using the dynamic
clamp (Fig. 1c), the neuron fired tonically when it
was depolarized for a short period of time. However,
when the neuron was depolarized for longer, Kvl.3
inactivated slowly, resulting in the neuron moving into
a bursting regime. The neuron then remained bursting
as long as the depolarization was maintained. Thus,
with an added Kv1.3 conductance, the stomatogastric
neuron exhibited the same sort of mode switching as
the R15 model discussed previously. Furthermore, the
cell displayed another form of short-term memory. If
the depolarization was removed, the neuron stopped
firing. However, because the recovery from inactivation
of Kv1.3 is very slow, subsequent depolarization (Fig. 1¢)
still elicited bursting activity. Only a prolonged period

(many seconds) of hyperpolarization caused a return to
the tonic firing mode. Thus, as a consequence of the
slow kinetics of Kv1.3, the neuron retains information
about its prior history of depolarization.

Self-tuning models

Because conductance-based models are capriciously
sensitive to parameter values, we reasoned that mech-
anisms must exist in biological neurons to ensure
robust behavior throughout the lifetime of the cell
(which in most organisms is much longer than the
lifetime of any of the channel proteins that determine
the cell’s excitability). We thus constructed speculative
models designed to adjust their parameters automatically
to maintain robustly a given pattern of activity. In
these models [13-15], the maximal conductances of
membrane currents are not fixed parameters, as in most
neuronal models, but are dynamic variables that depend
on the activity of the neuron.

The basic idea of these models is a negative feedback
between the electrical activity of the neuron and its
balance of conductances [13—15]. In such models, the
concentration of intracellular Ca2+ ([Ca2*|) is used
as a measure of activity. The maximal conductances
of membrane currents are slowly modified in a Ca2+-
dependent manner because [Ca2*]; is known to follow
activity and to influence many of the processes that
alter channel expression and function. However, it
should be stressed that in these first-generation, highly
speculative models, [Ca2*|; as a measure of electrical
activity is ‘standing in’ for a complex network of
unspecified biochemical and molecular processes. There
are three important results of these models: first, they
can self~assemble the conductances needed to produce
a target pattern of electrical activity [12*%,15]; second,
in response to perturbations, they adjust the balance of
their conductances to niaintain stable activity patterns
[12¢+,15]; and third, a non-uniform distribution of
membrane conductances can arise in a spatially extended
model neuron [14].

The most important function of a speculative model
is to suggest new directions for experimental work.
Motivated by these models, Turrigiano er al. |5%,46°*]
carried out experiments with cultured stomatogastric
ganglion neurons that initially showed bursting be-
havior as in Figure lc. In these experiments, the
bursting neurons were driven with strong, rhythmic
hyperpolarizations that elicited rebound bursts. After a
prolonged period of such stimulation, the neurons lost
their ability to burst and only fired tonically in response
to depolarization. The ratio of outward conductances to
inward conductances is greater in tonically firing than
bursting neurons [5*¢]. The additional activity provided
by the external rhythmic drive led to an increase mn
this ratio, as predicted by the model. The notion that
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(a) Synchronous firing

(b) Alternating bursts

(c) Alternating spiking

Fig. 2. The dynamic clamp was used to create reciprocal inhibitory synapses between two gastric mitl neurons (labelled 1 and 2) of the crab
stomatogastric ganglion. (The small black circles in the cartoon at the top of the figure denote chemical inhibitory connections.) (a-c) Simul-
taneous intracellular recordings from the two neurons. The threshold for transmitter release is indicated by the dotted lines. The parameters
controlling the synaptic connections were modified to produce the different patterns. (a) Almost synchronous firing. (b) A stable half-center
oscillator shows alternating bursts of action potentials. (c) The circuit displays alternating spiking. Data provided by AA Sharp and FK Skinner.

cells might regulate the balance of their conductances is
also supported by recent work by Lindsell and Moody
[47°+,48%]. They injected Na* channel mRNA into
Xenopus laevis oocytes and found that this influenced the
expression of K+ channels.

Reciprocal inhibition: models and experiments

Reciprocal inhibition is a common circuit element in
many portions of the nervous systern where it plays a
number of roles, such as lateral inhibition in sensory
systems. In motor systems, half-center oscillators formed
by two reciprocally inhibitory neurons are common
circuit components [49°], and they have been the
subject of extensive theoretical [50,51,52¢,53,54¢| and
experimental (reviewed in [49¢]) study. Theoretical work
on reciprocal inhibition has been done at a variety
of levels, and it is interesting to compare the kinds of
insights obtained with these ditferent approaches.

Many experimentalists assume that reciprocal inhibition
will automatically lead to alternation between mhibitory
pairs, and indeed alternation is commonly found in
motor systems [49*]. However, theoretical studies clearly
demonstrate that reciprocal inhibition can also lead to
synchrony [17+¢,18%*,51]. For example, when the time
course of the inhibition is slow relative to the time course
of the spikes that trigger the inhibition, synchrony rather
than alternation is the outcome [17°¢,18°¢]. We recently
used the dynamic clamp to construct reciprocally
inhibitory two-cell circuits (AA Sharp, FK Skinner,
E Marder, unpublished data). These experiments used
two stomatogastric ganglion neurons that were not
biologically coupled. The dynamic clamp was used to

construct artificial inhibitory synapses between the two
cells, thus giving us complete control over the synaptic
threshold, time course and conductance. Figure 2
illustrates three of the many different circuit outputs
produced when the synaptic parameters defining the
inhibitory coupling were varied. It also illustrates the use
of the dynamic clamp to construct functional circuits and
then to study the circuit dynamics that result when the
strength and time course of the synaptic connections are
altered.

The most complete description of a biological half-
center oscillator comes from work on the leech heart-
beat. The properties of both the cells and their recip-
rocally inhibitory synaptic connections were first meas-
ured [55,56%,57,58*°] and then modeled [10,11¢°,12°¢].
Calabrese and his colleagues [55,56%,57,58*] focus their
attention on the mechanisms underlying the transition
between the ‘on’ and the ‘off” cells, and the influence
of a number of ionic and synaptic conductances on the
oscillator period that results from those transitions. In this
work, using highly detailed models, it is possible to see
directly the roles played by graded and spike-mediated
Synaptic transmission.

How well do the insights from the simple models
of reciprocal inhibition capture the dynamics of real
biological systems, and how well do specific systems
provide general insights into the operation of neural
circuits? First, detailed analyses of a single experimental
preparation are unlikely to illuminate all the logical
possibilities in a given circuit configuration. For ex-
ample, the leech heartbeat system is built to produce
alternation between the reciprocally inhibitory pairs of
neurons. Therefore, if it (or other systems in which
alternation is strongly favored) were studied alone, one
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might draw the erroneous conclusion that alternation is a
necessary consequence of this type of circuit. In this case,
a speculative theory could define the universe of possible
outcomes of a specific circuit architecture, providing
the experimentalist with clues about the variety of
possible outcomes under different conditions. However,
speculative theoretical work can also be misleading in a
specific experimental situation because of its inherent
simplification. For example, in simplified models with
reciprocal inhibition, it is easy and helpful to define
different modes of circuit operation, release and escape
[51,52¢]. However, this distinction was blurred in the
leech biological half-center oscillator because of the
presence of a large number of overlapping dynamical
processes [10,11¢°].

Interpreting neuronal activity in large networks

In most animals, motor activity is controlled by the
firing of large numbers of neurons. Dealing with
the quantity of data that can be recorded from such
systems, and understanding how the activity of large
neuronal populations correlates with behavior requires
sophisticated analytic tools. This is where the third class
of ‘models’, those involving interpretive techniques for
analyzing data, can be of great value. The application
of decoding methods to the analysis of neuronal firing
is a prime example of interpretive theoretical work in
neuroscience.

Neuronal decoding can be thought of as a method
for compressing such large data sets into a compact
torm that is more directly related to the behavior being
studied. The basic idea is to extract an estimate of the
related stimulus or motor activity from the spike trains
of one or more recorded neurons. A variety of methods
exist for doing this (reviewed in [33*¢,59*¢]}. Population
decoding was developed initially in studies of limb
movement in primates [34] and studies of neurons in the
superior colliculus encoding saccade direction [35,36].
Decoding methods have also been used to analyze the
information contained in spike trains of single neurons
[31,32,60]. For single neurons, estimates of the stimulus
are generated by integrating the spike train multiplied by
an optimal integration kernel. For population decoding
a similar technique could be applied, but typically spikes
are simply counted over a fixed-size time window to
determine a firing rate for each cell. Use of an optimal
integration kernel, rather than a simple spike counting
procedure, would probably produce better results [33%¢].

As motor acts involve movements through space, the
neural representation of spatial vectors is of particular
interest for the study of motor systems. Spatial vectors,
such as the direction of an arm movement, are repre-
sented mathematically by specifying their projections
along orthogonal, Cartesian coordinate axes. Many
neuronal circuits appear to use a similar representation

[59%,61,62°] because the firing rate of each neuron
is proportional to the projection of the coded vector
onto an axis or ‘preferred direction’ particular to that
cell. The population vector decoding method [34]
is based on the standard formula for reconstructing
a vector from its components. However, there is a
complication with neural coding of direction that
is not present in the usual Cartesian system. The
preferred directions defined by the neurons are rarcly
orthogonal [59*,63,64]. Corrections can be made for
this lack of orthogonality and these produce a dramatic
improvement in the quality of the decoding [59%¢].
Figure 3 shows the root-mean-squared average difference
between the direction of a monkey’s arm movement
and the direction decoded from recordings of neurons
in primary motor cortex. This illustrates the dramatic
difterence between a simple vector summation and a
more optimal decoding strategy [59°].

Error
(degrees) —O— Vedtor
—@— OLE
404
20
0 , * :
0 10 20 30

Number of cells

Fig. 3. The accuracy of two neuronal decoding schemes as a func-
tion of the number of cells used in the decoding. Each of the data
points shows the root-mean-squared average difference between
the angular direction decoded from the recorded neurons and
the actual direction of movement during a reaching task. Data
were provided by G Pellizzer and A Georgopoulos from record-
ings of 189 directionally selective neurons in the motor cortex of
monkeys. Animals were trained to reach for the eight corners of a
cube. Open circles (Vector) represent results derived from a method
equivalent to the Cartesian representation of a vector [34]. Black
circles (OLE, optimal linear estimator) depict results obtained from
a method that corrects for correlations between the firing rates of the
neurons caused, for example, by the fact that their preferred move-
ment directions are not orthogonal [59°°]. Modified from [59°°].

In the past few years, a number of efficient and accurate
decoding methods have been developed and studied
[59%,63-70,71°]. A good general method for population
decoding is to find the movement direction that provides
the best match to the evoked activity on the basis of
average-response tuning curves measured for the system.
This is essentially the ‘maximum likelihood” method
applied to neuronal decoding. In addition to their
application to experimental data, decoding methods have
played an important role in a number of speculative
modeling studies investigating how motor actions are
generated and controlled [20-27,28%%,29° 30°].

In light of the success of the population vector in
predicting movement direction, it was tempting to
assunie that activity in motor cortex represents the
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Cartesian coordinates of movement direction. However
recent theoretical and experimental work supports a
broader and, in many ways, more interesting point of
view. The ability to decode movement parameters such
as direction from the activity of a set of neurons with
a population vector relies primarily on the fact that
all directions are equally represented in motor cortex
[72,73%*.74**]. In particular, it does not depend on
the precise shape of the neuronal tuning curves and it
cannot uniquely characterize what coordinate system
is being used [73¢*]. Furthermore, responses in motor
cortex depend on a number of factors in addition to the
direction of movement [75-79,80°¢|. Specifically, etfects
of initial hand position [78], external loads [79] and
posture [80%*] have been studied. These dependencies
complicate both the application and the interpretation
of population vector decoding.

The fact that motor cortex encodes a number of
movement-related parameters complicates, but does not
preclude, the possibility of decoding movement direction
from population activity. Rather, it supports the idea
that a neural population can simultaneously represent a
number of parameters related to movement kinematics
and dynamics in a coordinate-independent manner.
Downstream networks (or experimentalists decoding
their recordings) can read out virtually any combination
of these quantities [74*¢]. Thus, the fact that the direction
of an arm movement can be decoded from motor cortex
firing does not preclude the possibility that other relevant
parameters—such as joint angles, muscle tension,
non-Cartesian coordinates or movement coordinates in
a variety of body-part centered systems—can also be
represented by the same neuronal population. Instead, it
is likely that a wide variety of signals are simultancously
read out by downstream networks, each of which
extracts the information most relevant to its particular
function.

Conclusions

Theoretical methods of all kinds provide tools with
which neuroscientists can explore the logical conse-
quences of a set of assumptions, validate the adequacy of
their data, and improve the analysis and understanding of
its implications. As with all methods, the extent to which
fundamental insight follows the application of theory to
a problem in neuroscience depends on the dexterity with
which both experimental and theoretical investigators
can extract knowledge from an often recalcitrant world.
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