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We relate the stability criteria of Boucher for a scalar field coupled to gravity to the semi-classical tunnelling calculations of 
Coleman and DeLuccia. This enables us to prove that the Boucher conditions imply both stability when they are satisfied and 
instability when they are not. In addition, it provides physical insight into the nature of the Boucher conditions and indicates 
that the O(4)-invariant, thin-wall approximation used in semi-classical tunnelling computations is reliable. 

Consider an extremum_point ¢ = ~_of a scalar po- 
tential V(g}) such that V'(O) = 0. If  V(¢) <~ 0, gravita- 
tional effects can stabilize the configuration ~ = ¢ 
even if it is unstable in the absence of  gravity [1 -6 ] .  
The stability of  a given configuration can best be 
established by usin_g the criteria of  Boucher [ 1 ]. The 
configuration ¢ = ¢ is stable if there exists a real func- 
tion f ( ¢ )  satisfying the boundary condition 

f (~ )  = [ -V(~) /3g]  1/2 (1) 

at the point q~ = ~ and the differential equation 

2 ( f ' )  2 - 3 r f  2 = V (2) 

everywhere. In eqs. (1) and (2) r is 8rr times Newton's 
constant and a prime indicates differentiation with re- 
spect to ~b. Boucher's elegant solution raises two 
questions. If  eq. (2) is not  satisfied everywhere, is the 
configuration unstable? What is the physical signifi- 
cance of  the functionf(~b)? We will answer both of  
these questions in this note. 

Eq. (2) can be rewritten in the form 

f ' =  [ (V+ 3gf2)/2] 1/2, (3) 

which shows what happens when a potential fails to 
satisfy eq. (2). If  Vever gets more negative than 3/ / f2  
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then the square root in eq. (3) will become imaginary, 
violating the reality condition on f .  The signal for this 
occurrence is a point q~ = ~b s where f ' ( ¢ s )  = 0 and 
V'(¢s) 4= 0. It is easy to show from (3) that fwi l l  be- 
come imaginary in the immediate neighborhood of  
such a point. 

Suppose that we integrate eq. (3) around a point 
= ~ with the boundary condition (1) and fred a point 

= Cs where f '  = 0 and V' 4 :0  so that the conditions 
for stability are not satisfied. Does this imply that ~b 
= ~is  unstable? As we will now show the answer is 
yes. 

If  V"(~) - 3K V(~)/4 is positive then eq. (3)can al- 
ways be integrated over a finit e region around ~ before 
~s is reached. This is the case we will consider first. 
Semi-classical instability is signalled by the presence 
of  a solution to the euclidean field equations satisfying 
"bounce" boundary conditions and having finite 
euclidean action [2]. If  we look for O(4)-symmetric 
solutions we can write the metric as 

ds2 = d~2 + p2(~) d~2,  (4) 

where dr2 is the solid angular measure on a three- 
sphere. We take ¢ to be a function of  ~ only. The rele- 
vant field equations are 

¢; + 3(b/p)~ = V', (5a) 

(b/p) 2 1/p 2 + ±K¢!~ 2 = 3 ~ :  - 1 I ) .  ( 5 b )  

Here a dot denotes differentiation with respect to 
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and a prime is a ~ derivative. The bounce boundary 
conditions are ~(oo) = ~, q~(oo) = 0 and ~(0) = 0. 

In order to solve eq. (5) we will assume that the 
term 1/p 2 in eq. (5b) can be ignored in the region 
where ~ is appreciably different from zero. Of course, 
this approximation will not  be valid for all potentials. 
Nevertheless, as we will show, our results are valid for 
all potentials. For now, however, let us assume that 
the potential being considered has the form needed to 
make this approximation a good one. Ignoring the 
1/02 term in eq. (5b), (Sa) and (5b) can be combined 
to give 

+ [3t~(½~ 2 - V)] 1/2~ : V'. (6) 

Next we define a function f ( ¢ )  in terms of  the 
euclidean energy of  the scalar field by 

1"2 ~¢) - V :  3~/2(~b). (7) 

Note that the energy can be expressed as a function 
of  ~ only, as in eq. (7), if ~(~) is monotonic in ~. This 
is true for the bounce solutions which are o f  interest 
to us here. Note also that the sign ambiguity in (6) 
will now appear as a sign ambiguity in the definition 
o f f .  I f  we multiply (6 )by  ~ and use the def'mition 
(7), then eq. (6) can be rewritten as 

( 8 )  

(9) 
V 

(10) 
Eq. (10) is of  course the Boucher condition (2). Thus, 
we find that Boucher's equation is equivalent to the 
euclidean O(4)-invariant field equations if we relate 
f t o  the euclidean energy as in eq. (7). 

We have shown that eq. (2) is equivalent to the 
euclidean field equations - what about eq. (1)? Eqs. 
(1) and (2) together imply that f. '(~) = 0 which from 
eq. (9) implies that when ~ = q~, ~ -- 0. This is one of  
the boundary conditions for a bounce - that it ends 
up at rest. Thus, in order to construct a bounce solu- 
tion only one condition remains to be satisfied, it 
must start at rest. If  we let ~b = Cs be the starting 
point for the bounce then q~ must equal zero when 
= Cs" From eq. (9) this implies that there must exist 
a point where f ' (~s)  = 0. In addition, V' must be non- 

vanishing at ~ : ~s or the solution we have obtained 
will be trivial. These are precisely the conditions for 
which Boucher's stability criterion (2) fails at the 
point ~ = Cs. 

We thus have a complete relation between the 
Boucher conditions and the conditions necessary for 
a bounce solution to exist. When we integrate eq. (3) 
we are just integrating the bounce equations back- 
wards from ~b = ~b. The point q~ = q~s where Boucher's 
condition fails is the starting point for the bounce. 
Thus, by solving condition (2) we are just checking 
for the existence of  an O(4)-invariant bounce solu- 
tion. I f  eq. (2) is satisfied everywhere then no bounce 
exists and the configuration ~ = ~ is stable. If  eq. (2) 
fails then the point ¢ = ~s is the starting point for a 
bounce solution and in the region between ~ = ~ and 

= Cs the function f w h i c h  has been constructed by 
integrating (2) gives the energy and velocity of  the 
bounce through eqs. (7) and (9). The euclidean action 
of  the bounce can be determined from the func t ion f  
through eqs. (7) and (9) and if it is finite ~ = ¢ is un- 
stable. 

We have assumed up to now that the term l i p  2 in 

eq. (5b) could be ignored. If  V(~) ~< 0, p increases 
without bound as a function o f  ~. Thus, 1/02 can be 
arbitrarily small in the region where ~ is non-zero 

6 K f ' f ~  - 3Kf~ 2 = 0, 

which has the non-trivial solution 

~ : 2f ' .  

Finally, combining eqs. (7) and (9) gives 

20e') 2 - 3Kf 2 = V. 

Vl • 
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Fig. 1. V 1 satisfies the conditions discussed in the text. 
Since V 2 < V1 and VI(~) = V2(~) , if~ = ~ is unstable for 
V1 it is unstable for 112 as well. 
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if ¢ lingers in the neighborhood of  q~s for a long time 
before proceeding to ~. The curve V 1 in fig. 1 indi- 
cates a potential for which this approximation is 
valid. What about a potential like V 2 in fig. 1 for 
which the approximation is not good? In this case we 
can use the fact that any potential which is every- 
where equal to or greater than a stable potential is al- 
so stable, provided that the two potentials are equal 
at the point ¢. Conversely, any potential which is 
everywhere less than or equal to an unstable poten- 
tial is also unstable, again assuming that they are 
equal at ¢. We can prove that the point ~b = ~ is un- 
stable for the potential V 2 by using the arguments 
given above to prove that it is unstable for V 1 . Thus, 
our proof is general despite the use of  this approxi- 
mation. 

If  V"(qS) - 3~ V(~)/4 < 0 eq. (2) cannot be solved 
anywhere in the neighborhood of  ~b. In this case the 
configuration ¢ = ¢ is classically unstable to small 
fluctuations as has been shown by Breitenlohner and 
Freedman [3]. The analysis is quite involved because 

of  the absence of  a space-like Cauchy surface in anti- 
de Sitter space. We refer the interested reader to ref. 

[31. 
We have seen that a scalar field configuration 

= ~ which fails to satisfy the Boucher conditions (1) 
and (2) is either classically or semi-classically unstable 
and that in the latter case, the func t ionf (¢ )  con- 
structed in (1) and (2) determines the tunnelling 
probability and bubble formation process. 

We are grateful to Marc Grisaru for helpful discus- 
sions. 
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