
Articles
https://doi.org/10.1038/s41592-018-0109-9

1Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA. 2Department of
Neurosurgery, Emory University, Atlanta, GA, USA. 3Department of Neurosurgery, Stanford University, Stanford, CA, USA. 4Department of Electrical
Engineering, Stanford University, Stanford, CA, USA. 5Stanford Neurosciences Institute, Stanford University, Stanford, CA, USA. 6Neurosciences Graduate
Program, Stanford University, Stanford, CA, USA. 7Google AI, Google Inc., Mountain View, CA, USA. 8Department of Electrical Engineering, University
of California, Los Angeles, Los Angeles, CA, USA. 9Department of Neurosurgery, Palo Alto Medical Foundation, Palo Alto, CA, USA. 10VA RR&D Center
for Neurorestoration and Neurotechnology, Veterans Affairs Medical Center, Providence, RI, USA. 11Center for Neurotechnology and Neurorecovery,
Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. 12School of Engineering and Carney Institute
for Brain Science, Brown University, Providence, RI, USA. 13Department of Neurobiology, Stanford University, Stanford, CA, USA. 14Department of
Bioengineering, Stanford University, Stanford, CA, USA. 15Bio-X Program, Stanford University, Stanford, CA, USA. 16Howard Hughes Medical Institute,
Stanford University, Stanford, CA, USA. 17Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA. 18Department of
Neuroscience, Columbia University, New York, NY, USA. 19Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
20Present address: University of California, Berkeley, Berkeley, CA, USA. 21Present address: OpenAI, San Francisco, CA, USA. 22Present address: Cold Spring
Harbor Laboratory, Cold Spring Harbor, NY, USA. *e-mail: chethan@gatech.edu; sussillo@google.com

In many brain areas, the activity of large populations of neurons is
often well described by low-dimensional dynamics1–9. Thus, one
may begin to understand the computations of brain areas without

observing all of their neurons because these computations can be
described by the dynamics of a modest number of underlying ‘latent
factors’10, where each factor captures a pattern of co-activation across
neurons. Recovering these dynamics on single trials is essential for
illuminating the relationship between neural population activity and
behavior, and for advancing therapeutic neurotechnologies such as
closed-loop deep brain stimulation and brain–machine interfaces
(BMIs). However, recovering population dynamics on single trials
is difficult due to trial-to-trial variability in the spiking of individual
neurons. Standard analyses sacrifice single-trial information for the
sake of better estimates of trial-averaged neural states3,6,7,11. Current
techniques for extracting neural population states from single trials
typically make simplifying assumptions by modeling the underlying
population dynamics as having independent underlying factors12,13,
as being linear14–17, or as being switched linear18,19.

Here we introduce a machine-learning method based on non-
linear artificial recurrent neural networks (RNNs), termed latent
factor analysis via dynamical systems (LFADS). LFADS is based
on the idea that neural data can be generated by a dynamical sys-

tem, which is defined by equation (1). LFADS models the following
generic dynamical system:

̇ =t t tx F x u() (() , ()) (1)

The state of the dynamical system x(t) is updated by the vector-
valued function F, which is non-linear and potentially complicated,
accepts optional input u(t), and is seeded by an initial condition,
x(0). LFADS models F, x(0), and optionally u(t). By modeling equa-
tion (1), LFADS assumes that the process that produces the observed
spiking activity can be modeled as a dynamical system. The optional
input is constrained to be considerably less dynamically complex
than x(t). Without such a condition, equation (1) does not constrain
the data.

The applicability of equation (1) to neural data relies on four
assumptions, namely, that spiking activity on a single trial of a
task depends on (1) underlying dynamics (that is, rules by which
neural activity evolves in time) that govern the brain area(s) being
recorded; (2) trial-specific initial conditions that reflect the state
of the neural population at a specific point in time; (3) effects of
unmeasured inputs from other brain areas, including those arising
from unexpected changes in the task, contextual inputs, or sensory

Inferring single-trial neural population dynamics
using sequential auto-encoders
Chethan Pandarinath   1,2,3,4,5*, Daniel J. O’Shea   4,6, Jasmine Collins7,20, Rafal Jozefowicz7,21,
Sergey D. Stavisky3,4,5,6, Jonathan C. Kao4,8, Eric M. Trautmann6, Matthew T. Kaufman6,22,
Stephen I. Ryu4,9, Leigh R. Hochberg10,11,12, Jaimie M. Henderson3,5, Krishna V. Shenoy4,5,13,14,15,16,
L. F. Abbott17,18,19 and David Sussillo   4,5,7*

Neuroscience is experiencing a revolution in which simultaneous recording of thousands of neurons is revealing population
dynamics that are not apparent from single-neuron responses. This structure is typically extracted from data averaged across
many trials, but deeper understanding requires studying phenomena detected in single trials, which is challenging due to
incomplete sampling of the neural population, trial-to-trial variability, and fluctuations in action potential timing. We introduce
latent factor analysis via dynamical systems, a deep learning method to infer latent dynamics from single-trial neural spiking
data. When applied to a variety of macaque and human motor cortical datasets, latent factor analysis via dynamical systems
accurately predicts observed behavioral variables, extracts precise firing rate estimates of neural dynamics on single trials,
infers perturbations to those dynamics that correlate with behavioral choices, and combines data from non-overlapping record-
ing sessions spanning months to improve inference of underlying dynamics.

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods 805

mailto:chethan@gatech.edu
mailto:sussillo@google.com
http://orcid.org/0000-0003-1241-1432
http://orcid.org/0000-0002-1366-1743
http://orcid.org/0000-0003-1620-1264
http://www.nature.com/naturemethods

Articles NaTure MeThods

inputs; and (4) spiking variability distributed according to a Poisson
distribution.

We describe a concrete implementation that takes observed neu-
ral data as an input and estimates the data’s latent neural state, initial
conditions, inputs, and de-noised firing rates (rates). In LFADS, an
RNN (the ‘generator’) produces the underlying dynamics (assump-
tion 1). We assume that a continuous valued dynamical system can
describe the dynamics of neural data. LFADS extracts dynamic ‘fac-
tors’ from this system and uses them to infer rates for the recorded
neurons. We model observed action potentials as samples from
an inhomogenous Poisson process whose rate corresponds to the
inferred firing rate for the given neuron (assumption 4). Additional
RNNs (the ‘encoder’ and ‘controller’) extract initial conditions and
input for the generator (assumptions 2 and 3) from the observed
spiking data for each trial. Yet, beyond binned spike sequences, no
other trial-specific information such as condition or behavioral
information is supplied.

A strength of this approach is that non-linear RNNs can repro-
duce the complex temporal activity patterns of neural data. In addi-
tion, LFADS can find low-dimensional dynamics that explain the
recorded data by constraining the number of factors in the model.
This is consistent with observations that the dimensionality of neu-
ral population activity in areas such as motor and prefrontal cor-
tices is, in many cases, much lower than the number of recorded
neurons3,7,20–22.

Here, we apply LFADS to a variety of datasets from rhesus
macaque motor (M1) and dorsal premotor (PMd) cortices, as well
as human M1 (macaque data were previously recorded at Stanford
University). We show that rates extracted by LFADS estimate behav-
ioral variables more accurately than other techniques. We also show
in single trials that the dynamics inferred by LFADS capture pre-
viously uncovered rotational dynamics found in condition-aver-
aged data, and that the learned dynamical system is predictive of
behavioral conditions that it was not trained to model. Further, we
demonstrate that LFADS can combine data from non-overlapping
recording sessions, each sampling from separate neural popula-
tions and spanning five months of recording, to improve its perfor-
mance on the individual trials from each recording session. Finally,
we demonstrate that LFADS can infer inputs to a neural circuit by
analyzing data from an arm-reaching task involving a mid-trial per-
turbation, and by testing whether it can uncover high-frequency
oscillations in the rates associated with local field potentials (LFPs).

Results
Overview of LFADS. To introduce LFADS (Figs 1–4 and
Supplementary Figs 1–6), we start with a simplified dynamical sys-
tems model that ignores the input in equation (1), yielding

̇ =t tx F x() (()) (2)

Beyond Poisson spiking variability, all trial-to-trial variability in
this system is captured by the initial condition, x(0), for that trial.

LFADS is a sequential adaptation of a variational auto-encoder
(VAE)23–25 that maximizes a lower bound on the likelihood of the
observed spiking activity given the rates produced by the genera-
tor network, across all model training trials. Parameters are learned
using backpropagation (full model details and training procedures
are given in the Methods, and associated source code is available as
Supplementary Software and at https://lfads.github.io).

Working from output to input, LFADS models the single-trial
spiking observations at time t as stochastic (Poisson) spike counts
generated from a vector of underlying firing rates rt (Fig. 1a). For
neuron i, the LFADS-inferred rate rt,i provides a de-noised rate for
its observed spiking activity on a trial-by-trial basis. The rates are
obtained by multiplying a vector of dynamic factors ft by a read-
out matrix Wrate and exponentiating the resulting quantity. These

factors are determined by multiplying the vector of activities gt of
the generator by a matrix Wfac. The activities of the generator’s units
depend on two elements: a trial-specific initial state vector g0 (one
for each trial), and the parameters defining the connections of the
network (fixed across trials after training). The units of the genera-
tor do not correspond directly to any recorded channels, but, rather,
the generator models the dynamics underlying the observed data.
A linear readout of the activity of the encoder provides the inferred
initial state g0. To compute g0 for a given trial, the encoder receives a
temporal sequence of the vectors of recorded (binned) spike counts
for that trial. To better model the trials, the encoder runs through
the trial both backward and forward to compute g0, meaning that
when generating the trial at any time t, LFADS has access to data
before and after t.

Once the model has been trained, spike counts from a specific
trial are fed into the encoder, which infers initial conditions for that
trial (Fig. 1a). The encoder compresses the temporal sequence of
spiking data for each trial into a single vector—the ‘latent code’—
which is the initial condition to the generator. From this compressed
code, the generator infers the factors and rates of all the recorded
neurons across time for the encoded trial (in Supplementary Fig. 1
we apply LFADS to a one-dimensional (1D) pendulum to show how
LFADS operates for a simple, non-biological dynamical system).
Thus, LFADS turns time series of single-trial recorded spike counts
into low-dimensional dynamic factors and underlying rates that
generate the observed spikes.

We first assessed the validity and accuracy of rates and factors
inferred by LFADS from simulated data for which the ground truth
is known (summarized in Supplementary Note 1; Lorenz attractor,
Supplementary Fig. 2; chaotic RNN, Supplementary Fig. 3; chaotic
RNN with pulse inputs, Supplementary Figs 7 and 8; and an RNN
trained to integrate white noise, Supplementary Fig. 9). When com-
pared on simulated data, LFADS outperforms a number of state-
of-the-art machine-learning techniques (Gaussian process factor
analysis (GPFA)12, Poisson feed-forward neural network linear
dynamical system (PfLDS)15, and variational latent Gaussian pro-
cess (vLGP)13; Supplementary Figs 2 and 3).

We then trained LFADS on multielectrode array data (single-
trial spiking activity) from M1 and PMd, recorded while a monkey
made reaching movements (see Methods for model training details,
and Supplementary Table 1 for all model hyperparameters). The
analyzed trials were 800-ms long and aligned to movement onset
(that is, the time when arm movement was first detectable). We
show inferred rates and factors for seven example trials (Fig. 1b).

We next experimentally validated LFADS-inferred factors and
rates by reproducing features seen in common neuroscientific anal-
yses (peri-stimulus time histograms (PSTHs), cross-correlations;
Fig. 2, Supplementary Data 1–3); predicting held-out, simultane-
ously recorded neurons (Fig. 2); predicting details of behavior
(Figs 2, 4, and 5 and Supplementary Fig. 6); showing single-
trial features previously demonstrated in trial-averaged analysis
(Fig. 3); predicting held-out conditions (Fig. 3); and correlating with
LFPs (Fig. 6). In all examples we show, we trained LFADS to model
observed spiking data from individual trials without any informa-
tion about task conditions or behavioral parameters (for example,
reach kinematics or electromyography (EMG)).

Validation of LFADS inferences using a complex reaching task.
We applied LFADS to 202 neurons simultaneously recorded from
M1 and PMd during a maze task (see Methods) in which a mon-
key made a variety of straight and curved reaches (Fig. 2a; the
dataset consisted of ~2,300 individual reach trials spanning 108
reach types).

We first compared LFADS-inferred rates to smoothed spikes and
to GPFA12-inferred rates (Fig. 2b). Condition-averaged smoothed
spikes are commonly known as the PSTH; these assume that rates

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods806

https://lfads.github.io
http://www.nature.com/naturemethods

ArticlesNaTure MeThods

are smooth in time and consistent across repetitions of an individ-
ual condition, while GPFA assumes that population activity is low-
dimensional and smooth in time on several characteristic timescales.
LFADS assumes that rates are predictable—that is, they evolve from
an initial condition of a dynamical system—and also potentially
low-dimensional. These differing assumptions lead to different con-
dition-averaged and single-trial rates. We also compared single-trial
LFADS-inferred rates to single-trial rates constructed by smoothing
spikes or using GPFA. The single-trial LFADS-inferred rates show
more structure than those from smoothing spikes or GPFA. When
compared to GPFA, the LFADS-inferred rates preserved many of
the faster timescale features of the neurons’ PSTHs (four neurons
shown; all PSTHs are included as Supplementary Data 1). Finally,
LFADS-inferred rates reproduce patterns of correlations across
time (Supplementary Data 2) and neurons (Supplementary Data 3)
for different behavioral conditions. As with the PSTHs, the cross-
correlograms inferred by LFADS reproduced the structure of the
empirical cross-correlograms, and particularly preserved fast tem-
poral features better than GPFA.

LFADS encodes each individual trial by an initial state vector
(g0). To test whether there was behaviorally relevant structure in
the g0 encoding, we applied the non-linear dimensionality reduc-
tion technique t-distributed stochastic neighbor embedding (t-SNE;
Fig. 2c) to reduce the dimensionality to 3 and color coded the ~2,300
points based on the angle of the target of the upcoming reach. t-SNE
uncovered clear structure in the learned g0 encoding. Specifically,
trials with similar kinematic structure are encoded with similar ini-
tial conditions (Supplementary Video 1). This demonstrates that the

generator does not learn arbitrary sequences to model each trial, but
instead learns an organized representation that preserves the rela-
tion of the trials in kinematic space.

We also tested whether the LFADS-inferred representations
were informative about behavioral parameters; specifically, the tra-
jectory of the monkey’s hand movements (Fig. 2d). We estimated
hand velocities from LFADS-inferred rates using cross-validated
optimal linear estimation (OLE26). Using the full population of
202 neurons, decoding using LFADS-inferred rates outperformed
results obtained by binning or smoothing spike trains, or by using
GPFA (average R2 of 0.90 across the dataset, versus 0.66, 0.69, and
0.34 for smoothing, GPFA, and binning, respectively; detailed in the
Methods). We also determined performance as a function of popu-
lation size by drawing random subsamples from the neural popula-
tion (Fig. 2e). LFADS using 25 (x velocity) or 50 (y velocity) neurons
outperformed the other techniques applied to the full population of
202 neurons. We held the bin size and number of factors used by
LFADS (5 ms and 20, respectively) constant for all models across all
population sizes, while we chose the bin size and number of factors
used for GPFA to optimize decoding accuracy.

We also tested whether the LFADS-inferred low-dimensional
factors were predictive of held-out data (Fig. 2f). Because the factors
reflect the full neural population dynamics, they should be predic-
tive for neurons that were not used to train the model (that is, held-
out neurons). We fit LFADS models to subsets of neurons (25, 50,
100, and 150 neurons were drawn from the full population of 202
neurons). We then used a standard generalized linear model (GLM)
to relate the LFADS-inferred factors to the held-out neurons’ spike

Compare

Wrate

W fac

a

b Trial 1

Observed
spikes

Inferred
firing rates

rt
Non-linearityFactors

ft

Observed
spikes

Encoder (RNN) Generator (RNN)

X X

O
bs

er
ve

d
sp

ik
es

(2
02

)

In
fe

rr
ed

fir
in

g
ra

te
s
r t

(2
02

)
F

ac
to

rs
 f t

(4
0)

Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7

200 ms

Initial state g0

Time Time Time

Trials
N

eu
ro

ns

N
eu

ro
ns

N
eu

ro
ns

5.4 1.3

1.2 0.9

1.7 1.1

... ...

µ σ

0.9 1.4

Trials
Trials

Fig. 1 | LFADS is a generative model that assumes that observed single-trial spiking activity is generated by an underlying dynamical system. a,
Schematic overview of the LFADS architecture. Details are provided in the main text. b, Example spiking activity recorded from M1 and PMd as a monkey
performed a reaching task, as well as the corresponding rates rt and factors ft inferred by LFADS (seven representative trials are shown). Circles denote
time of movement onset.

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods 807

http://www.nature.com/naturemethods

Articles NaTure MeThods

counts in a cross-validated manner. For each held-out neuron, we
trained a GLM to relate inferred factors to observed spike counts
for a training subset of trials, and predicted rates for that neuron
for a test subset using the trained GLM. The rates produced by

LFADS-inferred factors predicted spiking activity for held-out neu-
rons on held-out trials, providing improved single-trial likelihood
over the factors inferred by GPFA (P <​10−8 for all population sizes,
Wilcoxon signed-rank test).

a

c

f

C
on

di
tio

n
1

C
on

di
tio

n
2

C
on

di
tio

n
3

d ex

y
True LFADS Smoothing GPFA

0

0.5

1

R
2

25 50 100 150 202

Number of neurons

LFADS
Smoothing

GPFA
Binning

LF
A

D
S

 (
LL

 p
er

 s
pi

ke
)

Neurons in
training population

GPFA
(LL per spike)

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

25

100

150

2

2

2

b

6

6

6

Neuron 3 Neuron 101 Neuron 111

4

4

4

Neuron 32

3

3

3

Single trial Single trial Single trialCondition-
averaged

Condition-
averaged

Condition-
averaged

Condition-
averaged

Single trial

S
m

oo
th

ed
sp

ik
es

LF
A

D
S

G
P

F
A

Fig. 2 | Application of LFADS to a maze reaching task. a, Individual reaches of a monkey during a maze reaching task, colored by target location.
b, Comparison of condition-averaged (left) and single-trial (right) rates for four individual neurons (columns) for three different methods (rows). Left: each
trace represents a different reach condition (8 selected of 108 total). Right: each trace represents an individual trial (same color scheme as the condition-
averaged panels). Top row: PSTHs created by smoothing observed spikes with a Gaussian kernel (30-ms s.d.). Middle row: LFADS-inferred rates. Bottom
row: GPFA-inferred firing rates, created by fitting a GLM to map the GPFA-inferred factor representations onto the true spiking activity. Horizontal scale
bar represents 300 ms. Vertical scale bar denotes rate (spikes s−1). PSTHs for all neurons are shown in Supplementary Data 1. c, Application of t-SNE to the
generator initial conditions (g0). Each point represents the reduction of the g0 vector into a 3D t-SNE space for an individual trial (2,296 trials total); 2D
projection shown, full 3D projection shown in Supplementary Video 1. Trials are color-coded as in a. d, Decoding reaching kinematics using OLE. Each row
shows an example condition (3 shown of 108 total). Column 1: true reach trajectories (black traces, ten example trials per condition). Columns 2–4: examples
of cross-validated reconstruction of these trajectories using OLE applied to the neural data, which was first de-noised via LFADS, by smoothing with a Gaussian
filter (40-ms s.d.), or by using GPFA to reduce its dimensionality. e, Decoding accuracy was quantified by measuring variance explained (R2) between the
true and decoded velocities for individual trials across the entire dataset (2,296 trials), for all 3 techniques and additionally for simple binning of the neural
data. Accuracy was also measured for random subsamples from the full neural population of 202 neurons. Dotted lines connect the median R2 values for each
population size. f, Performance of LFADS and GPFA in predicting responses of neurons held out from model training. Each point represents a given held-out
neuron for a given random sampling of the population (same populations as in e). Performance was evaluated using log likelihood (LL) per spike41.

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods808

http://www.nature.com/naturemethods

ArticlesNaTure MeThods

Uncovering rotational dynamics in M1. We next tested whether
the population dynamics inferred by LFADS on single trials exhib-
ited dynamic features that have previously been identified in trial-
averaged data; specifically, the rotational dynamics underlying M1
and PMd firing rates that accompany the transition from pre- to
peri-movement activity in monkeys3 and humans8. Rotational
dynamics were consistent across the full range of movements being
performed (Fig. 3a, monkey J, 108 reach conditions of the maze
dataset, and Fig. 3c, participant T5, 8 attempted movement condi-
tions in a ‘center-out’ task). We obtained these results by averaging
the rate of each neuron across all trials corresponding to a particular
reach condition and then applying a form of dimensionality reduc-
tion (j principal components analysis (jPCA)3). Although condi-
tion averaging reveals the basic oscillatory dynamics, single trials
provide noisy and unstructured views of the neural trajectories
(Fig. 3b,d). In contrast, applying jPCA to the LFADS-inferred rates

shows that LFADS not only reproduces the previously extracted
oscillatory dynamics on a condition-averaged basis (Fig. 3e,g),
but also demonstrates, for the first time, the presence of rotational
dynamics on single trials (Fig. 3f and Supplementary Video 2, mon-
key J, 2,296 maze reaching trials, and Fig. 3h, participant T5, 114
center-out movement attempts).

We then asked whether the LFADS generator learns dynamics
that generalize to new conditions (Fig. 3i–k). If the dynamical sys-
tems model of M1 is appropriate, then, after learning the population’s
underlying dynamics, it should be possible to generate activity from
any novel, unseen reaching condition simply by knowing the proper
initial state. After setting the initial state, the learned dynamics model
should then generate the appropriate time-varying activity for the
novel condition. To test whether this is the case, we split data into
training conditions and held-out (validation) conditions based on tar-
get angle (Fig. 3i). Briefly, we uniformly divided the workspace into

i j

a b c d

All reach conditions
Training set i

P
os

ito
in

 w
he

n
he

ld
 o

ut

Position when held in

Initial position in jPCA plane

jPC1 jPC2

Participant T5
Single trial

Participant T5
Condition averaged

Monkey J
Single trial

Monkey J
Condition averaged

S
m

oo
th

in
g

P
ro

je
ct

io
n

on
to

 jP
C

2
(a

.u
.)

Projection onto jPC1
(a.u.)

Projection onto jPC1
(a.u.)

Projection onto jPC1
(a.u.)

LF
A

D
S

P
ro

je
ct

io
n

on
to

 jP
C

2
(a

.u
.)

Held-out set i

Projection onto jPC1
(a.u.)

–0.2

–0.2

0.2

–0.5

–0.5

0.5

jPCA projection of
all held-out trials

e f g h

k

0.5 0.2

Fig. 3 | LFADS uncovers known rotational dynamics in monkey and human motor cortical activity on a single-trial basis. a,c, Condition-averaged neural
population state trajectories in the M1 of monkeys and humans for a single task condition obtained with jPCA. a.u., arbitrary units; jPC1 and jPC2 are
the first two compontents of jPCA (see main text). b,d, Same representation as in a and c, but for single-trial neural population activity. e,g, Condition-
averaged inferred rates obtained with LFADS. f,h, Same representation as in e and g but for individual trials (monkey, 2,296 trials; human, 114 trials). i–k,
Testing generalizability of the generator’s dynamics to held-out conditions. i, Conditions were binned by the angle of the reach target (black dashed lines),
resulting in 19 sets. Then, 19 LFADS models’ generator dynamics were trained, each on 18 subsets of the data with 1 subset held out, and then evaluated on
the held-out subset. j, LFADS-inferred rates for held-out conditions were combined across the 19 models and were projected into the jPCA space found by
training an LFADS model on all conditions (that is, panel f). k, Correspondence between initial position in jPCA space when a trial is used in the training set
for an LFADS model and when it is held out (Pearson’s correlation coefficient r =​ 0.97, 0.77 for jPC1, jPC2, respectively). Each dot represents an individual
trial (2,296 trials).

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods 809

http://www.nature.com/naturemethods

Articles NaTure MeThods

Factors

Wfac

Input
factors
ift ft

Encoder Generator
Initial state

g0

5.4 1.3

1.2 0.9

1.7 1.1

Firing rates

S
es

si
on

 1
S

es
si

on
 S

Spikes

W 1
input

W s
input

S
es

si
on

 1
S

es
si

on
 S

X

X

Spikes

Time

N
eu

ro
ns

Per-session
read-in

Per-session
readout

Trials

N
eu

ro
ns

X

X

X

1

0.6

0.4

0.2

0

R
2 c

ro
ss

-v
al

id
at

ed
ki

ne
m

at
ic

 p
re

di
ct

io
ns

Smoothed
neural

GPFA Single
LFADS

Stitched
LFADS

0.8

}

}

Time

N
eu

ro
ns

Trials

N
eu

ro
ns

Shared across sessions

Time

0.9 1.4

a

Arc. sp.

PCd

CS

3 mm

A
nt

er
io

r Medialb

S
es

s.
 1

S
es

s.
 2

S
es

s.
 3

S
es

s.
 4

S
es

s.
 4

4

Go cue Move 200 ms

...

c

d Condition-averaged LFADS factor trajectories across sessions e

Hand Smoothed
r 2 = 0.10

GPFA
r 2 = 0.19

Single session LFADS
r 2 = 0.50

Stitched LFADS
r 2 = 0.76

40 mm

40 m
m

f

g

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7

CIS

jPC1

jPC2

Single-trial LFADS factor trajectories

σµ

W1
rate

Ws
rate

jPC2 CIS

jPC1

jPC2

jPC1

Go cue

Fig. 4 | Using ‘dynamic neural stitching’, LFADS combines data from separately collected, non-overlapping recordings of the neural population by
learning one consistent dynamical model. a, Schematic of the LFADS architecture adapted for dynamic neural stitching. Details are provided in the main
text. For this example, each Ws

rate was learned, whereas Ws
input was set using a principal components regression approach (see Methods). A total of 44

individual recording sessions using 24-channel linear multielectrode arrays were used. b, Locations of linear electrode array penetrations in the precentral
gyrus from which each dataset was collected. Dashed lines indicate approximate locations of nearby sulcal features based on stereotaxic locations. Arc.
Sp., arcuate spur; PCd, precentral dimple; CS, central sulcus. c, Example single-trial rasters for nearly identical upward reaches performed on a subset of
5 of the 44 recording sessions. Each raster has 24 rows corresponding to the 24 channels of the linear array, but the neurons recorded on each session
are entirely distinct from each other. Sess., session. d, Factor trajectories after training for each behavioral condition across recording sessions, produced
by a multi-session stitched LFADS model. Traces are condition-averaged factor trajectories projected into a subspace which spans the CIS and the first
jPCA plane (see Methods). LFADS factors are averaged over all trials in each reach direction for each recording session and projected into this subspace to
produce a single trajectory; the color of each trajectory represents the reach direction (44 trajectories of each color). e, R2 values between arm kinematics
and smoothing neural data, GPFA, single-session, or stitched LFADS factor decodes. A single shared decoder was fit for the stitched model; a separate
decoder was fit for each single-session model. ***Significant improvement in median R2; P <​ 10−8, Wilcoxon signed-rank test. f, Actual recorded hand
position traces for center-out reaching task (left), alongside kinematic decodes for a representative single session (session 32), for smoothed neural data,
GPFA, single-session LFADS, and stitched LFADS (left to right). Colors indicate reach direction. g, Single-trial factor trajectories from the stitched LFADS
model. Only the first 7 of 44 sessions are shown for ease of presentation (see also Supplementary Video 3).

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods810

http://www.nature.com/naturemethods

ArticlesNaTure MeThods

angular bins and grouped conditions by the position of their reach
target. This resulted in 19 sets of conditions (see Methods). For each
set, we trained an LFADS model solely on the 18 other training con-
dition sets, and then evaluated on the held-out set. We then collated
LFADS-inferred rates for all of the held-out trials (combining data
from 19 LFADS models—one model per held-out condition set), and
projected them into the jPCA plane previously found using all data
(Fig. 3j). Even though the generator had not been trained on the held-
out trials, it still modeled them with rotational dynamics, in the same
plane as found previously. Finally, we compared the initial position
in the jPCA plane found when a trial is held-in, versus held-out, and
found a clear correlation (Fig. 3k). This proof-of-principle analysis
demonstrates that LFADS can learn dynamics that generalize to novel
conditions, provided there are datasets with sufficient trial counts and
diverse conditions to capture the neural population’s dynamics.

Stitching together data from multiple sessions. Experiments are
often performed across multiple sessions, with different neurons

recorded on each session. LFADS can ‘stitch’ such data together to
create a more powerful and comprehensive dynamical model. The
aim is similar to previous efforts that relate separately recorded neu-
ral population activity27,28, but, importantly, LFADS relates the sepa-
rate sessions through a learned non-linear dynamical system, and
does not require any overlap between the populations of recorded
neurons.

In experiments where a subject is engaged in the same behav-
ior across recording sessions and the same brain region is being
recorded, a reasonable hypothesis is that separately recorded neu-
ral populations participate in the same underlying dynamics.
LFADS can leverage this structure because of its two-step process
of inference (Fig. 4a). To stitch multiple sessions into a common
dynamical model, we configure LFADS to use per-session ‘read-
in’ matrices Winput, mapping from observed spiking to input fac-
tors, and ‘read-out’ matrices Wrate, mapping from factors to neuron
rates. The shapes of these matrices can vary to match the number
of neural channels recorded in each dataset. Importantly, a single

Inferred inputs

Wrate

W fac

a
Observed

spikes
Inferred

firing ratesFactors
Observed

spikes Encoders

Controller

Time TimeTime

N
eu

ro
ns

N
eu

ro
ns

N
eu

ro
ns

Trials
Trials

Trials

tt1 tT

Generator

X X

Initial
state

2.4

5.3 0.2

1.9

1.2

3.1 ...

...

µ

σ 2.9

5.4 1.3

... ...

µ σ

0.9 1.4

0.4

b

d ec

100–10

–10

 0

10

Y
 p

os
iti

on
 (

cm
)

X position (cm)

T
as

k
ax

is

Perturbation
axis

Unperturbed trials
Perturbed trials

100 ms

P
er

tu
rb

le
ft

Perturb left

P
er

tu
rb

rig
ht

Perturb right

U
np

er
tu

rb
ed

Unperturbed

t-
S

N
E

 d
im

 2
 (

a.
u.

)

D
ow

nw
ar

d
tr

ia
ls

in
pu

t (
a.

u.
)

t-SNE dim 1 (a.u.)

Start

dim 2 dim 3 dim 4

–0.2

0.2

Input dim 1

–0.2

0.2

200 ms

U
pw

ar
d

tr
ia

ls
in

pu
t (

a.
u.

)

Fig. 5 | LFADS uncovers the presence, identity, and timing of unexpected perturbations in the cursor jump task. a, Schematic of the LFADS architecture
adapted for inferring inputs to a neural population. LFADS reduces individual trials to an initial condition (g0) and a set of time-varying inferred inputs
(ut), the latter of which are modeled stochastically with a mean and variance, which are inputted to the generator at each time point. The ut is output by a
controller RNN, which receives time-varying input from the encoding network, as well as the factor’s representation at the preceding timestep.
b, Schematic depicting the cursor jump task. The position of a monkey’s hand was linked to the position of an on-screen cursor, and the monkey made
reaching movements to steer the cursor toward upward or downward targets. In unperturbed trials (gray traces), the monkey made straight reaches to the
target. In perturbed trials (orange traces), the cursor’s position was offset to the left or right during the course of the reaching movement, and the monkey
made corrective movements to acquire the target. c, Spiking activity from M1 and PMd arrays during three example reach trials to downward targets for
the unperturbed (top), perturb right (middle), and perturb left (bottom) conditions. Squares denote time of target onset, and triangles denote the time
of an unexpected perturbation. d, LFADS was allowed four inferred inputs to model the neural activity. For presentation, two trial alignments were used
before averaging: the initial portion of the trials was aligned to the time of target onset, while the latter portion of the trials was aligned by perturbation
time (or, for unperturbed trials, the time at which a perturbation would have occurred based on the cursor’s trajectory). The gap in the traces denotes
the break in alignment. Inferred input values were averaged across trials for upward (top) and downward (bottom) trials (mean ±​ s.e.m. is shown; gray,
unperturbed trials; blue, perturb left trials; red, perturb right trials). Around the time of target onset, the identity of the target (up versus down) is modeled
by the inputs (for example, dimension 1). Around the time of the perturbation, LFADS used specific inferred input patterns to model each perturbation type
(for example, dimensions 1 and 2). Input traces were smoothed with a causal Gaussian filter (20-ms s.d.). e, The single-trial input patterns around the time
of perturbation (all downward trials) were projected into a low-dimensional space using t-SNE and colored by the three perturbation types (unperturbed,
left perturbation, right perturbation). Dim, dimension. Black boxes denote locations in t-SNE space for the example trials shown in panel c.

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods 811

http://www.nature.com/naturemethods

Articles NaTure MeThods

encoder, generator, and factor matrix Wfac are shared across sessions
and learned from all sessions. The per-session read-in and read-out
matrices are learned using data from only the corresponding session
(or precomputed; see Methods).

We tested this approach using neural activity from monkey
M1 and PMd during a center-out instructed-delay reaching task,
recorded using linear multielectrode arrays (monkey P; 24-chan-
nel linear probes). We trained 1 stitched multi-session LFADS

model on a combined dataset consisting of 44 recording sessions
that spanned 162 d (Fig. 4b shows locations of the 38 individual
penetration sites in the precentral gyrus, and Fig. 4c shows sample
recordings from 6 sessions). We then examined the condition-aver-
aged factor trajectories inferred for each recording session. These
trajectories are highly similar for a given reach direction regard-
less of the recording session (Fig. 4d), a key indication that LFADS
found a generator capable of describing all datasets with a consistent

ch14

C
ro

ss
 c

or
re

la
tio

n
(a

.u
.) ch22 ch33

ch67

C
ro

ss
 c

or
re

la
tio

n
(a

.u
.)

–100 0 100

ch181 ch186

ch13

C
ro

ss
 c

or
re

la
tio

n
(a

.u
.) ch19 ch114

ch134

C
ro

ss
 c

or
re

la
tio

n
(a

.u
.)

–100 0 100

ch141 ch150

S
pi

ki
ng

 a
ct

iv
ity

S
pi

ki
ng

 a
ct

iv
ity

In
fe

rr
ed

 fi
rin

g
ra

te
s

In
fe

rr
ed

 fi
rin

g
ra

te
s

Lo
ca

l f
ie

ld
 p

ot
en

tia
l

Lo
ca

l f
ie

ld
 p

ot
en

tia
l

100 ms

100 ms

a Participant T7

Monkey J Monkey J

Participant T7b

Time since spike (ms)

Time since spike (ms)

Observed
Shuffled
LFADS

Observed
Shuffled
LFADS

Fig. 6 | LFADS uncovers fast oscillatory structure in neural firing patterns. a, Example single-trial spiking activity recorded from human M1 and monkey
M1 and PMd, as well as LFADS-inferred rates, and LFPs. Shown are 400 ms of data, beginning at the time of target presentation during an 8-target center-
out-and-back movement paradigm. For T7, analyses were restricted to channels that showed significant modulation during movement attempts (78 of 192
channels). Dashed red lines overlaid on monkey data segregate the M1 array (upper halves) and PMd array (lower halves). Squares denote time of target
onset. For monkey J, where movement was measurable, circle denotes time of movement onset. b, Cross-correlations between the LFPs recorded on each
electrode and the observed spiking activity (black traces; mean ±​ s.e.m.) or the LFADS-inferred rates (red traces) for several example channels (participant
T7, 142 trials; monkey J, 373 trials). LFPs were first low-pass filtered (75-Hz cutoff frequency). Randomly shuffling the trial identity (that is, correlating
spikes from one trial with LFP from another) largely removed the fast, oscillatory components in the cross-correlograms (blue traces). Ch, channel.

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods812

http://www.nature.com/naturemethods

ArticlesNaTure MeThods

set of factors. Single-trial factor trajectories also exhibited consis-
tency across recording sessions (Fig. 4g, Supplementary Fig. 5, and
Supplementary Video 3).

We then compared the multi-session stitched LFADS model to
44 models trained using data from individual sessions. This com-
parison tests whether access to multiple M1 recordings allows
multi-session LFADS to better model the underlying population
dynamics. We assessed the quality of the LFADS models by ask-
ing how informative the factors (ft) were in predicting behavioral
observations, including reach kinematics and reaction times.
In this case, we decoded from the factors because, for the multi-
session model, they are common across all recording sessions and
therefore are enriched by the additional sessions. Consistent with
previous analyses, the single-session LFADS models produced
factors that were substantially more predictive of kinematics than
Gaussian-smoothed spiking (mean improvement of 0.32 in R2;
P <​ 10−8, Wilcoxon signed-rank test) or GPFA (mean improvement
of 0.27 in R2; P <​ 10−8, Wilcoxon signed-rank test; Fig. 4e), indi-
cating that LFADS identified useful dynamic representations even
from the limited observations from individual recording sessions.
Importantly, however, the stitched LFADS model produced fac-
tors that were considerably more informative than the single-ses-
sion LFADS models, resulting in significantly improved kinematic
predictions, even when using a single decoder across all sessions
(mean increase of 0.22 in R2; P <​ 10−8, Wilcoxon signed-rank test;
Fig. 4e,f). We note that the lower decoding fidelity in the current
experiment, in comparison to Fig. 2, probably arises from the differ-
ence in recording methodologies. We also predicted reaction time
from LFADS factors (Supplementary Fig. 6); again, the stitched
model significantly outperformed the single-day models (mean
improvement in correlation coefficient between predicted and mea-
sured reaction times: 0.15; P <​ 10−7, Wilcoxon signed-rank test).

Inferring inputs to a neural circuit. We next adapt LFADS to model
the more general dynamical system of equation (1); that is, we intro-
duce inputs to allow the neural population activity to be modeled as
a non-autonomous dynamical system (Figs 5–6 and Supplementary
Figs 7–9). This capacity is critical when a neural population is driven
by unmeasured inputs from other brain areas, including those arising
from unexpected changes in the task, contextual inputs, or sensory
inputs. Conceptually, inferring the presence of inputs requires build-
ing an accurate model of the observed population’s internal dynam-
ics. With such a model, it should be possible to determine when data
deviate from the model’s dynamic predictions. This indicates that an
external perturbation to the system occurred, which can be captured
as an inferred input—inferred because LFADS models the input that
supplies the deviation from the unperturbed dynamics (we outline
caveats in the Discussion). This means that, beyond Poisson spiking,
trial-to-trial variability is captured by both the initial condition g0
and the inferred input ut for that trial.

To test LFADS’s ability to infer inputs, we analyzed data from a
‘cursor jump’ task in which a monkey guided a cursor, controlled
by the monkey’s hand position, toward upward or downward tar-
gets (monkey J; see Methods). On ‘unperturbed’ trials (75%), the
cursor consistently tracked the position of the monkey’s hand, and
the monkey made straight upward or downward reaching move-
ments to acquire targets. On ‘perturbed’ trials (25%), unpredictable
shifts to the left or right between cursor and hand position forced
the monkey to make corrective movements to acquire the target
(Fig. 5b). We applied LFADS to spiking activity from multielectrode
arrays implanted in M1 and PMd (Fig. 5c), allowing four inferred
inputs (choice of dimensionality detailed in the Methods). We ana-
lyzed the first 800 ms of each trial, beginning at target onset (jumps
occurred ~350–550 ms later).

LFADS used inferred inputs to model information flow into the
generator with timing that was consistent with the trial structure.

Before the trial, the monkey had no information about the target
position, which was cued at the beginning of the trial (target onset).
Around this time, the inferred inputs are distinct with respect to
target position (Fig. 5d; for example, Input dimension 1, compar-
ing inputs inferred for upward versus downward trials), but are
not distinct with respect to perturbation type (that is, red, blue,
and gray traces are overlapping), as perturbations occurred later
in the trial. In contrast, around the time of perturbation, LFADS
inferred different input patterns for right- and left-shift perturbed
trials and for unperturbed trials (Fig. 5d, red, blue, and gray traces;
for example, Input dimension 2). Furthermore, the timing of these
inputs is well aligned to the time of the perturbations (which were
variable), and the perturbation direction specificity of these inputs
was similar across downward and upward reaches (Fig. 5d, top
and bottom panels). The trends were also visible on single trials
(Supplementary Fig. 10). We applied t-SNE to the inferred single-
trial inputs around the time of the perturbation (Fig. 5e), which
revealed that they cluster according to perturbation identity on
a single-trial basis. We note that the exact shape of the inferred
inputs may not resemble physiological signals. In addition, because
the LFADS encoding is acausal, the timing of the inputs is not
required to be causal relative to the timing of the perturbations (see
Discussion). Nevertheless, this example demonstrates that LFADS
can predict, on average, the presence, identity, and timing of inputs
to M1 related to task perturbations.

LFADS rate oscillations correlate with LFPs. Another known
dynamic feature of motor cortical activity is the rhythmic spiking
that often occurs during the premovement period, typically phase-
locked to accompanying LFP oscillations (15–40 Hz; for example,
see refs. 29,30). We tested whether LFADS is capable of extracting
such high-frequency dynamic features. Previous work has hypoth-
esized that spike-LFP phase locking is reflective of communication
between brain areas31. Therefore, we reasoned that inputs were nec-
essary to model these high-frequency oscillations. Indeed, when
LFADS was allowed to use inputs, high-frequency oscillations were
evident in the inferred rates (Fig. 6a). Although we did not give
the model access to the LFPs, the inferred oscillations aligned well
with LFPs and with structure apparent in the multi-unit spiking
activity (Fig. 6a).

We studied the spike-LFP phase locking in monkey and human
data using cross-correlation analysis (Fig. 6b, black traces). We
computed cross-correlations on a single-trial basis, using data from
the first 250 ms (monkey) or 300 ms (human) of each trial, and
then averaged over trials. As shown, this is a single-trial phenom-
enon: high-frequency oscillations in the cross-correlograms disap-
pear when they are computed after shuffling trial identity (Fig. 6b,
blue traces).

We also studied the correlation between the LFADS-inferred
rates and the LFPs on single trials, which was similar to the spike-
LFP phase locking (Fig. 6b, red traces), confirming LFADS’s abil-
ity to uncover high-frequency dynamic features. We note that
we were unable to robustly reproduce the correlations between
LFADS-inferred rates and LFPs on held-out trials without the use
of inferred inputs. This suggests that these fast dynamics are not
dynamical in the sense of being able to be generated with an auton-
omous dynamical system using only an initial condition to describe
trial-to-trial variability.

Discussion
The ability to record from large ensembles of neurons has inspired
a shift from emphasizing the properties of individual neurons and
their responses to exploring the emergent properties of neural
populations. Such efforts reinforce theoretical work that suggests
that emergent dynamics may serve as one of the brain’s fundamen-
tal computational mechanisms (reviewed in ref. 32). LFADS builds

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods 813

http://www.nature.com/naturemethods

Articles NaTure MeThods

empirical models of the non-linear dynamics underlying popula-
tion activity, and leverages these dynamics models to infer latent
representations that are considerably more informative about sub-
jects’ behaviors than the observed population activity itself. The
close link between the LFADS-inferred representations and sub-
jects’ behaviors, especially on a single-trial, moment-by-moment
basis, strongly suggests that network states and dynamics, rather
than the properties of individual neurons, are a key factor in under-
standing the computations performed by brain areas and how they
ultimately mediate behaviors.

How seriously should the structure of the LFADS generator be
taken as a model of a brain region one is studying? More theoreti-
cal work is required to answer this question. Artificial RNNs and
biological RNNs provide different substrates for implementing
computation through dynamics, and the LFADS architecture does
not resemble the biophysical architecture of the cortex. We advise
against making inferences about properties of the biological net-
work by studying the structure of the generator. Instead, we believe
that LFADS can identify abstract dynamics that approximate the
progression of neural state changes related to spiking, without mod-
eling the specific biological components, ultimately producing an
abstract model that captures the computations being performed by
the network under study.

LFADS also distinguishes the dynamics internal to a neural
circuit from the influence of unmeasured input from other brain
regions, which is a challenge in neuroscience. Although the nature
of the inputs inferred by LFADS informs about the presence and
identity of perturbations, caution should be used when interpreting
the precise shape and timing of these inputs. In addition to reflect-
ing actual inputs to a neural ensemble, LFADS-inferred inputs may
capture model mismatch (for example, biophysical spiking versus
Poisson process) and measurement noise. There is no constraint
requiring the inferred inputs’ shapes to conform to physiological
processes. Furthermore, their timing may be imprecise relative to
the timing of the perturbations they describe. Finally, due to the
bidirectional encoders used by LFADS, the generator has access to
the entire data sequence. There is no constraint forcing the inputs
to be causal with respect to the task perturbation. Caveats aside,
the presence, timing, and qualitative shape of the inferred input
in the cursor jump task (also two synthetic examples) are reason-
able, providing evidence that inputs inferred by LFADS are useful
for thinking about neural computations by disambiguating internal
dynamics from input-driven dynamics.

A guiding factor in choosing model hyperparameters is con-
straining the complexity of the reduced-dimensional representa-
tions. This is especially critical when inputs are inferred, as there
is potential for the system to forego modeling dynamics altogether
when reconstructing the data. Specifically, one could match the
number of inferred inputs to the dimension of the observed data,
allowing a potential identity mapping that would produce inputs
that essentially replicate the observed spike times (a concern com-
mon to all auto-encoders). Such a model might produce an accurate
reconstruction of the observed data without actually modeling any
of the underlying dynamics. Due to this confound, reconstruction
quality is not an ideal metric for evaluating the model’s inference of
underlying population dynamics, and future work must address this
challenge. At present, a reasonable approach is to use as few inferred
inputs as possible to force the LFADS generator to model the popu-
lation’s underlying dynamics.

LFADS will be helpful in understanding the role of computation
through dynamics in brain areas that have previously been difficult
to study. For example, modeling a population’s internal dynamics
may be crucial in studying neural computations that have no clear,
observable external behavioral correlates on a moment-by-moment
basis, such as integration of evidence during decision-making
tasks, or attentional regulation. Additionally, a causal variant of

LFADS could improve performance of therapeutic neurotechnolo-
gies that rely on real-time neural state estimation, such as BMIs,
which decode movement intention in real-time to control external
devices33–36, or closed-loop neuromodulation approaches, which
require real-time neural state estimates to guide stimulation37–40. In
addition, the ability of stitching to improve neural state estimates
by combining multiple recordings may improve stability of these
devices. Taken together, LFADS has the potential to help under-
stand neural computation and dynamics, and to apply this knowl-
edge towards the treatment of diverse neurological disorders.

Online content
Any methods, additional references, Nature Research reporting
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-018-0109-9.

Received: 28 February 2018; Accepted: 28 June 2018;
Published online: 17 September 2018

References
	1.	 Afshar, A. et al. Single-trial neural correlates of arm movement preparation.

Neuron 71, 555–564 (2011).
	2.	 Carnevale, F., de Lafuente, V., Romo, R., Barak, O. & Parga, N. Dynamic

control of response criterion in premotor cortex during perceptual detection
under temporal uncertainty. Neuron 86, 1067–1077 (2015).

	3.	 Churchland, M. M. et al. Neural population dynamics during reaching.
Nature 487, 51–56 (2012).

	4.	 Harvey, C. D., Coen, P. & Tank, D. W. Choice-specific sequences in parietal
cortex during a virtual-navigation decision task. Nature 484, 62–68 (2012).

	5.	 Kaufman, M. T., Churchland, M. M., Ryu, S. I. & Shenoy, K. V. Cortical
activity in the null space: permitting preparation without movement.
Nat. Neurosci. 17, 440–448 (2014).

	6.	 Kobak, D. et al. Demixed principal component analysis of neural population
data. Elife 5, e10989 (2016).

	7.	 Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature 503,
78–84 (2013).

	8.	 Pandarinath, C. et al. Neural population dynamics in human motor cortex
during movements in people with ALS. Elife 4, e07436 (2015).

	9.	 Sadtler, P. T. et al. Neural constraints on learning. Nature 512, 423–426 (2014).
	10.	Shenoy, K. V., Sahani, M. & Churchland, M. M. Cortical control of arm

movements: a dynamical systems perspective. Annu. Rev. Neurosci. 36,
337–359 (2013).

	11.	Ahrens, M. B. et al. Brain-wide neuronal dynamics during motor adaptation
in zebrafish. Nature 485, 471–477 (2012).

	12.	Yu, B. M. et al. Gaussian-process factor analysis for low-dimensional
single-trial analysis of neural population activity. J. Neurophysiol. 102,
614–635 (2009).

	13.	Zhao, Y. & Park, I. M. Variational latent Gaussian process for recovering
single-trial dynamics from population spike trains. Neural Comput. 29,
1293–1316 (2017).

	14.	Aghagolzadeh, M. & Truccolo, W. Latent state-space models for neural
decoding. Conf. Proc. IEEE Eng.Med. Biol. Soc. 2014, 3033–3036 (2014).

	15.	Gao, Y., Archer, E. W., Paninski, L. & Cunningham, J. P. Linear dynamical
neural population models through nonlinear embeddings. In Proc. 30th
International Conference on Neural Information Processing Systems
(eds. Lee, D. D. et al.) 163–171 (Curran Associates, Red Hook, NY, 2016).

	16.	Kao, J. C. et al. Single-trial dynamics of motor cortex and their applications
to brain-machine interfaces. Nat. Commun. 6, 7759 (2015).

	17.	Macke, J. H. et al. Empirical models of spiking in neural populations.
In Advances in Neural Information Processing Systems 24
(eds Shawe-Taylor, J. et al.) 1350–1358 (Curran Associates, Red Hook, NY, 2011).

	18.	Linderman, S. et al. Bayesian learning and inference in recurrent switching
linear dynamical systems. In Proc. 20th International Conference on Artificial
Intelligence and Statistics vol. 54 (eds Singh, A. & Zhu, J.) 914–922 (PMLR/
Microtome Publishing, Brookline, MA, 2017).

	19.	Petreska, B. et al. Dynamical segmentation of single trials from population
neural data. In Advances in Neural Information Processing Systems 24
(eds Shawe-Taylor, J. et al.) 756–764 (Curran Associates, Red Hook, NY, 2011).

	20.	Kato, S. et al. Global brain dynamics embed the motor command sequence of
Caenorhabditis elegans. Cell 163, 656–669 (2015).

	21.	Kaufman, M. T. et al. The largest response component in motor cortex
reflects movement timing but not movement type. eNeuro 3,
ENEURO.0085-16.2016 (2016).

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods814

https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
http://www.nature.com/naturemethods

ArticlesNaTure MeThods

	22.	Gao, P. & Ganguli, S. On simplicity and complexity in the brave new world of
large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015).

	23.	Kingma, D. P. & Welling, M. Auto-encoding variational bayes. arXiv Preprint
at https://arxiv.org/abs/1312.6114 (2013).

	24.	Doersch, C. Tutorial on variational autoencoders. arXiv Preprint at
https://arxiv.org/abs/1606.05908 (2016).

	25.	Sussillo, D., Jozefowicz, R., Abbott, L. F. & Pandarinath, C. LFADS—latent
factor analysis via dynamical systems. arXiv Preprint at https://arxiv.org/
abs/1608.06315 (2016).

	26.	Salinas, E. & Abbott, L. F. Vector reconstruction from firing rates. J. Comput.
Neurosci. 1, 89–107 (1994).

	27.	Turaga, S. et al. Inferring neural population dynamics from multiple partial
recordings of the same neural circuit. In Advances in Neural Information
Processing Systems 26 (eds Burges, C. J. C. et al.) 539–547 (Curran Associates,
Red Hook, NY, 2013).

	28.	Nonnenmacher, M., Turaga, S. C. & Macke, J. H. Extracting low-dimensional
dynamics from multiple large-scale neural population recordings by learning
to predict correlations. In Advances in Neural Information Processing Systems
30 (eds Guyon, I. et al.) 5702–5712 (Curran Associates, Red Hook, NY, 2017).

	29.	Donoghue, J. P., Sanes, J. N., Hatsopoulos, N. G. & Gaal, G. Neural discharge
and local field potential oscillations in primate motor cortex during voluntary
movements. J. Neurophysiol. 79, 159–173 (1998).

	30.	Murthy, V. N. & Fetz, E. E. Synchronization of neurons during local
field potential oscillations in sensorimotor cortex of awake monkeys.
J. Neurophysiol. 76, 3968–3982 (1996).

	31.	Fries, P. A mechanism for cognitive dynamics: neuronal communication
through neuronal coherence. Trends. Cogn. Sci. 9, 474–480 (2005).

	32.	Yuste, R. From the neuron doctrine to neural networks. Nat. Rev. Neurosci.
16, 487 (2015).

	33.	Gilja, V. et al. Clinical translation of a high-performance neural prosthesis.
Nat. Med. 21, 1142 (2015).

	34.	Pandarinath, C. et al. High performance communication by people with
paralysis using an intracortical brain-computer interface. Elife 6, e18554
(2017).

	35.	Sussillo, D. et al. A recurrent neural network for closed-loop intracortical
brain–machine interface decoders. J. Neural. Eng. 9, 26027 (2012).

	36.	Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making
brain–machine interfaces robust to future neural variability. Nat. Commun. 7,
13749 (2016).

	37.	Ezzyat, Y. et al. Closed-loop stimulation of temporal cortex rescues functional
networks and improves memory. Nat. Commun. 9, 365 (2018).

	38.	Klinger, N. V. & Mittal, S. Clinical efficacy of deep brain stimulation for the
treatment of medically refractory epilepsy. Clin. Neurol. Neurosurg. 140,
11–25 (2016).

	39.	Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson
disease. Ann. Neurol. 74, 449–457 (2013).

	40.	Rosin, B. et al. Closed-loop deep brain stimulation is superior in ameliorating
parkinsonism. Neuron 72, 370–384 (2011).

	41.	Williamson, R. S., Sahani, M. & Pillow, J. W. The equivalence of information-
theoretic and likelihood-based methods for neural dimensionality reduction.
PLoS. Comput. Biol. 11, e1004141 (2015).

Acknowledgements
We thank J.P. Cunningham and J. Sohl-Dickstein for extensive conversation. We thank
M.M. Churchland for contributions to data collection for monkey J, C. Blabe and

P. Nuyujukian for assistance with research sessions with participant T5, E. Eskandar
for array implantation with participant T7, and B. Sorice and A. Sarma for assistance
with research sessions with participant T7. L.F.A.’s research was supported by US
National Institutes of Health grant MH093338, the Gatsby Charitable Foundation
through the Gatsby Initiative in Brain Circuitry at Columbia University, the Simons
Foundation, the Swartz Foundation, the Harold and Leila Y. Mathers Foundation,
and the Kavli Institute for Brain Science at Columbia University. C.P. was supported
by a postdoctoral fellowship from the Craig H. Neilsen Foundation for spinal cord
injury research and the Stanford Dean’s Fellowship. S.D.S. was supported by the ALS
Association’s Milton Safenowitz Postdoctoral Fellowship. K.V.S.’s research was supported
by the following awards: an NIH-NINDS award (T-R01NS076460), an NIH-NIMH
award (T-R01MH09964703), an NIH Director’s Pioneer award (8DP1HD075623), a
DARPA-DSO ‘REPAIR’ award (N66001-10-C-2010), a DARPA-BTO ‘NeuroFAST’ award
(W911NF-14-2-0013), a Simons Foundation Collaboration on the Global Brain award
(325380), and the Howard Hughes Medical Institute. J.M.H.’s research was supported
by an NIH-NIDCD award (R01DC014034). K.V.S. and J.M.H.’s research was supported
by Stanford BioX-NeuroVentures, Stanford Institute for Neuro-Innovation and
Translational Neuroscience, the Garlick Foundation, and the Reeve Foundation. L.R.H.’s
research was supported by an NIH-NIDCD award (R01DC009899), the Rehabilitation
Research and Development Service, Department of Veterans Affairs (B6453R), the
MGH-Deane Institute for Integrated Research on Atrial Fibrillation and Stroke, and the
Executive Committee on Research, Massachusetts General Hospital. The content is solely
the responsibility of the authors and does not necessarily represent the official views
of the National Institutes of Health, the Department of Veterans Affairs, or the United
States Government. BrainGate CAUTION: Investigational Device. Limited by Federal
Law to Investigational Use.

Author contributions
C.P., D.J.O., and D.S. designed the study, performed analyses, and wrote the manuscript
with input from all other authors. D.S. and L.F.A. developed the algorithmic approach.
C.P., J.C., and R.J. contributed to algorithmic development and analysis of synthetic data.
D.J.O., S.D.S., J.C.K., E.M.T., M.T.K., S.I.R., and K.V.S. performed research with monkeys.
C.P., L.R.H., K.V.S., and J.M.H. performed research with human research participants.
All authors contributed to revision of the manuscript.

Competing interests
J.M.H. is on the Medical Advisory Boards of Enspire DBS and Circuit Therapeutics, and
the Surgical Advisory Board for Neuropace, Inc. K.V.S. is a consultant to Neuralink Corp.
and on the Scientific Advisory Boards of CTRL-Labs, Inc. and Heal, Inc. These entities
did not support this work. D.S. and J.C. are employed by Google Inc., and R.J. was
employed by Google Inc. at the time the research was conducted. This funder provided
support in the form of salaries for authors, but did not have any additional role in the
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/
s41592-018-0109-9.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to C.P. or D.S.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Nature Methods | VOL 15 | OCTOBER 2018 | 805–815 | www.nature.com/naturemethods 815

https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1606.05908
https://arxiv.org/abs/1608.06315
https://arxiv.org/abs/1608.06315
https://doi.org/10.1038/s41592-018-0109-9
https://doi.org/10.1038/s41592-018-0109-9
http://www.nature.com/reprints
http://www.nature.com/naturemethods

Articles NaTure MeThods

Methods
The LFADS model. The VAE. The LFADS model is an instantiation of a VAE23,42
extended to sequences, as in ref. 43 or ref. 44. The VAE consists of two components, a
decoder (also called a generator) and an encoder. The generator assumes that data,
denoted by x, arise from a random process that depends on a vector of stochastic
latent variables z, samples of which are drawn from a prior distribution P(z).
Simulated data points are then drawn from a conditional probability distribution,
P(x|z) (we have suppressed notation reflecting the dependence on parameters of
this and the other distributions we discuss).

The VAE encoder transforms actual data vectors, x, into a conditional
distribution over z, Q(z|x). Q(z|x) is a trainable approximation of the posterior
distribution of the generator, Q(z|x) ≈​ P(z|x) =​ P(x|z)P(z)/P(x). Q(z|x) can also be
thought of as an encoder from the data to a data-specific latent code z, which can
be decoded using the generator (decoder). Hence, the auto-encoder; the encoder
Q maps the actual data to a latent stochastic ‘code’, and the decoder P maps the
latent code back to an approximation of the data. Specifically, when the two parts
of the VAE are combined, a particular data point is selected and an associated
latent code, ̂z (we use ̂z to denote a sample of the stochastic variable z), is drawn
from Q(z|x). If data generation is desired, a data sample x may then be drawn from

∣ ̂P x z(), on the basis of the sampled latent variable. If the VAE has been constructed
properly, ̂x should resemble the original data point x.

The loss function that is minimized to construct the VAE involves minimizing
the Kullback–Leibler divergence between the encoding distribution Q(z|x) and
the prior distribution of the generator, P(z), over all data points. In the VAE
framework, P(z) is typically defined as a Gaussian prior whose parameters are
independent of the data. The rationale is that even a simple distribution, such as
a Gaussian, can be transformed into a complex distribution by passing samples of
the Gaussian distribution through a powerful non-linear function. One optimizes
the parameters in order to maximize the likelihood of the data while reducing the
distance between Q(z|x) and P(z|x). In the end, statistically accurate generative
samples of the data can be created by running the generator model seeded with
samples from P(z); that is, accurate samples of the data can be generated from
white noise.

We now translate this general description of the VAE into the specific LFADS
implementation aimed at high-dimensional, simultaneously recorded neural spike
trains. Borrowing some notation from ref. 43, we denote an affine transformation
(v =​ Wu +​ b) from a vector-valued variable u to a vector-valued variable v as
v =​ W(u), we use [⋅​,⋅​] to represent vector concatenation, and we denote a temporal
update of an RNN receiving an input as statet =​ RNNa(statet−1,inputt), for an RNN
named ‘a’. It is understood that if there are two network modules, such as RNNs,
with different names (for example, RNNa(.,.) and RNNb(.,.)), these network
modules do not share parameters.

The LFADS generative model. The neural data we consider, x1:T consists of spike
trains from D recorded neurons. Our reference implementation of LFADS also
supports continuous Gaussian distributed data, but, as this is not central to the
main application, we focus exclusively on spike trains in what follows. Each
instance of a vector x1:T is referred to as a trial, and trials may be grouped by
experimental conditions, such as stimulus or response types. The data may also
include an additional set of observed variables, a1:T, that may refer to stimuli
being presented or other experimental features of relevance, such as kinematics.
Unlike x1:T, the data described by a1:T are not themselves being modeled, but may
provide important conditioning information relevant to the modeling of x1:T.
This introduces a slight complication: we must distinguish between the complete
dataset, {x1:T,a1:T}, and the part of the dataset being modeled, x1:T. The conditional
distribution of the generator, P(x|z), is only over x, whereas the approximate
posterior distribution, Q(z|x,a), depends on both types of data.

LFADS assumes that the observed spikes described by x1:T are samples from
a Poisson process with underlying rates r1:T. Based on the dynamical systems
hypothesis outlined in the introduction of the main text, the goal of LFADS
is to infer a reduced set of latent dynamic variables, f1:T, of dimension F, from
which the firing rates can be constructed. The rates are determined from the
factors by an affine transformation followed by an exponential non-linearity,
r1:T =​ exp(Wrate(f1:T)). Note that exp(⋅​) is the inverse canonical link function for the
Poisson distribution, making it a natural choice to keep the Poisson rate variable
positive. The choice of a low-d representation for the factors is based on the
observation that the intrinsic dimensionality of neural recordings tends to be far
lower than the number of neurons recorded; for example, refs. 3,7,20, and see ref. 22
for a more complete discussion.

The factors are generated by a recurrent non-linear neural network and are
characterized by an affine transformation of its state vector, f1:T =​ Wfac(g1:T), with
gt of dimension N. Running the network requires an initial condition g0, which
is drawn from a prior distribution P g()g

0
0 . Thus, g0 is an element of the set of the

stochastic latent variables z discussed above.
There are different options for sources of time-dependent input to the

recurrent generator network. First, the network may receive no input at all. Second,
it may receive the information contained in the non-modeled part of the data,
a1:T, in the form of a network input. As a third option, we introduce an inferred
input u1:T. When an inferred input is included, the set of stochastic latent variables

is expanded to include it, z =​ {g0,u1:T}. At each time step, ut is drawn from a prior
distribution Pu(ut|ut−1) that is auto-regressive, with P u()u

1
1 defining the distribution

over u1 (see Methods, "Autoregressive prior for inferred input").
The LFADS generator with inferred input is thus described by the following

procedure and equations. First, an initial condition for the generator is sampled
from the prior on g0

Nĝ κ~ =P g I() (0,) (3)g
0 0

0

with κ a hyperparameter. At each time step t =​ 1,…​,T, an inferred input, ût, is
sampled from its prior and fed into the network, and the network is evolved
forward in time,






^ ∼

=
| −

P t
P

u
u

u u
() if 1

() otherwise
(4)t

u

u
t t

1

1

1

= ^
−g g uRNN (,) (5)t t t

gen
1

=f W g() (6)t t
fac

=r W fexp(()) (7)t t
rate

^ ∼ |x x rPoisson() (8)t t t

Here, ‘Poisson’ indicates that each component of the spike vector xt is generated
by an independent Poisson process at a rate given by the corresponding
component of the rate vector rt. The priors for both g0 and u1 are diagonal
Gaussian distributions. The prior for ut with t >​ 1 is an auto-regressive Gaussian
prior, with a learnable autocorrelation time and process variance (see Methods,
"Autoregressive prior for inferred input," for more details). We chose the gated
recurrent unit (GRU)45 as our recurrent function for all of the networks we use
(see section "GRU equations" in the Methods for equations), including RNNgen.
We have not included the observed data a in the generator model defined
above, but this can be done simply by including at as an additional input to the
recurrent network in equation (5). Note that doing so will make the generation
process necessarily dependent on including an observed input. The generator
model is illustrated in Supplementary Fig. 11. This diagram and the above
equations implement the conditional distribution P(x|z) =​ P(x|{g0,u1:T}) of the
VAE decoder framework.

The LFADS encoder. The approximate posterior distribution for LFADS is the
product of two conditional distributions, one for g0 and one for ut. Both of
these distributions are Gaussian with means and diagonal covariance matrices
determined by the outputs of the encoder or controller RNNs (see Supplementary
Fig. 12 and below). We begin by describing the network that defines ∣Q g x a(,)g

0
0 . Its

mean and variance are given in terms of a vector Egen by

μ = μW E() (9)g geng
0 0







σ = σW Eexp 1

2
() (10)g geng

0 0

Egen is obtained by running two recurrent networks over the data,
bidirectionally. One RNN runs forward (from t =​ 1 to t =​ T) in time and the other
RNN runs backward (from t =​ T to t =​ 1),

= +e e x aRNN (, [,]) (11)t
b b

t
b

t t
gen, gen,

1
gen,

= −e e x aRNN (, [,]) (12)t
f f

t
f

t t
gen, gen,

1
gen,

with +eT
b

1
gen, and e f

0
gen, learnable biases. Once this is done, Egen is the concatenation

=E e e[,] (13)b
T

fgen
1
gen, gen,

Running the encoding network both forward and backward in time allows Egen
to reflect the entire time history of the data x1:T and a1:T. Finally, we sample initial
conditions ̂g0

 according to the following distribution:

N μ σ̂ ~ ∣ = ∣Qg g x a g(,) (,) (14)g g g
0 0 0

0 0 0

for a normal distribution with mean μi
g0 and standard deviation σi

g0 for the ith
element of g0.

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTure MeThods

The approximate posterior distribution for ut is defined in a more complex way
that involves both a second set of forward–backward encoder RNNs and another
RNN called the controller. The forward and backward encoder RNNs provide the
input to the controller RNN, and are defined at time t with state variables et

bcon, and
et

fcon, that are defined by equations identical to equations (11) and (12) (although
with different trainable network parameters). Finally, the time-dependent input to
the controller RNN is defined as

=E e e[,] (15)t t
b

t
fcon con, con,

Rather than feeding directly into a Gaussian distribution, this variable is passed
through the controller RNN, which runs forward in time with the generator RNN
and also receives the latent dynamic factor, ft−1, as input,

= − −c c E fRNN (, [,]) (16)t t t t
con

1
con

1

Thus, the controller is privy to the information about x1:T and a1:T encoded in
the variable Et

con, and it receives information about what the generator network is
producing through the latent dynamic factor ft−1. It is necessary for the controller
to receive the factors so that it can correctly decide when to intervene in the
generation process. Because ft−1 depends on both g0 and u1:t−1, these stochastic
variables are included in the conditional dependence of the approximate posterior
distribution Qu(ut|u1:t−1,g0,x1:T,a1:T). The initial state of the controller network, c0, is
defined as a trainable bias initialized to the 0 vector.

Finally, the inferred input, ut, at each time, is a stochastic variable drawn from
a diagonal Gaussian distribution with mean and log-variance given by an affine
transformation of the controller network state, ct,

N μ σ̂ ~ ∣ = ∣Qu u x a u(,) (,) (17)t
u

t t t
u

t
u

with

μ = μW c() (18)
t
u

t
u







σ = σW cexp 1

2
() (19)t

u
t

u

We control the information flow out of the controller and into the generator
by applying a regularizer on ut (a Kullback–Leibler divergence term, described
in this Methods section under "The loss function" and "Hyper-parameters and
further details of LFADS implementation"), and also by explicitly limiting the
dimensionality of ut, the latter of which is controlled by a hyperparameter.

The full LFADS inference model. The full LFADS model (Supplementary Fig. 12)
is run in the following way. First, a data trial is chosen, the initial condition and
inferred input encoders are run, and an initial condition is sampled from the
approximate posterior, N μ σ̂ ~ ∣g g(,)g g

0 0
0 0 . Then, for each time step from 1 to T,

the generator is updated, as well as the factors and rates, according to

= − −c c E fRNN (, [,]) (20)t t t t
con

1
con

1

μ = μW c() (21)
t
u

t
u







σ = σW cexp 1

2
() (22)t

u
t

u

N μ σ̂ ~ ∣u u(,) (23)t t t
u

t
u

= ^
−g g uRNN (,) (24)t t t

gen
1

=f W g() (25)t t
fac

=r W fexp(()) (26)t t
rate

^ ∼ |x x rPoisson() (27)t t t

After training, the full model can be run, starting with any single trial or a
set of trials corresponding to a particular experimental condition, to determine
the associated dynamic factors, firing rates, and inferred inputs for that trial or
condition. This is done by averaging over several runs to marginalize over the

stochastic variables g0 and u1:T. Typically, equation (27) is not executed, unless one
explicitly desires to generate spikes.

The loss function. To optimize our model, we would like to maximize the log
likelihood of the data, ∑ P xlog ()Tx 1: , marginalizing over all latent variables. For
reasons of intractability, the VAE framework is based on maximizing a variational
lower bound, L, on the marginal data log-likelihood,

L L L≥ = −P xlog () (28)T
x KL

1:

Lx is the log-likelihood of the reconstruction of the data, given the inferred
firing rates, and LKL is a non-negative penalty that restricts the approximate
posterior distributions from deviating too far from the (uninformative) prior
distribution. Lx and LKL are then defined as

L ⟨ ⟩∑= ∣
=

x rlog(Poisson()) (29)x

t

T

t t g u
1

, T0 1:

L N

N

N

⟨ ⟩
⟨ ⟩

⟨ ⟩∑

μ σ

μ σ

μ σ

= ∣ ∥ +

∣ ∥ +

∣ ∥ ∣
=

−

D P

D P

D P

g g

u u

u u u

((,) ())

((,) ())

((,) ())

(30)

g g g

u u u

t

T

t t
u

t
u u

t t

g

g u

g u

KL
KL 0 0

KL 1 1 1 1 ,

2
KL 1 , T

0 0 0
0

1

0 1

0 1:

where the brackets denote marginalizations over the subscripted variables.
Evaluating the T +​ 1 Kullback–Leibler terms is done analytically for the Gaussian
distributions and via sampling for the auto-regressive prior; the formulae for the
Gaussians are found in Appendix B of ref. 23. We minimize the negative bound, L−
, using the reparameterization trick for Gaussian distributions to backpropagate
low-variance, unbiased gradient estimates23. These gradients are used to train the
system in an end-to-end fashion, as is typically done in deterministic settings.

GRU equations. For clarity, we use the common variable symbols associated
with the GRU, with the understanding that the variables represented here by
these symbols are not the same variables as those in the general LFADS model
description. For xt, the input, and ht, the hidden state, at time t, the GRU update
equation, ht =​ GRU(xt,ht−1), is defined as

σ= −r W x h(([,])) (31)t
r

t t 1

σ= −u W x h(([,])) (32)t
u

t t 1

= ⊙ −c W x r htanh(([,])) (33)t
c

t t t 1

= ⊙ + − ⊙−h u h u c(1) (34)t t t t t1

with ⊙ denoting element-wise multiplication and σ denoting the logistic function.

Autoregressive prior for inferred input. A zero-mean auto-regressive process with
one time lag (AR(1)) is defined by

α= − + ϵs t s t t() (1) () (35)s

with 0 ≤​ α <​1 and noise variable ϵ t()s drawn from N σϵ(0,)2 . An equivalent
formulation for the AR(1) process is to define α and σϵ

2 in terms of a process
autocorrelation, τ, and process variance, σp

2, as α =​ exp(−​1/τ) and σ σ α= −ϵ (1)p
2 2 2 . To

make the process distribution stationary the correct distribution for s(0) is N σ(0,)p
2 .

Applying this to LFADS, the prior for ut with t >​1 is an independent AR(1) process
in each dimension, such that for the ith element of ut an autocorrelation τi and
process variance σp i,

2 are initialized to user-defined initial values.

Modifications to the LFADS algorithm for stitching together data from multiple
recording sessions. To accommodate multiple recordings sessions, as in Fig. 4, we
make minor modifications to the LFADS architecture. In particular, we allow
each separate recording session to have unique ‘read-in’ and ‘read-out’ adaptor
matrices. The reasons are both practical and conceptual. Practically, a different
number of units are recorded in each recording session; consequently, the number
of inputs and outputs to the LFADS algorithm needs to change accordingly.
Conceptually, the hypothesis of most investigators when recording in the same
area across multiple sessions is that they are recording different measurements
of the same underlying (dynamical) system. Therefore, LFADS allows a different
input and output transformation for each recording session to handle the different

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles NaTure MeThods

measurements, but otherwise LFADS models all of the data with the same
generative model, with shared parameters across all recording sessions, to allow
different sessions’ measurements to improve the underlying model. The encoder
network, generator network, and matrix Wfac mapping from generator units to
factors remain shared.

Beginning with the simpler case of the read-out matrices, which map from
factors to recorded units, we modify equation (7), replacing it with equation (36)
to change matrices as a function of recording session, thus introducing a session
index, s, into the notation

=r W fexp(()) (36)s t s s t,
rate

,

where the dimensions of Ws
rate are now the number of units in the session, Ds, by

the number of factors in the LFADS model, F, the latter of which is independent of
the session.

We now address the read-in matrices. Without multiple recording sessions, we
simply feed the recorded spikes, xt, into the encoders (equations (11) and (12)),
single trial by single trial. To handle multiple sessions’ data, we modify this practice
by introducing a per-session read-in matrix, Ws

input. These read-in matrices map
from recorded units to ‘input factors’. Then, for the bidirectional encoding RNN
for g0, we modified equations (11) and (12) by inputting the linearly transformed
spikes, yielding

= +e e W x aRNN (, [(),]) (37)s t
b b

s t
b

s s t t,
gen, gen,

, 1
gen, input

,

= −e e W x aRNN (, [(),]) (38)s t
f f

s t
f

s s t t,
gen, gen,

, 1
gen, input

,

where the dimensions of ⋅W ()s
input are F ×​ Ds. We modify the bidirectional RNN

encoder for input to the RNN controller in the same way. Otherwise, the LFADS
architecture is identical to the standard use case, with the rest of the parameters of
the LFADS architecture shared across all recording sessions.

We computed appropriate initial parameter settings for both the read-in and
read-out matrices using a principal components regression technique. Briefly, we
assembled a matrix of within-condition averaged firing rates for each unit across
all sessions, with dimensions equal to the total number of units by number of time
points, ∑ ×D Ts s . We performed principal components analysis on this matrix to
reduce it to F principal components, equivalent to the number of factors in the
model, yielding an F ×​ T matrix of principal component scores. For each session,
we regressed the matrix of principal component scores against the condition-
averaged firing rates recorded in that session. The resulting matrix of regression
coefficients, which best reconstructs a set of shared principal component scores
from each session’s firing rates, was used as the initial read-in matrix for that
session, Ws

input. The read-out matrix Ws
rate for the session was initialized to the

transpose of Ws
input. These read-in and read-out matrices can be thought of as

seeding the multi-session LFADS model with a correspondence across recording
sessions. The read-in and read-out matrices are learned as parameters from the
data from the corresponding session simultaneously with the shared parameters.
Optionally, the read-in matrices can be treated as fixed to encourage that LFADS to
use a consistent representation of similar trials; for example, trials from the same
behavioral condition. We used this fixed read-in matrix approach in the dynamical
stitching example in the main text.

We train the model by selecting one dataset at a time at random (for
example, the first session), and the correct read-in and read-out matrices are
then used (the matrices associated with the first session). To generate a mini-
batch of gradients, the algorithm then selects a random mini-batch of data from
that session and propagates it forward to evaluate the loss. The relevant gradients
of the loss are then backpropagated. As a result, all shared parameters (for
example, the encoder and generator RNN parameters and factor read-out matrix
Wfac) are modified with every mini-batch of data regardless of dataset, while the
read-in and read-out matrices are modified only when data from that session are
used for training.

Hyper-parameters and further details of LFADS implementation. A table of the
major hyper-parameters for each model is listed in Supplementary Table 1. There
were a number of additional standard details that aided in the optimization and
generalization of the LFADS model applied to the datasets in our study.

For all models, the time step of the LFADS RNNs was equal to the data bin size.
To help avoid over-fitting, we added a dropout layer46 to the inputs and to a

few feed-forward (input) connections47 in the LFADS model. Specifically, we used
dropout ‘layers’ around equation (13), around the input in equation (20), and
around equation (24) from gt to ft.

We added an L2 penalty to recurrent portions of the generator
(equations (31–34)) and controller networks to encourage simple dynamics.
Specifically, we regularized any matrix parameter by which ht−1 was multiplied, but
not those that multiplied xt.

As defined in equation (30), there is an information-limiting regularizer
placed on ut by virtue of minimizing the Kullback–Leibler divergence between the
approximate posterior over ut and the uninformative auto-regressive prior.

Following ref. 48, we added a linearly increasing schedule on the Kullback–
Leibler divergence penalty so that the optimization does not quickly (and
pathologically) set the Kullback–Leibler divergence to 0. By 2,000 training steps,
the schedule reached the maximum value of the Kullback–Leibler penalty. An
identical schedule was used for linearly increasing the L2 regularizer on the
network parameters.

We experimented with the variance of the prior distribution for the initial
condition distribution and settled on a value of κ =​ 0.1, chosen to avoid saturating
network non-linearities.

The auto-regressive prior parameters were optimized to reduce the Kullback–
Leibler divergence between inferred inputs from the approximate posterior
distributions and those of the prior. In practice, nearly all AR(1) processes
optimized to the uncorrelated, white noise case (τi ≈​ 0 and σ σ≈ ≈ .ϵ 0 1p i i,

2
,

2). We
initialized them with τi =​ 10 time steps and σ = .ϵ 0 1i,

2 .
Unless otherwise specified, all matrices were randomly initialized with a

normal distribution with mean equal to 0, and variance equal to 1/K, where K is
input dimension of the matrix. All biases were initialized to 0.

We used the ADAM optimizer, with initial learning rate of 0.01, and β1 =​ 0.9,
β2 =​ 0.999, ϵ = .0 1. During training, the learning rate was decreased whenever the
training error for the current epoch of data was greater than the last six training
error values. In this case, the learning rate was decayed by multiplying the rate by
0.95, and 6 training epochs were required before the learning rate could be decayed
again. The optimization continued until the learning rate was less than or equal to
1 ×​ 10−5. We routinely saved checkpoints of the model and therefore were able to
capture the model with the lowest validation error.

We clipped our hidden state ht when any of its values went above a set
threshold. This threshold was rarely hit, but was useful to avoid occasional
pathological conditions.

We used gradient clipping with a value of 200 to avoid occasional pathological
gradients.

The matrix in the Wfac(⋅​) affine transformation was row-normalized to keep the
factors relatively evenly scaled with respect to each other.

To monitor overfitting, a portion of the data is set aside as a validation set, and
these data are never used to update the model’s weights. Instead, they are simply
used to evaluate reconstruction cost on held-out data. For all analyses in this
manuscript, we used a ratio of 4:1 between training and validation data.

Computing posterior averages of model variables. As the LFADS model is inherently
stochastic, one needs to average over draws of the latent variables to get good
estimates of meaningful quantities within the network (for example, the rates, rt).
For example, in de-noising a single trial of spike trains, we run the full LFADS
model—both encoder and decoder on the single trial. For that single trial, we
sample the stochastic variables (equation (14) and (17)) some number of times (for
example, 512) and then evaluate the generative portion of the model with these
sampled variables. Finally, we obtain the mean of the quantity; in this case, the
posterior average, computed by averaging the quantity of interest over the random
samples of the stochastic variables, for example, ≡ ⟨ ⟩r rt t g u, T0 1:

. It is posterior
averages such as rt that are shown in the majority of figures.

Related work in the machine-learning literature. A discussion of related works is
presented in Supplementary Note 2.

Datasets. Synthetic datasets. Details for the synthetic datasets are presented in
Supplementary Note 1.

Research participants with paralysis. See Supplementary Table 2 for recording
technologies for all recorded data.

Permission for these studies was granted by the US Food and Drug
Administration (Investigational Device Exemption) and Institutional Review
Boards of Stanford University (protocol no. 20804), Partners Healthcare/
Massachusetts General Hospital (2011P001036), Providence VA Medical Center
(2011–009), and Brown University (0809992560). The participants in this
study were enrolled in a pilot clinical trial of the BrainGate Neural Interface
System49. Informed consent, including consent to publish, was obtained from the
participants before their enrollment in the study.

Participant T7 was a right-handed man, 54 years old at the time of the research
sessions reported here, who was diagnosed with amyotrophic lateral sclerosis (ALS)
and had resultant motor impairment (ALS Functional Rating Scale Revised score
of 17). In July 2013, participant T7 had two 96-channel intracortical silicon micro-
electrode arrays (1.5-mm electrode length; Blackrock Microsystems) implanted in
the hand area of dominant M1. T7 retained very limited and inconsistent finger
movements. Data reported are from T7’s postimplant day 231.

A second study participant, T5, is a right-handed man, 63 years old at the
time of the research sessions reported here, with a C4 American Spinal Cord
Injury Association (ASIA) C injury classification, which occurred approximately
9 years before study enrollment. He retains the ability to weakly flex his left (non-
dominant) elbow and fingers; these are his only reproducible movements of his
extremities. He also retains some slight residual movement which is inconsistently
present in both the upper and lower extremities, mainly seen at ankle dorsiflexion

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

ArticlesNaTure MeThods

and plantarflexion, wrist, fingers, and elbow, more consistently present on the
left than on the right. Occasionally, the initial slight voluntary movement triggers
involuntary spastic flexion of the limb. In August of 2016, participant T5 had two
96-channel intracortical silicon micro-electrode arrays (1.5-mm electrode length;
Blackrock Microsystems) implanted in the upper extremity area of dominant M1.
Data reported are from T5’s postimplant day 51.

Research participants—task design and data analysis. Neural data were recorded
during ‘center-out-and-back’ target acquisition tasks. The data were originally
collected for neural prosthetic decoder calibration, as part of research testing
algorithms for closed-loop neural cursor control8,33,34. In the center-out-and-
back task, data were collected either in motor-based control (with T7, who
retained limited residual movements) or an attempted movement paradigm
(with T5, who did not retain sufficient movement to reliably measure or
physically control a cursor). In motor-based control, T7 controlled the
position of a cursor on a computer screen by making physical movements
with his fingers on a wireless touch-pad (Magic Trackpad, Apple). The cursor
began in the center of the screen, and targets would appear in one of eight
locations on the periphery. The participant then acquired the targets by
moving the cursor over the target and holding it over the target for 500 ms.
Participant T7’s limited movements spanned a small region on the touch-pad,
approximately 0.3–0.6 cm wide. In the attempted movement paradigm, the
cursor was automatically moved directly toward the target by the computer,
and T5 was asked to attempt movements of his whole arm that followed the
movements of the cursor.

Voltage signals from each of the electrodes were band-pass filtered from 250
to 7,500 Hz and then processed to obtain multi-unit ‘threshold crossings’; that
is, discrete events that occurred whenever the voltage crossed below a threshold
(choice of threshold was dependent on the array: T7 lateral array, −​80 μ​V; T7
medial array, −​95 μ​V; T5, both arrays, −​3.5 times the root mean square (r.m.s.)
voltage on each channel). For the present analyses, we did not ‘spike sort’ and
instead grouped together threshold crossings on a given electrode. These spikes
therefore can include both single- and multi-unit activity. For both participants,
analysis was restricted to channels known to show modulation that correlated with
movement direction during movement attempts (T7, 78 channels; T5,
187 channels).

Neural control and task cueing were controlled by custom software run on
the Simulink/xPC real-time platform (MathWorks), enabling millisecond timing
precision for all computations. Neural data collected by the NeuroPort System
(Blackrock Microsystems) were available to the real-time system with 5-ms latency.
Visual presentation was provided by a computer via a custom low-latency network
software interface to Psychophysics Toolbox for MATLAB and a liquid-crystal
display monitor with a refresh rate of 120 Hz. Frame updates from the real-time
system occurred on screen with a latency of approximately 7 ±​ 5 ms.

Non-human primates. All procedures and experiments were approved by the
Stanford University Institutional Animal Care and Use Committee.

Non-human primates—maze task. An adult male macaque monkey (monkey J)
was trained to sit head-fixed in a primate chair and perform two-dimensional
(2D) target acquisition tasks in a fronto-parallel plane by controlling an on-screen
cursor with his hand movements. Monkey J was implanted with 2 96-electrode
arrays (1-mm electrodes spaced 400 μ​m apart; Blackrock Microsystems) using
standard neurosurgical techniques. The arrays were implanted into M1 and dorsal
PMd of the hemisphere contralateral to his reaching arm.

The maze task is a variant of a center-out delayed reach task, whose details
have previously been described21. Briefly, monkey J made arm movements in a
2D workspace while the positions of the right index and middle fingertips were
tracked optically. This tracked position controlled the movements of a virtual
cursor, and the cursor’s position floated 2.5 cm above the hand. To initiate a trial,
the monkey fixated on a fixation spot for >​400 ms, after which a target appeared.
After a delay period (varying from 0 to 900 ms), a go cue instructed the monkey
to begin his movement. A set of virtual barriers in the workspace facilitated the
instruction of curved or straight reach trajectories. Contact with a barrier resulted
in an unrewarded trial. A trial was counted as a success, and reward delivered, if
the monkey held the cursor on the target for 450 ms.

Several de-noising methods were applied to the maze dataset. For all methods,
individual trials were aligned to movement onset (the point at which movement is
first detectable), and data consisted of 450 ms preceding and following movement
onset (for a total of 900 ms per trial). The dataset consisted of 2,296 trials across
108 different reach conditions (target and barrier locations), and 202 single units
were isolated from the recorded activity.

For the temporal and neural cross-correlation matrices (Supplementary
Data 2 and 3), neural activity was first condition-averaged such that the data
formed a tensor, X∈​ℝT×N×C, spanning T time points, N neurons, and C conditions.
As before, trials were aligned to movement onset before averaging, and data
consisted of the 450 ms preceding and following movement onset (for a total
of 900 ms). For a given condition c, temporal cross-correlation matrices were
calculated as follows:

∑Σ =
=

X n c X n c(:, ,) (:, ,) (39)T
c

n

N
T

1

Similarly, for a given condition c, neural cross-correlation matrices were
calculated as follows:

∑Σ =
=

X t c X t c(, : ,) (, : ,) (40)N
c

t

T
T

1

Neural cross-correlation matrices were sorted using a MATLAB
implementation of the Bron–Kerbosch maximal clique algorithm. To apply the
algorithm, the cross-correlation matrix for each condition was first converted
into a sparse binary matrix by applying a 95% threshold (all values about the 95th
percentile were set to 1, and all values below were set to 0). Applying the Bron–
Kerbosch algorithm resulted in a grouping of neurons by similarity, which was
then used to sort the cross-correlation matrix for each condition.

Non-human primates—center-out and cursor jump tasks. These experiments
were also performed with Monkey J. Experiments were controlled using custom
MATLAB and Simulink Realtime software (MathWorks). Arm reaches were made
with the display blocking the monkey’s view of his hand. The task was displayed
in virtual reality using a Wheatstone stereograph with a latency of 7 ±​ 4 ms as
described in ref. 50. The virtual computer cursor followed the velocity of a reflective
bead taped to the monkey’s hand, which was tracked via an infrared system at
60 Hz (Polaris, Northern Digital). The non-reaching arm was gently restrained. To
successfully acquire a target, the monkey had to hold the cursor within a (4 ×​ 4)-cm
target acquisition area for a continuous 500 ms. A target color change cued that the
cursor was within the acquisition area. If the cursor left the target area during this
hold period, the 500-ms timer reset. The monkey had to acquire the target within a
time limit of 2 s to receive a liquid reward and success tone.

Voltage signals from each of the electrodes were band-pass filtered from 250
to 7,500 Hz and then processed to obtain multi-unit threshold crossings; that is,
discrete events that occurred whenever the voltage crossed below a threshold (set at
the beginning of each day to be −​4.5 times r.m.s. voltage). For the center-out-and-
back and cursor jump tasks, we did not spike sort the data and instead grouped
together threshold crossings on a given electrode. These threshold crossing events
therefore can include both single- and multi-unit activity.

For the cursor jump (Fig. 5) and LFP analyses (Fig. 6), data analyzed were from
dataset 2015-04-15, which occurred 69 months after the implantation of recording
arrays. A single LFADS model was fit to data from two types of reaching tasks—a
standard center-out-and-back task and a cursor jump task.

In the center-out-and-back task, targets alternated between being located at the
workspace center or at a randomly chosen target out of 8 possible target locations,
all 12 cm away from the workspace center and evenly spaced around a circle. In
the cursor jump task, targets were located either at the workspace center or at one
of two radial target locations located 12 cm away from the workspace center, in
opposite directions. The three possible targets lay along the vertical monitor axis.

The cursor jump manipulation at the heart of the cursor jump task was applied
on a random 25% of trials toward radial targets. On these randomly selected
perturbation trials, during the monkey’s reaching movement, the cursor position
jumped; that is, it was offset by 6 cm perpendicular to the vertical axis. The jump
happened after the cursor traveled 6 cm toward the target along the vertical
axis. Only one perturbation occurred per trial. The time when the cursor jump
command was sent to the display computer was recorded with 1-ms resolution,
after which it appeared at the next 120-Hz monitor update. The delivery of cursor
jump position offsets required us to counteract this offset at the end of each
perturbed outward trial so as to not carry a (possibly accumulating) hand-to-
cursor offset over multiple trials. Thus, we applied a second, opposite cursor jump
as soon as the center target re-appeared, resulting in a consistent hand-to-cursor
position relationship at the start of each outward trial.

To train the LFADS model, spike trains were binned at 10-ms resolution.
A single LFADS model was fit to a combined dataset containing center-out-and-
back trials (8 targets), outward trials without perturbations (2 targets), outward
trials with perturbations (2 targets, 2 perturbation directions), and return-to-center
trials from the perturbed/unperturbed outward trials, for a total of 5,140 trials.
For each trial, 800 ms of data were taken, with data aligned to the start of the
trial (target onset). In cases of perturbations, most jumps happened between 400
and 550 ms post target onset. The model was allowed to infer four inputs to the
generator in order to fit the data. The choice of four inputs reflects three key facts
about the system and task. First, we know that high-frequency oscillatory dynamics
are present in the firing rates (for example, Fig. 6), which require inputs to model.
In this particular dataset, we recorded from electrode arrays in two different brain
areas (M1/PMd), which exhibit different oscillations, and thus we needed two
inputs to model these features. Second, there are specific task-related perturbations
that we must model: before target onset, the subject does not know whether
an upward or downward target will appear. Thus, the arrival of target position
information to M1 is a 1D perturbation (upward or downward) that occurs early in

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods

Articles NaTure MeThods

the trial. Third, during the actual reaching movement, a left or right perturbation
may occur with low probability. This provided a separate 1D perturbation for the
system to model. Thus, we reasoned that four inputs were a reasonable choice for
modeling this particular recording configuration and task.

Non-human primates—multi-session V-probe recordings. One adult male macaque
monkey (P) was trained in a behavioral task as described below. After initial
training, we performed a sterile surgery during which the macaque was implanted
with a head restraint and a recording cylinder (NAN Instruments), which was
located over left, caudal, dorsal premotor cortex (PMd). The cylinder was placed
surface normal to the skull and secured with methyl methacrylate. A thin layer
of methyl was also deposited atop the intact, exposed skull within the chamber.
Before recording sessions began, a miniature craniotomy (3 mm diameter) was
made under ketamine and xylazine anesthesia, targeting an area in PMd that
responded during movements and palpation of the upper arm (17 mm anterior to
interaural stereotaxic zero).

In the behavioral task, monkey P was trained to use his right hand to grasp
and translate a custom three-dimensional (3D) printed handle (Shapeways, Inc.)
attached to a haptic feedback device (Delta.3, Force Dimension, Inc.). The other
arm was comfortably restrained at the monkey’s side. The haptic device was
controlled via a four poll position, update force feedback loop implemented in
custom software written in C+​+​ atop Chai3D (http://chai3d.org). The weight
of the device was compensated by upward force precisely applied by the device’s
motors, such that the motion of the device felt nearly effortless because the device’s
mechanical components were lightweight and had low inertia. The device end
point with the attached monkey handle was constrained via software control to
translate freely in the fronto-parallel plane. The handle was custom 3D printed and
contained a beam break detector that indicated whether the monkey was gripping
the handle. The task was controlled using custom code running on a dedicated
computer running the Simulink Real-Time operating system. Hand position
was recorded at 1 kHz, and the 2D position of the device was used to update the
position of a white circular cursor at the refresh rate of 144 Hz with a latency of
4–12 ms (verified via photodiode) displayed on a liquid-crystal display screen
located in front of the monkey and above the haptic device, in the same fronto-
parallel plane as the device itself. The display was driven by custom software driven
by Psychophysics Toolbox. A plastic visor was used to mask the monkey’s visual
field such that he could see the screen but not his hand or the haptic device handle.

The monkey was trained to perform a delayed center-out reaching task by
moving the haptic device cursor toward visual targets displayed on the screen.
Monkeys initiated the task by holding onto the device handle, which was detected
by a beam break photodiode built into the handle. At the start of each trial, the
device gently returned the hand to the center position and supported the weight
of the arm from below in that position (by rendering a narrow virtual shelf just
below the haptic cursor). At target onset, one or more reach targets appeared as
hollow circles at one of eight radial locations located 10 cm from the position.
After a variable delay period (50–800 ms), the go cue was indicated visually by the
target outline filling in with color. A trial was successful if the monkey remained
still during the delay period, initiated the reach within 600 ms after the go cue,
and held in the reach target for 50 ms. In some sessions, the monkey performed
additional trial conditions with different target locations or forces applied to the
haptic device. These trials were excluded from analysis; only successful center-out
reaches were included. Hand velocities were computed by applying a smoothing,
differentiating filter (Savitzy–Golay, second-order, 3-ms smoothing widow) to the
raw position time series. Reaction time was measured from the visual display of the
go cue detected at the photodiode until the hand speed in the fronto-parallel plane
reached 5% of the peak speed on each trial.

Electrophysiological recordings were performed by slowly lowering a linear
multielectrode array with 24 recording channels (Plexon V-probe or U-probe)
to a position where the channels probably spanned the layers of the cortex based
on properties of the neural signals. We allowed 45–90 min to allow the probe to
settle before beginning experiments. All 24 channels were amplified and sampled
at 30 kHz (Blackrock Microsystems), high-pass filtered (fourth-order Butterworth
filter, 250 Hz corner frequency), and thresholded at −​3.5 ×​ r.m.s. voltage on each
channel. Threshold crossings on adjacent channels that occurred within 0.5 ms of
each other were removed from one of the channels to avoid duplicate detection of
spiking along the array. Threshold crossing rates were then binned at 10 ms on
each channel.

Experimental sessions were screened based on minimum trial count (200
trials); one dataset was manually excluded based on an abrupt discontinuity in
the recorded firing rates over the session. Following this screening, a total of 44
consecutive experimental sessions were included, comprising recording locations
in the upper arm representation of primary M1 and dorsal PMd. A 1,200-ms time
window beginning 500 ms before the go cue to 700 ms afterward was chosen from
each successful trial and used to train the LFADS model.

Analysis methods by figure. We used a number of analysis methods on either
smoothed neural data or the output of LFADS, typically the rates, factors, or
inferred inputs. All of these analysis methods are standard, but we provide
references and operating parameters here.

Figure 2—application of LFADS to a maze reaching task. For the PSTHs and
single-trial inferred and estimated firing rates in Fig. 2b, each trial was aligned
by movement onset (that is, the time at which movement of the arm is first
detectable), and the data analyzed began 400 ms before movement onset and
ended 400 ms after movement onset. Data were preprocessed via one of three
techniques: Gaussian smoothing, GPFA12, or LFADS. For Gaussian smoothing,
the millisecond-binned spike trains were convolved with a Gaussian function with
standard deviation of 30 ms—this parameter was optimized to produce PSTHs with
visible structure, while preserving some of the fast-timescale features seen in the
neural firing rates. For GPFA, the number of latent factors was 40, and the binsize
was 20 ms, optimized as mentioned below. For LFADS, the binsize was 5 ms, and
the number of latent factors was fixed at 40.

For the t-SNE analysis (Fig. 2c and Supplementary Video 1), the initial
conditions vector inferred by LFADS (g0) for each trial was mapped onto a
low-dimensional subspace using t-SNE51. Three dimensions were used, and the
perplexity parameter was set to 75 (similar results were obtained with a wide
variety of parameters). Points were plotted in the 3D t-SNE space, with colors
corresponding to the end point of the reaching movement (Fig. 2a), and marker
type corresponding to the type of reach (that is, markers used were circles, squares,
and triangles, for straight, curved counter-clockwise, and curved clockwise reaches,
respectively).

To decode kinematics from neural features (Fig. 2d,e), we used OLE26 to
create decoders that mapped neural features onto the measured x and y reaching
velocities. The inputs to the decoder were the raw or de-noised neural data from
250 ms before to 450 ms post movement onset. De-noising was achieved via one of
three techniques mentioned previously. For Gaussian smoothing, a 40-ms s.d. was
used (optimized via cross-validated decoding). For GPFA, the number of latent
factors and binsize were optimized to maximize decoding accuracy, with binsize
swept from 5 to 20 ms, and latents swept from 5 to 40 factors (see Supplementary
Fig. 4 for results of the optimization on the full population of neurons). For
LFADS, the binsize was fixed at 5 ms, and the number of latents was set to 40 for
the full population and 20 for the subsampling analysis (next paragraph). The
neural features from each technique were the Gaussian-smoothed firing rates,
factor estimates using GPFA, or de-noised firing rates using LFADS. In all cases,
to decode kinematics, the neural features were ‘lagged’ by 90 ms to account for
delays between neural activity and measured kinematics (optimized using cross-
validated decoding), and the neural features were binned at 20 ms as a standard for
comparison.

Kinematic predictions were generated using fivefold cross-validation. The
subsampling analyses followed the above, with limited populations achieved
via random subsampling (without replacement) from the full population of 202
neurons. Decoding performance was quantified using goodness of fit (R2) between
the original and reconstructed velocities (validation trials from the fivefold cross-
validated decoding) for the x and y dimensions. For the sample reconstructed reach
trajectories shown in Fig. 2d, trajectories were seeded with the true initial position,
and subsequent points in the trajectory were calculated by simply integrating the
decoded velocity at each timestep.

Note that, for offline decoding analyses, the approach of smoothing neural data
and then linearly regressing against kinematics, outlined here, is a generalization of
common BMI decoding approaches such as the Kalman filter. This relationship is
outlined in ref. 52; briefly, the Kalman filter can be viewed as a two-step process—
first smoothing the data, and subsequently performing a linear dimensionality
reduction step that maps the smoothed, high-dimensional neural data onto
kinematics. In the Kalman filter, the amount of smoothing is largely determined
by the simple linear dynamical system (LDS) that models state evolution (that
is, models changes in kinematics). This can be especially problematic in datasets
with highly varied kinematics, such as the complex maze reaching dataset, where
a simple LDS does not provide a good model of observed kinematics. Therefore,
to avoid having the degree of smoothing influenced by a poorly fit kinematics
model, we optimized the smoothing parameter using cross-validated decoding as
described above.

Further improvement can be achieved for online (closed-loop) BMI control
using an additional ‘intention estimation’ step, and then regressing neural
data against the inferred intention rather than the measured kinematics. This
intention estimation step has been shown to improve closed-loop BMI control
when intention is estimated from hand reaching data (for example, the feedback
intention-trained Kalman filter53) or estimated from closed-loop BMI control (for
example, the recalibrated feedback intention-trained Kalman filter33,50). However,
to date, these approaches have been applied to simple datasets (point-to-point
movements) to calibrate BMI decoders, and assume that the subject’s intention was
to move in a straight line toward the target. In the complex maze dataset analyzed
in Fig. 2, the monkey made curved reaches, which violate this assumption—
therefore, our decoding approach used regression against measured kinematics
rather than attempting to infer the subject’s intention.

For the held-out neuron analysis (Fig. 2f), we compared the accuracy of LFADS
against GPFA in predicting held-out neurons in the maze dataset. As in Fig. 2e,
we subsampled neurons from the complete neural population (202 neurons total)
and used the subsampled populations to estimate latent dynamics (25, 100, or
150 neurons to fit either LFADS or GPFA latent models; the same populations

Nature Methods | www.nature.com/naturemethods

http://chai3d.org
http://www.nature.com/naturemethods

ArticlesNaTure MeThods

of neurons for the previous decoding analysis were used). We used a standard
GLM framework54 to map the latent state estimates produced by LFADS or GPFA
onto the binned spike counts (20 ms bins) for the remaining held-out neurons;
for example, for a model trained with 25 neurons, there are 177 =​ 202 – 25 held-
out neurons. We then measured the improvement produced by the LFADS latent
estimates over GPFA (evaluated using log likelihood per spike41). For a given held-
out neuron, we predicted the neuron’s firing rate based on the GLM fit, for all trials
that were held out from the GLM fit. We then evaluated the log likelihood per spike
of the observed spike trains given the predicted firing rates. For almost all held-out
neurons, LFADS-inferred latent state estimates were much more predictive about
the spike counts of the held-out neurons than estimates produced by GPFA.

Figure 3—rotations in state space. Rotations in state space were found using the
jPCA technique, whose mathematical details are presented elsewhere3. We briefly
summarize the overall approach here. jPCA was applied in two ways: first to
examine rotations in the condition-averaged responses, and subsequently for the
single-trial responses. For condition-averaged responses, each neuron’s response
was first averaged across all trials of the identical condition to create a set of
condition-averaged firing rates. These firing rates were smoothed via convolution
with a Gaussian kernel, with the width of the kernel chosen to reduce the noise in
the firing rates without smoothing away the rotational content. Smoothed firing
rates were then mean-centered across conditions at every time point by subtracting
the average across-condition response from the response of each individual
condition. The mean-centered rates were then ‘soft-normalized’3 to prevent
individual neurons (for example, high firing rate or potentially noisy neurons)
from dominating the results of the subsequent dimensionality-reduction step.
These high-dimensional neural firing rates were projected into a low-dimensional
subspace using principal component analysis (PCA). Within this subspace (neural
state space), we then used the jPCA technique to find planes that are best fit by an
LDS with purely rotatory dynamics.

For the subsequent single-trial responses, the goal was to examine the same
rotations in state space that were found via condition averaging, but examine
their consistency at the level of single trials. Therefore, the single-trial data
were projected into jPCA planes via the projections that were calculated in the
condition-averaged analysis.

For monkey J, all trials were aligned to movement onset. We used 250 ms
for jPCA analysis, with the time window starting 60 ms before movement onset.
Observed neural firing rates were smoothed with a 40-ms s.d. Gaussian kernel to
reduce noise, and soft-normalized with a value of 0.1. For the de-noised LFADS
data, further smoothing and de-noising had little effect, so the parameters used
were a 25-ms s.d. Gaussian kernel with a negligible soft-normalization value
(5 ×​ 10−5). For the initial dimensionality-reduction step (PCA), ten principal
components were kept and used for jPCA.

As with the monkeys, the rotations in state space for research participants with
paralysis are found by identifying the time period starting just before the rapid
change in neural activity that occurs with a movement attempt8. For participant T5,
because no movement was measurable, data were simply aligned to the start of the
trial (that is, the point at which targets are displayed). The window taken for jPCA
analysis was 400 ms of data beginning 240 ms after the start of the trial. As with
the monkey data, larger parameters for smoothing and greater soft-normalization
were used to de-noise the observed neural responses, versus the LFADS de-noised
neural responses. These were a Gaussian kernel s.d. and soft-normalization
parameter of 40 ms and 10 for the observed responses, and 25 ms and 5 for the
LFADS de-noised neural responses.

For the held-out conditions analysis (Fig. 3i–k), conditions were binned by
dividing their end point (reach target) into 32 evenly spaced angular bins. Because
some angular bins did not contain any targets, this resulted in 19 sets of reaching
conditions. For each reaching condition set, a separate LFADS model was trained.
In the initial training run, trials from all conditions not in the given angular bin
were used to train the full LFADS model. After this initial training run, all model
parameters beginning at the initial conditions (ICs) vector were fixed (that is,
all weights that map from the IC vector to the generator, all internal weights of
the generator, all read-out weights to the factors layer, all read-out weights to
the individual neurons, and all bias terms). Fixing these parameters essentially
locks the dynamics of the LFADS model (that is, the dynamics of the generator)
to dynamics that were learned in the initial training run. Subsequently, a second
training run was performed (with the generator’s dynamics locked) in which
all trials were included (including the held-out trials; that is, the trials from the
previous held-out conditions). This allowed the initial conditions encoder RNN to
learn a mapping from the new trials to initial conditions for the generator RNN,
but did not allow the generator to learn any new dynamics from the held-out trials.

Figure 4—kinematic predictions of LFADS multi-session and single-session models.
We used OLE to create decoders to predict x and y reaching velocities. For
decoding from LFADS, we used the factors rather than the predicted firing rates, as
the neurons recorded on an individual session could unevenly represent the full set
of reaching directions well, even if the underlying factors from which the rates are
extracted represent all directions evenly. For single-dataset LFADS models, we fit
individual decoders to map from each model’s factors to x and y velocities. For the

stitched multi-session LFADS model, a single decoder was fit and cross-validated
on all datasets simultaneously. We then computed the goodness of fit (R2) and
averaged across x and y velocities. Aside from decoding from LFADS factors rather
than LFADS rates, the inputs to the decoder were prepared and the cross-validated
decoding performance evaluated as described for the maze dataset. For Gaussian
smoothing, the millisecond-binned spike trains were convolved with a Gaussian
function with standard deviation of 40 ms. For GPFA, we swept the spike bin width
and the number of latent factors to determine the optimal hyperparameters for
decoding, which were 20 ms bins and 20 latent factors for these data sets. In all
cases, to decode kinematics, the neural features were ‘lagged’ by 90 ms to account
for delays between neural activity and measured kinematics, and the neural
features and kinematics were resampled at 20 ms.

For reaction time prediction, we used a largely unsupervised method
previously described in ref. 21. Briefly, for each of the single-session models and the
multi-session model, we performed demixed PCA6 on the factor outputs. We then
projected the factors along the highest-variance, condition-independent mode, and
normalized the projection to a range of 0–1. This projection of the data we refer
to as the condition independent signal (CIS), following ref. 21. We then took the
time at which the CIS crossed a certain threshold on each trial to be the predicted
reaction time, and computed the correlation coefficient between predicted and
actual reaction times. For each model, we then optimized only the threshold to
maximize the correlation coefficient between time of threshold crossing and
reaction time, although the results were not sensitive to the choice of threshold.

Factor trajectories were trial-averaged for each reaching direction and each
dataset. With these trial-averaged factor trajectories, we used demixed principal
components analysis to identify the CIS dimension, as well as eight dimensions
which preferentially explained condition-dependent variance (variation due
to reach direction, and mixtures of reach direction and time). In this eight-
dimensional condition-dependent space, we used jPCA to find a plane where
trajectories exhibited rotational structure3. We then constructed a 3D subspace
for visualization by taking the CIS dimension as well as the two dimensions
comprising the first jPCA plane.

Figure 5—t-SNE visualization for cursor jump data. The pattern of inputs inferred
by LFADS for individual trials was mapped into a 2D space using t-SNE. Data were
aligned to the time of perturbation for perturbed trials or the mean perturbation
time for the given target direction for unperturbed trials (407 ms for downward
targets, 487 ms for upward targets). t-SNE was performed using the t-SNE toolbox
for MatLab (https://lvdmaaten.github.io/tsne/). Inferred inputs were calculated
via posterior averaging, as described in under "Computing posterior averages
of model variables." LFADS inferred the input values at 10-ms resolution (that
is, the resolution at which the neural data were binned before being passed into
LFADS). These values were then smoothed using a causal Gaussian filter with a
20-ms s.d. Data fed into t-SNE consisted of the inferred input values from 40 ms to
240 ms after the time at which the task perturbation occurred (or after the mean
perturbation time for unperturbed trials, as described above). t-SNE initially
preprocesses data by reducing its dimensionality via PCA, and the dimensionality
of the preprocessed data was chosen to be 30 dimensions. The t-SNE perplexity
parameter was set to 30, and sweeping this parameter between 10 and 50 had little
qualitative effect on the discernibility of the three data clusters.

Figure 6—LFP analysis. For both human (participant T7) and monkey (J) data,
recorded LFP was originally sampled with high bandwidth (human, 30 kHz;
monkey, 2 kHz). Human data were digitally re-referenced using common-average
referencing to remove global noise artifacts. Human and monkey data were low-
pass filtered with a 75-Hz cutoff frequency using a fourth-order Butterworth filter
to minimize the contribution of action potentials to the LFP signal. Both a forward
and a backward pass of the filter (that is, acausal filtering) were used to minimize
group delay. Data were then filtered again with an anti-aliasing filter (eighth-order
Chebyshev type I low-pass filter with cutoff of 0.8 ×​ sampling frequency/2) and
then resampled to 1 kHz for all subsequent analyses. Data analyzed were from
a center-out-and-back movement paradigm. Participant T7 made movements
of his index finger on a touchpad to control a cursor’s on-screen movements.
Monkey J made movements of his hand in free space to control the movements
of a cursor. Data analyzed were from the first 300 ms (participant T7) or 250 ms
(monkey J) after target onset. For each recording channel on the electrode arrays,
cross-correlograms were computed between the measured spiking activity and the
recorded LFPs on the same electrode, on a single trial basis. Cross-correlograms
were then averaged across all trials. For the shuffle analyses, spiking data from an
individual trial was cross-correlated with LFP data from a random trial, and these
correlograms were averaged across trials.

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Code availability. Source code for LFADS can be found at https://github.com/
tensorflow/models/tree/master/research/lfads.

Source code for interfacing LFADS with MATLAB along with extensive
technical documentation can be found at https://lfads.github.io.

Nature Methods | www.nature.com/naturemethods

https://lvdmaaten.github.io/tsne/
https://github.com/tensorflow/models/tree/master/research/lfads
https://github.com/tensorflow/models/tree/master/research/lfads
https://lfads.github.io
http://www.nature.com/naturemethods

Articles NaTure MeThods

Data availability
Data will be made available upon reasonable request from the authors, unless
prohibited owing to research participant privacy concerns.

References
	42.	Rezende, D. J., Mohamed, S., & Wierstra, D. Stochastic backpropagation and

approximate inference in deep generative models. In Proc. 31st International
Conference on Machine Learning (eds Xing, E. P. & Jebara, T.) 1278–1286
(JMLR/Microtome Publishing, Brookline, MA, 2014).

	43.	Gregor, K., Danihelka, I., Graves, A., Rezende, D. J. & Wierstra, D. DRAW: a
recurrent neural network for image generation. arXiv Preprint at https://arxiv.
org/abs/1608.06315 (2016).

	44.	Krishnan, R. G., Shalit, U. & Sontag, D. Deep Kalman filters. arXiv Preprint
at https://arxiv.org/abs/1511.05121 (2015).

	45.	Chung, J., Gulcehre, C., Cho, K. & Bengio, Y. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv Preprint at https://
arxiv.org/abs/1412.3555 (2014).

	46.	Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.
R. Improving neural networks by preventing co-adaptation of feature
detectors. arXiv Preprint at https://arxiv.org/abs/1207.0580 (2012).

	47.	Zaremba, W., Sutskever, I. & Vinyals, O. Recurrent neural network
regularization. arXiv Preprint at https://arxiv.org/abs/1409.2329 (2014).

	48.	Bowman, S. R. et al. Generating sentences from a continuous space. In Proc.
20th SIGNLL Conference on Computational Natural Language Learning
(eds Riezler, S. & Goldberg, Y.) 10–21 (Association for Computational
Linguistics, Stroudsberg, PA, 2016).

	49.	Hochberg, L. R. BrainGate2: feasibility study of an intracortical
neural interface system for persons with tetraplegia (BrainGate2).
ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT00912041
(2018).

	50.	Gilja, V. et al. A high-performance neural prosthesis enabled by control
algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

	51.	Maaten, Lvander & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn.
Res. 9, 2579–2605 (2008).

	52.	Willett, F. R. et al. Feedback control policies employed by people
using intracortical brain-computer interfaces. J. Neural Eng. 14,
016001 (2017).

	53.	Fan, J. M. et al. Intention estimation in brain–machine interfaces. J. Neural.
Eng. 11, 16004 (2014).

	54.	Paninski, L. Maximum likelihood estimation of cascade point-process neural
encoding models. Network 15, 243–262 (2004).

Nature Methods | www.nature.com/naturemethods

https://arxiv.org/abs/1608.06315
https://arxiv.org/abs/1608.06315
https://arxiv.org/abs/1511.05121
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1207.0580
https://arxiv.org/abs/1409.2329
https://www.clinicaltrials.gov/ct2/show/NCT00912041
http://www.nature.com/naturemethods

	Inferring single-trial neural population dynamics using sequential auto-encoders

	Results

	Overview of LFADS.
	Validation of LFADS inferences using a complex reaching task.
	Uncovering rotational dynamics in M1.
	Stitching together data from multiple sessions.
	Inferring inputs to a neural circuit.
	LFADS rate oscillations correlate with LFPs.

	Discussion

	Online content

	Acknowledgements

	Fig. 1 LFADS is a generative model that assumes that observed single-trial spiking activity is generated by an underlying dynamical system.
	Fig. 2 Application of LFADS to a maze reaching task.
	Fig. 3 LFADS uncovers known rotational dynamics in monkey and human motor cortical activity on a single-trial basis.
	Fig. 4 Using ‘dynamic neural stitching’, LFADS combines data from separately collected, non-overlapping recordings of the neural population by learning one consistent dynamical model.
	Fig. 5 LFADS uncovers the presence, identity, and timing of unexpected perturbations in the cursor jump task.
	Fig. 6 LFADS uncovers fast oscillatory structure in neural firing patterns.

