
Article
Neural Trajectories in the S
upplementaryMotor Area
and Motor Cortex Exhibit Distinct Geometries,
Compatible with Different Classes of Computation
Highlights
d Guiding action across time necessitates population activity

with ‘‘low divergence’’

d The supplementarymotor area, but notmotor cortex, exhibits

low divergence

d Low divergence explains diverse single-neuron and

population-level features
Russo et al., 2020, Neuron 107, 745–758
August 19, 2020 ª 2020 Elsevier Inc.
https://doi.org/10.1016/j.neuron.2020.05.020
Authors

Abigail A. Russo, Ramin Khajeh,

Sean R. Bittner, Sean M. Perkins,

John P. Cunningham, L.F. Abbott,

Mark M. Churchland

Correspondence
mc3502@columbia.edu

In Brief

The supplementary motor area is

believed to guide action by ‘‘looking

ahead’’ in time. Russo et al. formalize this

idea and predict a basic property that

neural activity must have to serve that

purpose. That property is present,

explains diverse features of activity, and

distinguishes higher- from lower-level

motor areas.
ll

mailto:mc3502@columbia.�edu
https://doi.org/10.1016/j.neuron.2020.05.020
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2020.05.020&domain=pdf


ll
Article

Neural Trajectories in the Supplementary Motor
Area and Motor Cortex Exhibit Distinct Geometries,
Compatible with Different Classes of Computation
Abigail A. Russo,1,2 Ramin Khajeh,1,2,5 Sean R. Bittner,1,2,5 Sean M. Perkins,2,3 John P. Cunningham,2,4,5,6

L.F. Abbott,1,2,4,5,7,8 and Mark M. Churchland1,2,4,8,9,*
1Department of Neuroscience, Columbia University, New York, NY 10027, USA
2Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
3Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
4Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
5Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
6Department of Statistics, Columbia University, New York, NY 10027, USA
7Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
8Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
9Lead Contact

*Correspondence: mc3502@columbia.edu

https://doi.org/10.1016/j.neuron.2020.05.020
SUMMARY
The supplementary motor area (SMA) is believed to contribute to higher order aspects of motor control. We
considered a key higher order role: tracking progress throughout an action. We propose that doing so re-
quires population activity to display low "trajectory divergence": situations with different future motor out-
puts should be distinct, even when present motor output is identical. We examined neural activity in SMA
and primary motor cortex (M1) as monkeys cycled various distances through a virtual environment. SMA ex-
hibitedmultiple response features that were absent in M1. At the single-neuron level, these included ramping
firing rates and cycle-specific responses. At the population level, they included a helical population-trajectory
geometry with shifts in the occupied subspace as movement unfolded. These diverse features all served to
reduce trajectory divergence, which wasmuch lower in SMA versusM1. Analogous population-trajectory ge-
ometry, also with low divergence, naturally arose in networks trained to internally guide multi-cycle
movement.
INTRODUCTION

The supplementary motor area (SMA) is implicated in higher or-

der aspects of motor control (Eccles, 1982; Penfield and Welch,

1951; Roland et al., 1980). SMA lesions cause motor neglect

(Krainik et al., 2001; Laplane et al., 1977), unintended utilization

(Boccardi et al., 2002), deficits in bimanual coordination (Brink-

man, 1984), and difficulty performing sequences (Shima and

Tanji, 1998). Relative to primary motor cortex (M1), SMA activity

is less coupled to actions of a specific body part (Boudrias et al.,

2006; Tanji and Kurata, 1982; Tanji and Mushiake, 1996; Yokoi

et al., 2018). Instead, SMA computations appear related to

learned sensory-motor associations (Nachev et al., 2008; Tanji

and Kurata, 1982), reward anticipation (Sohn and Lee, 2007), in-

ternal initiation and guidance of movement (Eccles, 1982; Romo

and Schultz, 1992; Thaler et al., 1995), timing (Merchant and de

Lafuente, 2014; Remington et al., 2018b; Wang et al., 2018), and

sequencing (Kornysheva andDiedrichsen, 2014;Mushiake et al.,

1991; Nakamura et al., 1998; Tanji and Shima, 1994). SMA neu-

rons show abstracted but task-specific responses, such as se-
lective bursts during sequences (Shima and Tanji, 2000) and

continuous ramping and rhythmic activity during a timing task

(Cadena-Valencia et al., 2018). This suggests that SMA compu-

tations are critical when pending action must be guided by ab-

stract ‘‘contextual’’ factors, e.g., knowing the overall action

and one’s moment-by-moment progress within it (Tanji and

Shima, 1994). Such guidance may be important both when per-

forming movements from memory and for appropriately

leveraging sensory cues (Gámez et al., 2019).

Tracking of context is presumably particularly important dur-

ing temporally extended actions, of which sequences are the

most commonly studied (Kornysheva and Diedrichsen, 2014;

Mushiake et al., 1991; Nakamura et al., 1998; Rhodes et al.,

2004; Shima and Tanji, 2000; Tanji and Shima, 1994; Yokoi

and Diedrichsen, 2019). During sequences, SMA neurons

respond phasically with various forms of sequence selectivity

(Shima and Tanji, 2000; Tanji and Mushiake, 1996). Such selec-

tivity is proposed to reflect a key computation: arrangingmultiple

distinct movements in the correct order out of many possible or-

ders (Tanji, 2001). Importantly, not all movements require
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sequencing (Krakauer et al., 2019; Wong and Krakauer, 2019).

For example, a tennis swing lacks discrete elements that can

be arbitrarily arranged, and SMA is proposed not to be critical

for movements of this type (Tanji, 2001). Yet there exist many ac-

tions that, although not meeting the strict definition of a

sequence, last longer than a tennis swing and may require com-

putations regarding ‘‘what comes next’’ beyond what can be

accomplished by M1 alone. A unifying hypothesis is that SMA

computations relate to that general need: guiding action by inter-

nally tracking context. What properties should one expect of a

neural population performing that class of computation?

Inquiring whether neural responses are consistent with a hy-

pothesized computation is a common goal (e.g., Gallego et al.,

2018; Pandarinath et al., 2018; Saxena and Cunningham,

2019). Standard approaches include decoding hypothesized

signals (e.g., via regression; Morrow and Miller, 2003) and/or

direct comparisons between empirical and simulated population

activity (e.g., via canonical correlation; Sussillo et al., 2015). An

emerging approach is to consider the geometry of the population

response: the arrangement of population states across condi-

tions (DiCarlo et al., 2012; Diedrichsen and Kriegeskorte, 2017;

Gallego et al., 2018; Saez et al., 2015; Schaffelhofer and Scher-

berger, 2016; Stringer et al., 2019) and/or the time-evolving tra-

jectory of activity in neural state space (Ames et al., 2014; Foster

et al., 2014; Hall et al., 2014; Hénaff et al., 2019; Michaels et al.,

2016; Raposo et al., 2014; Remington et al., 2018a, 2018b; Stop-

fer and Laurent, 1999; Sussillo and Barak, 2013; Sussillo et al.,

2015). A given geometry may be consistent with some computa-

tions, but not others (Driscoll et al., 2018). An advantage of this

approach is that certain geometric properties are expected to

hold for a broad class of computations, regardless of the specific

computation deployed during a particular task. For example, we

recently characterized M1 activity using a metric, trajectory

tangling, that assesses whether activity is consistent with

noise-robust dynamics (Russo et al., 2018). This approach re-

vealed a population-level property—low trajectory tangling—

that was conserved across tasks and species.

Here, we consider the hypothesis that SMA guides movement

by tracking contextual factors and derive a prediction regarding

population-trajectory geometry. We predict that SMA trajec-

tories should avoid ‘‘divergence’’; trajectories should be struc-

tured across time and conditions such that it is never the case

that two trajectories follow the same path and then separate.

Low trajectory divergence is essential to ensure that neural activ-

ity can distinguish situations with different future motor outputs,

even if current motor output is similar. We hypothesize that the

need to avoid divergence shapes the population trajectory and

thus the response features observed within a particular task.

We employed a cycling task that shares some features with

sequence tasks but involves continuous motor output and thus

provides a novel perspective on SMA response properties. We

found that the population response in SMA, but not M1, exhibits

low trajectory divergence. Themajor features of SMA responses,

at both the population and single-neuron levels, could be under-

stood as serving to maintain low divergence. Simulations

confirmed that low divergence was necessary for a network to

guide action based on internal/contextual information. Further-

more, artificial networks naturally adopted SMA-like trajectories
746 Neuron 107, 745–758, August 19, 2020
when they had to internally track contextual factors. Thus, a

broad hypothesis regarding the class of computations per-

formed by SMA accounts for population activity in a novel task.

RESULTS

Task and Behavior
We trained two rhesus macaque monkeys to grasp a hand pedal

and cycle through a virtual landscape (Figure 1A; Russo et al.,

2018). Each trial required cycling between two targets. The trial

began with the monkey’s virtual position stationary on the first

target, with the pedal orientated either straight up (‘‘top start’’)

or down (‘‘bottom start’’). After a 1,000-ms hold period, the sec-

ond target appeared. Its distance determined the required num-

ber of revolutions: 1, 2, 4, or 7 cycles. After a 500- to 1,000-ms

randomized delay period, a go cue (brightening of the second

target) was delivered. The monkey cycled to that target and re-

mained stationary to receive juice reward. Because targets

were separated by an integer number of cycles, the second

target was acquired with the same pedal orientation as the first.

Landscape color indicated whether forward virtual motion

required cycling forward or backward (forward is defined as

the hand moving away from the body at the cycle’s top). Using

a block-randomized design, monkeys performed all combina-

tions of two cycling directions, two starting orientations, and

four cycling distances. Averages of hand kinematics, muscle ac-

tivity, and neural activity were computed after temporal

alignment.

Vertical and horizontal hand velocity had nearly sinusoidal

temporal profiles (Figure 1B). Muscle activity patterns (Figure 1C)

were often non-sinusoidal. Initial-cycle and terminal-cycle mus-

cle patterns often departed from themiddle-cycle pattern, an ex-

pected consequence of accelerating/decelerating the arm (e.g.,

the initial-cycle response is larger in Figure 1C). Muscle activity

and hand kinematics differed in many ways yet shared the

following property: the response when cycling a given distance

was a concatenation of an initial-cycle response, middle cycles

with a repeating response, and a terminal-cycle response. We

refer to the middle cycles as ‘‘steady state,’’ reflecting the repe-

tition of kinematics and muscle activity across such cycles, both

within a cycling distance and across distances. Seven-cycle

movements had �5 steady-state cycles and four-cycle move-

ments had �2 steady-state cycles. Two- and one-cycle move-

ments involved little or no steady-state cycling.

Cycling is not strictly speaking a sequence. Muscle activity

during a four-cycle movement roughly follows an ABBC pattern,

but these elements lack well-defined boundaries and are neither

discrete nor orderable (C cannot be performed before A). Never-

theless, cycling seems likely to require ‘‘temporal structuring of

movement’’ (Tanji and Shima, 1994) beyond what M1 alone

can contribute. Our motivating hypothesis—that SMA tracks

contextual factors for the purpose of guiding action—predicts

that the SMApopulation response should be structured to distin-

guish situations with different future actions, even when current

motor output is identical. The cycling task produced multiple in-

stances of this scenario, both within and between conditions.

Consider the second and fifth cycles of a seven-cycle movement

(Figures 1B and 1C). Motor output is essentially identical but will
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Figure 1. Illustration of Task, Behavior, and Muscle Activity

(A) Monkeys grasped a hand pedal and cycled through a virtual environment. The schematic illustrates forward cycling, instructed by a green environment.

Backward cycling was instructed by an orange, desert-like environment.

(B) Trial-averaged hand velocity for seven-cycle, four-cycle, two-cycle, and one-cycle movements. Data are for forward cycling, starting at cycle’s bottom

(monkey C). Vertical velocity traces are colored from tan to black to indicate time with respect to the end of movement. Black dots indicate target appearance.

Gray box with shading indicates the epoch when the pedal was moving (preceding go cue not shown). Shading indicates vertical hand position; light shading

indicates cycle apex. Ticks show cycle divisions used for analysis. Small schematics at right illustrate relationship between number of cycles and target distance.

(C) Muscle activity, recorded from the medial head of the triceps (monkey D). Intra-muscularly recorded voltages were rectified, filtered, and trial averaged. Data

are shown for backward cycling, starting at cycle’s top.
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differ in two more cycles. The same is true when comparing the

second cycle of seven-cycle and four-cycle movements. Distin-

guishing between such situations requires tracking context via

some combination of ‘‘dead reckoning’’ and interpretation of vi-

sual cues (optic flow and the looming target). Does the need to

track context account for the geometry of the SMA population

response? Although this is fundamentally a population-level

question, we begin by examining single-neuron responses. We

then document specific features of the population response.

Finally, we consider a general property of population-trajectory

geometry that is necessary for tracking context. We ask whether

the data have this general property and whether it explains the

specific response features observed during cycling.

Single-Neuron Responses
Well-isolated single neurons were recorded consecutively from

SMAandM1.M1 recordings spanned sulcal and surface primary

motor cortex and the immediately adjacent aspect of dorsal pre-

motor cortex (Russo et al., 2018). In both SMA and M1, neurons

were robustly modulated during cycling. Of neurons that spiked

often enough to be noticed and isolated, nearly all were task

modulated. Isolations that were not task modulated were aban-

doned and not considered further (a total of 6 SMA and 4M1 iso-

lations across both monkeys). All other isolated neurons were

analyzed regardless of their response properties. This included

77 and 70 SMA neurons (monkeys C and D) and 116 and 117

M1 neurons. Firing-rate modulation (maximum minus minimum

rate) averaged 52 and 57 spikes/s for SMA (monkeys C and D)

and 73 and 64 spikes/s for M1.

In M1, single-neuron responses (Figures 2A–2C) were typically

complex yet showed two consistent features. First, for a given

cycling distance, responses repeated across steady-state cy-

cles. For example, for a seven-cycle movement, the firing rate

profile was very similar across cycles 2–6 (Russo et al., 2018).

Second, response elements—initial-cycle, steady-state, and

terminal-cycle responses—were conserved across distances.

Thus, althoughM1 responses rarely matched patterns of muscle
activity or kinematics, they shared the same general structure:

responses were essentially a concatenation of an initial-cycle

response, a steady-state response, and a terminal-cycle

response. Even complex responses that might be mistaken as

‘‘noise’’ displayed this structure (Figure 2C).

Neurons in SMA (Figures 2D–2F) displayed different properties.

Responseswere typically amixture of rhythmic and ramp-like fea-

tures. As a result, during steady-state cycling, single-neuron re-

sponses in SMA had a greater proportion of power well below

the �2-Hz cycling frequency (Figures 3A and 3B). Due in part to

these slow changes in firing rate, a clear steady-state response

was rarely reached. Furthermore, the initial-cycle response in

SMA often differed across cycling distances (e.g., compare

seven-cycle and two-cycle responses in Figure 2E), even when

muscle andM1 responseswere similar. In contrast, terminal-cycle

responses were similar across distances. For example, in Fig-

ure 2E, the response during a four-cycle movement resembles

that during the last four cycles of a seven-cycle movement.

Individual-Cycle Responses Are More Distinct in SMA
We compared the response on each cycle with that on all other

cycles, both within seven-cyclemovements and between seven-

and four-cycle movements. For each neuron, we compared

time-varying firing rates for the two cycles of interest. The

‘‘response distance’’ between these two firing rates, averaged

across all neurons, was computed using the crossnobis esti-

mator (Diedrichsen and Kriegeskorte, 2017; Yokoi et al., 2018),

providing an unbiased estimate of squared distance. Response

distance was normalized based on the typical intra-cycle

firing-rate modulation for that condition. This analysis thus as-

sesses the degree to which responses are different for two cy-

cles, relative to the response magnitude within a single cycle.

Response distance for a given comparison was averaged across

the two cycling directions and starting positions (Figures 3C–3F,

3I, and 3J) or shown independently for each (Figures 3G and 3H).

Figures 3C–3F plot response distances in matrix form. For M1,

responses were similar among all steady-state cycles, resulting
Neuron 107, 745–758, August 19, 2020 747
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Figure 2. Responses of Example Neurons

(A–C) Firing rates for three example M1 neurons,

one per panel. Plotting conventions as in Fig-

ure 1C. Each panel’s label indicates the region,

monkey (C or D), and cycling direction for which

data were recorded. Cycling started from the

bottom position. All calibrations are 40 spikes/s.

Gray envelopes around each trace (typically

barely visible) give the standard error of the mean.

(D–F) Firing rates for three SMA neurons, one

per panel.
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in a central dark block of low distances. This block is square for

within-seven-cycle comparisons and rectangular for seven-

versus-four-cycle comparisons. Outer rows and columns are

lighter (higher response distances) because initial- and termi-

nal-cycle responses differed from one another and from

steady-state responses. This analysis confirms that M1 re-

sponses involve a distinct initial-cycle response, a repeating

steady-state response, and a distinct terminal-cycle response.

These results agree with the finding that M1 activity relates to

execution of the present movement (Hatsopoulos et al., 2003;

Lara et al., 2018; Yokoi et al., 2018). Motor output (muscle activ-

ity and hand kinematics) is similar across steady-state cycles.

M1 activity was correspondingly similar.

For SMA, the central block of high similarity was largely absent.

Instead, response distance grew steadily with temporal separa-

tion. For example, within a seven-cycle movement, the second-

cycle response was modestly different from the third-cycle

response, fairly different from the fifth-cycle response, and very

different from the seventh-cycle response. Average response

distance was larger for SMA versus M1, both across all compar-

isons (p < 10�10 for each monkey; resampling test) and for com-

parisons among steady-state cycles (p < 10�8 for each monkey).

Steady-state comparisons are particularly relevant because

motor output is essentially identical across steady-state cy-
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cles. If activity within an area primarily

reflects the present motor output, dis-

tances among steady-state cycles

should be small. If activity tracks motor

context, distances should be larger,

especially when comparing cycles with

different future motor outputs (e.g.,

three of seven versus three of four).

We plotted response distance for SMA

versus M1 for all steady-state compari-

sons (Figures 3G and 3H) both within

seven-cycle movements (circles) and

between seven- and four-cycle move-

ments (triangles). Comparisons were

made independently for each condition

(the two directions and starting posi-

tions). Results agreed with the analyses

in Figures 3C–3F (which averaged

across conditions): response distance

was always low for M1 but was often

high for SMA.
Intriguingly, when comparing seven- and four-cycle move-

ments, SMA response distance reflected whether steady-state

cycles shared the same future motor output. Response distance

wasmodest when comparing cycles equidistant frommovement

end (red triangles) and higher (p < 0.05 for both monkeys; t test)

for cycles equidistant from the beginning (green triangles). The

task affords a further comparison of this type: seven- and four-

cycle movements share initial-cycle motor outputs but become

different in �3 cycles (�1,500 ms). In contrast, terminal-cycle

motor output is similar and remains so as the monkey becomes

stationary. Thus, if activity tracks motor context, response dis-

tance should be greater when comparing initial versus terminal

cycles. This was indeed the case: SMA response distance was

much larger between initial cycles than between final cycles (Fig-

ures 3I and 3J). Initial-cycle responses tended to share some

structure; response distance was not as large as for some other

comparisons (e.g., cycle one versus four). Yet initial-cycle re-

sponses were much more dissimilar than final-cycle responses,

reflecting what can be seen in Figures 2D–2F. This asymmetry

was present in both areas but was larger for SMA (p < 0.05

and p < 10�10, monkeys C and D; resampling test).

Cycle-to-cycle response specificity in SMA somewhat resem-

bles contingency-specific activity during movement sequences

(e.g., a neuron that bursts only when pulling will be followed by
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Figure 3. SMA Responses Show Greater Cycle-to-Cycle Differences
(A) Histogram of the proportion of low-frequency (<1 Hz) power in the trial-averaged firing rate. Right-shifted histograms indicate more low-frequency power. For

each neuron, power was computed for each seven-cycle condition after mean centering (ensuring no power at 0 Hz). Proportion of power <1 Hz was averaged

across conditions to yield one value per neuron. Data are for monkey C.

(B) Same for monkey D.

(C) Matrices of response distances when comparing cycles within a seven-cycle movement. For each comparison (e.g., cycle two versus three) normalized

response distance was computed for each condition (two directions and starting locations) and averaged. Thematrix is symmetric because the distancemetric is

symmetric. The diagonal is not exactly zero due to cross-validation. Data are for monkey C.

(D) Matrices of response distances comparing seven-cycle and four-cycle movements. Data are for monkey C.

(E) Same as (C) but for monkey D.

(F) Same as (D) but for monkey D.

(G) SMA versus M1 response distance for comparisons among steady-state cycles within seven-cycle movements (circles) and between seven- and four-cycle

movements (triangles). For each of the four conditions, there are ten within-seven-cycle comparisons (square inset) and ten seven-versus-four-cycle compar-

isons (rectangular inset). Red triangles highlight comparisons between cycles equidistant from movement end, e.g., six of seven versus three of four. Green

triangles highlight comparisons between cycles equidistant from movement beginning. Data are for monkey C.

(H) Same for monkey D.

(I) Response distance when comparing initial cycles (one of seven versus one of four) and terminal cycles (seven of seven versus four of four). These are the same

values as in (D) (comparisons highlighted in inset), plotted here for direct comparison.

(J) Same for monkey D.
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turning; Shima and Tanji, 2000). Yet specificity during cycling is

manifested differently, by responses that evolve continuously

rather than burst at a key moment. The ramping activity we

observed was more reminiscent of pre-movement responses

in a timing task (Cadena-Valencia et al., 2018). That said, ramp-

ing activity was not the only source of cycle-to-cycle response
differences. To further explore such differences, we consider

the evolution of population trajectories.

SMA and M1 Display Different Population Trajectories
To gain intuition, we first visualized population trajectories in

three dimensions. Projections onto the top three principal
Neuron 107, 745–758, August 19, 2020 749
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Figure 4. Visualization of Population Tra-

jectories

(A) M1 population trajectory during a seven-cycle

movement (cycling forward from the bottom). Top

trajectory is the projection onto the top three PCs,

from 1,500 ms before movement onset until 500

after, shaded from tan (movement beginning) to

black (movement end). PCs were found using all

four seven-cycle conditions and data from 200ms

before movement onset until 200 ms after move-

ment offset (narrower than the plotted range to

prioritize dimensions that capture movement-

related activity). Small plots at bottom show pro-

jections of each steady-state cycle (2–6) onto the

first two PCs found using data from that cycle

only.

(B) Same for monkey D; data are from the seven-

cycle, forward, top-start condition.

(C) SMA population trajectory for monkey C for

the same condition as in (A).

(D) SMA population trajectory for monkey D for

the same condition as in (B).
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components (PCs) are shown for one seven-cycle condition for

M1 (Figures 4A and 4B) and SMA (Figures 4C and 4D), shaded

light to dark to denote the passage of time. For M1, trajectories

exited a baseline state just before movement onset, entered a

periodic orbit during steady-state cycling, and remained there

until settling back to baseline as movement ended. To examine

within-cycle structure, we also applied principal component

analysis (PCA) separately for each cycle (bottom of each panel).

For M1, this revealed little new; the dominant structure on each

cycle was an ellipse, as was seen in the projection of the full

response.

In SMA, the dominant geometry was quite different and also

more difficult to summarize in three dimensions. We first

consider data for monkey C (Figure 4C). Just before movement

onset, the population trajectory moved sharply away from base-

line (from left to right in the plot). The trajectory returned to base-

line in a rough spiral, with each cycle separated from the last. The

population trajectory for monkey D was different in some details

(Figure 4D), but it was again the case that a translation separated

cycle-specific features.

SMA population trajectories appear to have a ‘‘messier’’

geometry than M1 trajectories; e.g., cycle-specific loops

appear non-elliptical and kinked. Yet it should be stressed

that a three-dimensional projection is necessarily a compro-

mise. The view is optimized to capture the largest features

in the data; smaller features can be missed or partially

captured and distorted. We thus employed cycle-specific
750 Neuron 107, 745–758, August 19, 2020
PCs to visualize the trajectory on

each cycle separately. Doing so re-

vealed near-circular trajectories,

much as in M1. Thus, individual-cycle

orbits are present in SMA but are a

smaller feature relative to the large

translation.

In summary, M1 trajectories are domi-

nated by a repeating elliptical orbit while
SMA trajectories are better described as helical. Each cycle in-

volves an orbit, but these are separated by a translation. This

translation reflects ramp-like responses in single neurons. Yet

the translation does not account for all the cycle-to-cycle differ-

ences in SMA. Unlike an idealized helix, individual-cycle orbits in

SMA occur in somewhat different subspaces. This property is

explored below.

The SMA Population Response Occupies Different
Dimensions across Cycles
To ask whether activity on different cycles occupies the same di-

mensions, we computed subspace overlap (Elsayed et al.,

2016). For example, to compare cycle one and two, we

computed PCs from activity during cycle one, projected activity

during cycle two, and computed the variance explained. We em-

ployed six PCs, which captured most of the response variance

for a given cycle. Essentially identical results were obtained us-

ing fewer or more PCs (Figure S1). Variance was normalized so

that unity indicates that two cycles occupy the same subspace.

We employed cross-validation so that sampling error did not

bias overlap toward lower values. As in Figures 3C–3F, we

compared within seven-cycle movements (Figures 5A and 5C)

and between seven- and four-cycle movements (Figures 5B

and 5D).

For M1, subspace overlap was high among steady-state cy-

cles, producing a central block structure (Figures 5A–5D, top

row). That block was square when comparing within seven-cycle
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Figure 5. Subspace Overlap between Re-

sponses on Different Cycles

(A) Subspace overlap, comparing cycles within

seven-cycle movements. Each matrix entry shows

subspace overlap for one comparison. Rows

indicate the cycle used to find the PCs, and col-

umns indicate the cycle for which variance

captured is computed. Overlap is not symmetric.

Data are averaged across conditions (pedaling

directions and starting positions). Diagonal entries

are not exactly unity due to cross-validation. Data

are for monkey C.

(B) Cross-validated subspace overlap comparing

seven-cycle with four-cycle movements. Data are

for monkey C.

(C) Same as (A) but for monkey D.

(D) Same as (B) but for monkey D.

(E) Subspace overlap for SMA versus M1 for

comparisons among steady-state cycles within

seven-cycle movements (circles) and between

seven- and four-cycle movements (triangles). For

each of the four conditions, there are twenty

within-seven-cycle comparisons (square inset)

and ten seven-versus-four-cycle comparisons

(rectangular inset). Red triangles highlight com-

parisons between cycles equidistant from move-

ment end. Green triangles highlight comparisons

between cycles equidistant from movement

beginning. Data are for monkey C.

(F) Same for monkey D.

See also Figure S1.
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movements (cycles 2–6 versus 2–6) and rectangular when

comparing between seven- and four-cycle movements (cycles

2–6 versus 2-3). Thus, in M1, the subspace found for any

steady-state cycle overlapped heavily with that for all other

steady-state cycles.

For SMA (bottom row), the central block was less well defined.

Comparing within seven-cycle movements, SMA subspace

overlap declined steadily as cycles became more distant from

one another. For example, for monkey D, overlap declined

from 0.97 when comparing cycle two versus three to 0.39

when comparing two versus six (monkey C: from 0.91 to 0.49).

A similar effect was present when comparing seven- and four-

cycle movements. For example, overlap was only 0.54 (monkey

C) and 0.38 (monkey D) when comparing cycle two of seven with

three of four, even though these cycles had similar motor output.

Overall, subspace overlap among steady-state cycles was lower

for SMA versus M1: p < 10�7 for both monkeys for within-seven-

cycle comparisons and p < 10�10 for both monkeys for seven-

versus-four-cycle comparisons (resampling test).

The analyses in Figures 5A–5D average across the four con-

ditions. Figures 5E and 5F consider each condition separately

for all comparisons among steady-state cycles, both within

seven-cycle and between seven- and four-cycle movements.

M1 subspace overlap was reasonably high for all comparisons

(always >0.71 for monkey C and >0.79 for D). SMA subspace

overlap was significantly lower overall (p < 10�10 for each mon-

key; paired t test) with minima of 0.23 and 0.29. Yet SMA sub-

space overlap was not always low. It was typically high when

comparing cycles equidistant from movement end (red trian-
gles). In contrast, overlap was lower (p < 0.05 and p < 0.005;

monkeys C and D; paired t test) when comparing cycles equi-

distant from movement beginning (green triangles). Thus, sub-

space overlap was high when two situations shared a similar

future and low otherwise.

Population Trajectories in Artificial Networks
‘‘Motor context’’—i.e., abstract information that guides future

action—may be remembered (e.g., ‘‘I am performing a particular

sequence’’; Shima and Tanji, 2000), internally estimated (‘‘it has

been 800 ms since the last button press’’; Gámez et al., 2019), or

derived from abstract cues (‘‘this color means reach quickly’’;

Lara et al., 2018). In the cycling task, salient contextual informa-

tion arrives when the target appears, specifying the number of

cycles to be produced. The current motor context (howmany cy-

cles remain) can then be updated throughout the movement,

based on both visual cues and internal knowledge of the number

of cycles already produced.

Our hypothesis is that the helical SMA population trajectory is

a natural solution to the problem of internally tracking motor

context during multi-cycle rhythmic movement. Is this hypothe-

sis sufficient to explain the helical structure or are additional as-

sumptions (regarding parameters that are represented or other

computations that are performed) necessary? Conversely, are

the elliptical M1 trajectories indeed what is expected if a network

does not internally track motor context?

To address these questions, we trained artificial recurrent net-

works that did or did not need to internally track motor context.

We considered simplified inputs (pulses at specific times) and
Neuron 107, 745–758, August 19, 2020 751



Example context-tracking networks

Example context-naive networksA

B

C D

Figure 6. Trajectory Geometry in Simulated

Networks

(A) Population trajectories for three example

context-naive networks during the four-cycle con-

dition. Left, right, and vertical axes correspond to

PC 1, 2, and 3.

(B) Population trajectories for three example

context-tracking networks.

(C) Trajectory divergence for context-tracking

versus context-naive networks. Comparison in-

volves 500 networks of each type, paired arbitrarily.

Each dot plots Dtracking versus Dnaive for one time

during one pairing. Diagonal line indicates unity.

(D) Distribution of differences in trajectory diver-

gence between context-naive and context-tracking

networks.Dtracking� Dnaive was computed for every

time and all possible pairings (every context-

tracking network with every context-naive

network).

See also Figures S2–S4.
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simplified outputs (pure sinusoids lasting four or seven cycles).

We trained two families of recurrent networks. A family of

‘‘context-naive’’ networks received one input pulse indicating

that output generation should commence and a different input

pulse indicating that output should be terminated. These pulses

were separated by four or seven cycles, corresponding to the

desired output. Thus, context-naive networks had no informa-

tion regarding context until the second input. Nor did they

need to track context; the key information was provided at the

critical moment. In contrast, a family of ‘‘context-tracking’’ net-

works received only an initiating input pulse, which differed de-

pending on whether a four- or seven-cycle output should be pro-

duced. Context-tracking networks then had to generate a

sinusoid with the appropriate number of cycles and terminate

with no further external guidance. For each family, we trained

500 networks that differed in their initial connection weights

(STAR Methods).

The two network families learned qualitatively different solu-

tions involving population trajectories with different geometries.

Context-naive networks employed an elliptical limit cycle (Fig-

ure 6A). The initiating input caused the trajectory to enter an orbit,

and the terminating input prompted the trajectory to return to
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baseline. This solution was not enforced

but emerged naturally. There was

network-to-network variation in how

quickly activity settled into the limit cycle

(Figure S2), but all networks that suc-

ceeded in performing the task employed

a version of this strategy.

Context-tracking networks utilized pop-

ulation trajectories that were more helical;

the trajectory on each cycle was sepa-

rated from the others by an overall transla-

tion (Figure 6B). Although there was

network-to-network variation (Figure S3),

all successful context-tracking networks

employed some form of helical or spiral
trajectory. This solution is intuitive: context-tracking networks

do not have the luxury of following a repeating orbit. If they

did, information regarding context would be lost and the network

would have no way of ‘‘knowing’’ when to terminate its output.

For context-tracking networks, trajectories could also occupy

somewhat different subspaces on different cycles. Projected

onto three dimensions, this geometry resulted in individual-cycle

trajectories of seemingly different magnitude (Figure 6B, first and

third examples). As with the helical structure, this geometry cre-

ates separation between individual-cycle trajectories. There was

considerable variation in the degree to which this strategy was

employed. Some context-tracking networks used nearly iden-

tical subspaces for every cycle although others used quite

different subspaces. Context-naive networks never employed

this strategy.

The population geometry adopted by context-naive and

context-tracking networks bears obvious similarities to the

empirical population geometry in M1 and SMA, respectively.

That said, we stress that neither family is intended to faithfully

model the corresponding area. Furthermore, reasonable alterna-

tive modeling choices exist. For example, rather than asking

context-tracking networks to track progress using internal
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dynamics alone, one can provide a ramping input. Providing an

external input respects the fact that, during cycling, tracking of

context can and presumably does benefit from visual inputs (op-

tic flow and the looming of the target). Interestingly, context-

tracking networks trained in the presence/absence of ramps em-

ployed similar population trajectories (Figure S4). The slow trans-

lation that produces helical structure is a useful computational

tool—one that networks produced on their own if needed but

were also content to inherit from upstream sources. For these

reasons, we focus not on the details of individual network trajec-

tories but rather on the geometric features that differentiate

context-tracking from context-naive trajectories and that might

similarly differentiate M1 and SMA trajectories.

Trajectory Divergence
Trajectories displayed by context-tracking networks reflect

specific solutions to a general problem: ensuring that two tra-

jectory segments never trace the same path and then diverge.

Avoiding such divergence is critical when network activity must

distinguish situations that have the same present motor output

but different future outputs. Rather than assessing the specific

paths of individual-network solutions, we developed a general

metric of trajectory divergence. We note that trajectory diver-

gence differs from trajectory tangling (Russo et al., 2018), which

was very low in both SMA and M1 (Figure S5). Trajectory

tangling assesses whether trajectories are consistent with a

locally smooth flow field. Trajectory divergence assesses

whether similar paths eventually separate, smoothly or other-

wise. A trajectory can have low tangling but high divergence

or vice versa (Figure S6).

To construct a metric of trajectory divergence, we consider

times t and t0, associated population states xt and xt0 , and future

population states xt +D and xt0 +D. We consider all possible pair-

ings of t and t0 across both times and cycling distances. Thus, t

and t
0
might occur during different cycles of the samemovement

or during different distances. We compute the ratio

kxt +D � xt0 +D k 2= kxt � xt0 k 2 +a
� �

, which becomes large if

xt +D differs from xt0 +D despite xt and xt0 being similar. The con-

stant a is small and proportional to the variance of x and prevents

hyperbolic growth.

Given that the difference between two random states is typi-

cally sizeable, the above ratio will be small for most values of

t
0
. As we are interested in whether the ratio ever becomes large,

we take the maximum and define divergence for time t as

D tð Þ=max
t0 ; D

kxt +D � xt0 +D k 2

kxt � xt0 k2 +a
: (Equation 1)

We consider only positive values ofD. Thus,DðtÞ is large if similar

trajectories diverge, but not if dissimilar trajectories converge.

Divergence was assessed using a twelve-dimensional neural

state. Results were similar for all reasonable choices of

dimensionality.

DðtÞ differentiated between context-tracking and context-

naive networks. To compare, we considered pairs of networks,

one context tracking and one context naive. For each time, we

plotted DðtÞ for the context-tracking network versus that for

the context-naive network. Trajectory divergence was consis-
tently lower for context-tracking networks (Figure 6C; p <

0.0001; rank sum test). This was further confirmed by taking

the difference in DðtÞ for every time and all network pairs (Fig-

ure 6D). Both context-tracking and context-naive trajectories

contained many moments when divergence was low, resulting

in a narrow peak near zero. However, context-naive trajectories

(but not context-tracking trajectories) also contained moments

when divergence was high, yielding a large set of negative

differences.

Trajectory Divergence Is Lower for SMA
The roughly helical structure of the empirical SMA population

response (Figure 4) suggests low trajectory divergence, as

does the finding that SMA responses differ across cycles (Fig-

ures 3 and 5). Yet the complex shape of the empirical trajectories

makes it impossible to ascertain, via inspection, whether diver-

gence is low. Furthermore, it is unclear whether cycle-to-cycle

response differences ensure low divergence across both time

and cycling distances. We therefore directly measured trajectory

divergence for the empirical trajectories.

Plotting SMA versus M1 trajectory divergence for each time

(Figures 7A and 7B) revealed that divergence was almost always

lower in SMA.We next computed the difference in divergence, at

matched times, between SMA and M1 (Figures 7C and 7D).

There was a narrow peak at zero (moments where divergence

was low for both) and a large set of negative values, indicating

lower divergence for SMA. Strongly positive values (lower diver-

gence for M1) were absent (monkey C) or very rare (monkey D;

0.13% of points >20). Distributions were significantly negative

(p < 0.00001 for monkeys A and B; bootstrap). The overall scale

of divergence was smaller for the empirical data than for the net-

works. Specifically, divergence reached higher values for

context-naive networks than for the empirical M1 trajectories.

This occurs because simulated trajectories can repeat almost

perfectly, yielding very small values of the denominator in Equa-

tion 1. Other than this difference in scale, trajectory divergence

for SMA and M1 differed in much the same way as for context-

tracking and context-naive networks (compare Figures 7C and

7D with Figure 6D).

The ability to consider both network and neural trajectories

(despite differences across networks and across monkeys) un-

derscores that the divergence metric describes trajectory geom-

etry at a useful level of abstraction. Multiple features can

contribute to low divergence, including ramping activity, cycle-

specific responses, and different subspaces on different cycles.

Different network instantiations may use these different ‘‘strate-

gies’’ to different degrees. Trajectory divergence provides a use-

ful summary of a computationally relevant property, regardless

of the specifics of how it was achieved.

Because trajectory divergence abstracts away from the details

of specific trajectories, it can be readily applied in new situations.

For example, the cycling task involved not only different cycling

distances but also different cycling directions and different start-

ing positions. The latter is particularly relevant, because move-

ments ended at the same position (cycle top or bottom) as

they started. Thus, how a movement will end depends on infor-

mation present at the beginning. Does SMA distinguish between

movements that will end in one position versus the other? One
Neuron 107, 745–758, August 19, 2020 753
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Figure 7. Trajectory Divergence in M1 and SMA

(A) Trajectory divergence for SMA versus M1 (monkey C). Each dot corre-

sponds to one time during one condition. Divergence was computed

considering all times for all distances that shared a direction and starting po-

sition. Data for all conditions are then plotted together. Blue and black

tick marks denote 90th percentile trajectory divergence for SMA and M1,

respectively.

(B) Same for monkey D.

(C) Distribution of the differences in trajectory divergence between SMA and

M1 (monkey C). Same data as in (A) are employed, but for each time/condition

we computed the difference in divergence.

(D) Same for monkey D.

See also Figures S5–S7.
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could address this using a traditional approach, perhaps assess-

ing the presence and timing of ‘‘starting-position tuning.’’ How-

ever, it is simpler, and more relevant to the hypothesis being

considered, to ask whether divergence remains low when com-

parisons are made across all conditions, including starting posi-

tions. This was indeed the case (Figure S7).

Computational Implications of Trajectory Divergence
We considered trajectory divergence because of its expected

computational implications. A network with a high-divergence

trajectory can accurately and robustly generate its output on

short timescales. Yet, unless guided by external inputs at key

moments, such a networkmay be susceptible to errors on longer

timescales. For example, if a trajectory approximately repeats, a

likely error would be the generation of extra cycles or the skip-

ping of a cycle.

To test these intuitions, we employed a new set of simulations

using an atypical training approach that enforced an internal

network trajectory (Russo et al., 2018), as opposed to the usual

approach of training a target output. We trained networks to pre-

cisely follow the empirical M1 trajectory, recorded during a

four-cycle movement, without any input indicating when to

stop (Figure 8A). Networks were trained in the presence of addi-

tive noise. Using data from each monkey, we trained forty net-
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works: ten for each of the four four-cycle conditions. Networks

were able to reproduce the cyclic portion of the M1 trajectory,

but failed to consistently complete that trajectory. For example,

networks sometimes erroneously produced extra cycles (Fig-

ure 8B) or skipped cycles and stopped early (Figure 8C).

We also trained networks to follow the empirical SMA trajec-

tories. Those trajectories contained a rhythmic component and

lower frequency ‘‘ramping’’ signals (Figure 8D) related to the

translation seen in Figures 4C and 4D. In contrast to the high-

divergence M1 trajectories, which were never consistently fol-

lowed for the full trajectory, the majority of network initializations

resulted in good solutions where the SMA trajectory was suc-

cessfully followed from beginning to end. Thus, SMA trajectories

could be reliably produced and autonomously terminated butM1

trajectories could not.

DISCUSSION

Many studies argue that SMA contributes to the guidance of

action based on internal, abstract, or contextual factors (Ca-

dena-Valencia et al., 2018; Kornysheva and Diedrichsen,

2014; Merchant and de Lafuente, 2014; Mushiake et al.,

1991; Nakamura et al., 1998; Remington et al., 2018b; Romo

and Schultz, 1992; Shima and Tanji, 2000; Sohn and Lee,

2007; Tanji and Kurata, 1982; Tanji and Shima, 1994; Thaler

et al., 1995; Wang et al., 2018). We translated this hypothesis

into a prediction regarding the geometry of population activity.

As predicted, trajectory divergence was low in SMA and pro-

vided a cohesive explanation for diverse response features.

Slowly ramping firing rates are, at the surface level, a very

different feature from changes in the occupied subspace. Yet

both contribute to low divergence. Other features (which we

did not attempt to isolate) maintained low divergence across

cycling directions and starting positions. This raises a broader

point: the features that subserve low divergence will almost

certainly be task and situation specific. For example, during se-

quences of reaches, SMA neurons exhibit burst-like responses

with various forms of selectivity. Such selectivity presumably

produces low divergence, although this remains to be explicitly

tested. Thus, a reasonable hypothesis is that, during a given

task, SMA responses will exhibit some of the dominant

response features seen in M1 (transient responses when reach-

ing, rhythmic activity during cycling, etc.) combined with addi-

tional response features that ensure low divergence.

An essential strategy is to focus on specific features that relate

to how a network might perform a particular task (Churchland

et al., 2012; Driscoll et al., 2018; Gallego et al., 2017; Kaufman

et al., 2014; Mante et al., 2013; Remington et al., 2018b; Stopfer

and Laurent, 1999). A complementary strategy is to quantify gen-

eral properties that may be preserved across a class of compu-

tations. Our divergence metric was designed with this goal. We

recently considered a different geometric property, trajectory

tangling (Russo et al., 2018), which is necessary for a network

to robustly generate an output via internal dynamics. Low trajec-

tory tangling was observed in M1 across a range of tasks in both

monkeys and mice. As another example, studies of the visual

system have employed linear separability (a different definition

of ‘‘untangled’’) to assess whether population geometry is
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Figure 8. Networks Trained to Follow

Empirical Population Trajectories

(A) Networks were trained to autonomously follow

a target trajectory defined by the top six PCs of

the empirical population trajectory for a four-cy-

cle movement, including stopping at the end.

Dashed lines show the target trajectory for three

PCs for one example: monkey D, M1, cycling

backward starting at the bottom. The activity of

every neuron in the network was trained to follow

a random combination of the projection onto the

top six PCs. This ensured that the simulated

population trajectory matched the empirical tra-

jectory.

(B) Example network (solid) and target (dashed)

trajectories on one trial for a network trained to

produce the empirical M1 trajectory. The network

trajectory initially matches the target but con-

tinues ‘‘cycling’’ when it should have ended. This

resulted in an R2 (variance in the target accounted

for by the network trajectory) well below unity.

(C) As in (B) but for an example trial where the

opposite error wasmade: the network trajectory stops early. This trajectory is produced by the same network as in (B); the only difference is the additive noise on

that particular trial.

(D) Example network (blue) and target (dashed) trajectories on one trial for a network trained to produce the empirical SMA trajectory. The level of additive noise

was the same as for the network in (B) and (C), but the network succeeds in following the trajectory to the end.
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consistent with a class of computation having been performed

(DiCarlo and Cox, 2007; Pagan et al., 2013).

The advantages of this approach come with a limitation: ge-

ometrymay strongly suggest a class of computations yet do little

to delineate the specific computation. For example, low trajec-

tory divergence in SMA is consistent with internal tracking of

context but does not specify the input-output relationship the

network is trying to accomplish. Indeed, we observed low-diver-

gence trajectories regardless of whether context-tracking net-

works received a ramping input or internally generated their

own ramp. Similarly, it remains unclear what signals SMA con-

veys to downstream areas. Possibilities include start/stop sig-

nals, a ‘‘keep moving’’ signal that remains high during move-

ment, or a rhythmic signal that entrains downstream pattern

generation (Schöner and Kelso, 1988). Deciphering the compu-

tation used to perform a particular task will typically require a

level of detail below that captured by measures of population

geometry.

A goal of assessing population geometry is to find general

properties. At the same time, exceptions may be informative.

For example, during grasping, trajectory tangling becomes

high in M1, suggesting a shift in the balance of input-driven

versus internally driven activity (Suresh et al., 2019). We expect

that, in SMA, there will be situations where divergence becomes

revealingly high. For example, there are presumably limits on the

timescales across which SMA can track context, which may be

revealed in the timescales over which divergence stays low. Tra-

jectory divergence is also likely to become high when action is

guided by sudden, unpredictable cues.

Given the benefits of low divergence, why employ separate

areas—SMA and M1—with low and high divergence? Why not

unify context tracking and pattern generation? Allowing high

divergence in M1 may be useful for two reasons. First,

dispensing with divergence-avoiding signals frees dynamic
range for other computations, such as generating fine-grained

aspects of the outgoing motor command. Second, low diver-

gencemay interfere with adaptation; learning on one cycle would

have no clear way of transferring to other cycles (Sheahan

et al., 2016).

The concepts in the present study are informed by our field’s

understanding of how recurrent networks perform computations

(Mante et al., 2013; Michaels et al., 2016; Remington et al.,

2018b; Russo et al., 2018; Stringer et al., 2019). Because recur-

rent-network-based computations are commonly described via

flow fields governing a neural state (Maheswaranathan et al.,

2019; Sussillo and Barak, 2013), this perspective has been

termed a ‘‘dynamical systems view’’ (Shenoy et al., 2013). This

view intersects with ideas regarding how dynamical systems

can perform computations (van Gelder, 1998) or describe

behavior (Kelso, 2012). It has been argued that dynamics-based

explanations should supplant ‘‘representational’’ explanations

(van Gelder, 1998). This view is extreme; dynamical systems

may involve representations (Bechtel, 2012). Yet it is true that

purely representational thinking can be limiting. For example,

the question of whether M1 is more concerned with ‘‘muscles

versus movements’’ is poorly addressed by inquiring whether

neural activity is a function of muscle activity versus movement

kinematics (Fetz, 1992; Scott, 2008). M1 is dominated by signals

that are neither muscle-like nor kinematic-like but are readily un-

derstood as necessary for low trajectory tangling (Russo

et al., 2018).

Correspondingly, multiple aspects of the SMA population

response are readily understood as aiding low trajectory diver-

gence. It is tempting to apply representational interpretations

to some of those properties. For example, there is a dimension

in which activity is ramp-like during cycling, which might be

thought of as a representation of ‘‘time,’’ ‘‘distance,’’ or ‘‘prog-

ress within the overall movement.’’ Although it is conceivable
Neuron 107, 745–758, August 19, 2020 755
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that this dimension might consistently represent these things

during other tasks, there is presently no evidence for this.

Furthermore, low divergence is aided by additional features

that lack a straightforward representational interpretation, such

as occupancy of different subspaces across cycles. The dynam-

ical perspective helps one to see the connection between these

seemingly disjoint response features in a way that a purely repre-

sentational perspective does not.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Rhesus macaque (Macaca mulatta) Davis National Primate Center N/A

Software and Algorithms

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

Simulink MathWorks https://www.mathworks.com/products/

simulink-real-time.html

Unity Engine Unity Technologies https://unity.com/

Python Python Software Foundation https://www.python.org/

Deposited Data

EMG and Neural Data Mendeley Data http://dx.doi.org/10.17632/tfcwp8bp5j.1

Other

Speedgoat Real-time Target Machine Speedgoat https://www.speedgoat.com/products-

services/real-time-target-machines/

performance

Cerebus system Blackrock Microsystems http://blackrockmicro.com/neuroscience-

research-products/neural-data-

acquisition-systems/cerebus-daq-system/

Utah array Blackrock Microsystems https://www.blackrockmicro.com/

electrode-types/utah-array/
RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Dr. Mark

M. Churchland (mc3502@columbia.edu).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
Orignial data have been deposited to Mendeley Data: http://dx.doi.org/10.17632/tfcwp8bp5j.1 https://data.mendeley.com/

datasets/tfcwp8bp5j/1 Code is provided at https://github.com/aarusso/trajectory-divergence.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Main experimental datasets
Subjects were two adult male rhesus macaques (monkeys C and D). Animal protocols were approved by the Columbia University

Institutional Animal Care and Use Committee. Experiments were controlled and data collected under computer control (Speedgoat

Real-time Target Machine). During experiments, monkeys sat in a customized chair with the head restrained via a surgical implant.

Stimuli were displayed on amonitor in front of the monkey. A tube dispensed juice rewards. The left arm was loosely restrained using

a tube and a cloth sling. With their right arm, monkeys manipulated a pedal-like device. The device consisted of a cylindrical rotating

grip (the pedal), attached to a crank-arm, which rotated upon a main axel. That axel was connected to a motor and a rotary encoder

that reported angular position with 1/8000 cycle precision. In real time, information about angular position and its derivatives was

used to provide virtual mass and viscosity, with the desired forces delivered by the motor. The delay between encoder measurement

and force production was 1 ms.

Horizontal and vertical hand position were computed based on angular position and the length of the crank-arm (64 mm). To

minimize extraneous movement, the right wrist rested in a brace attached to the hand pedal. The motion of the pedal was
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thus almost entirely driven by changes in shoulder and elbow angle, with the wrist moving only slightly to maintain a comfortable

posture.

METHOD DETAILS

Task
Monkeys performed the cycling task as described previously (Russo et al., 2018). The monitor displayed a virtual landscape, gener-

ated by the Unity engine (Unity Technologies, San Francisco). Surface texture and landmarks provided visual cues regarding move-

ment through the landscape along a linear track. One rotation of the pedal produced one arbitrary unit of movement. Targets on the

track indicated where the monkey should stop for juice reward.

Each trial began with the monkey stationary on top of an initial target. After a 1000 ms hold period, the final target appeared at a

prescribed distance. Following a randomized (500-1000 ms) delay period, a go-cue (brightening of the final target) was given. The

monkey then had to cycle to acquire the final target. After remaining stationary on the final target for 1500 ms, the monkey received

a reward. The full task included 20 conditions distinguishable by final-target distance (half-, one-, two-, four-, and seven-cycles),

initial starting position (top or bottom of the cycle), and cycling direction (forward or backward). Half-cycle distances evoked quite

brief movements. Because of the absence of a full-cycle response, they are not amenable to many of the analyses we employ,

and were thus not analyzed here.

Salient visual cues (landscape color) indicated whether cyclingmust be ‘forward’ (the handmoved away from the body at the top of

the cycle) or ‘backward’ (the hand moved toward the body at the top of the cycle) to produce forward virtual progress. Trials were

blocked into forward and backward cycling. Other trials types were randomly interleaved within those blocks.

Neural recordings during cycling
After initial training, we performed a sterile surgery during which monkeys were implanted with a head restraint and recording cylin-

ders (Crist Instruments, Hagerstown, MD). Cylinders were located based on magnetic resonance imaging scans. For M1 recordings,

the cylinder was placed surface normal to the cortex and centered over the border between caudal PMd and primary motor cortex.

After recording in M1, we performed a second sterile surgery to move the cylinder over the SMA. SMA cylinders were angled at�20�

degrees to avoid the superior sagittal sinus. The skull within the cylinders was left intact and coveredwith a thin layer of dental acrylic.

Electrodes were introduced through small (3.5 mmdiameter) burr holes drilled by hand through the acrylic and skull, under ketamine /

xylazine anesthesia. Neural recordings were made using conventional single electrodes (Frederick Haer Company, Bowdoinham,

ME) driven by a hydraulic microdrive (David Kopf Instruments, Tujunga, CA). The use of conventional electrodes, as opposed to elec-

trode arrays, allowed recordings to be made from the medial bank (where most of the SMA is located) and from both surface and

sulcal M1.

Recording locations were guided via microstimulation, light touch, andmuscle palpation protocols to confirm the trademark prop-

erties of each region. For motor cortex, recordings were made from primary motor cortex (both surface and sulcal) and the adjacent

(caudal) aspect of dorsal premotor cortex. These recordings are analyzed together as a singlemotor cortex population. All recordings

were restricted to regions where microstimulation elicited responses in shoulder and arm muscles.

Neural signals were amplified, filtered, andmanually sorted using BlackrockMicrosystems hardware (Digital Hub and 128-channel

Neural Signal Processor). On each trial, the spikes of the recorded neuron were filtered with a Gaussian (25 ms standard deviation;

SD) to produce an estimate of firing rate versus time. These were then temporally aligned and averaged across trials (Russo et al.,

2018;details below).

EMG recordings
Intra-muscular EMG was recorded from the major shoulder and arm muscles using percutaneous pairs of hook-wire electrodes

(30mm x 27 gauge, Natus Neurology) inserted �1 cm into the belly of the muscle for the duration of single recording sessions. Elec-

trode voltages were amplified, bandpass filtered (10-500 Hz) and digitized at 1000 Hz. To ensure that recordings were of high quality,

signals were visualized on an oscilloscope throughout the duration of the recording session. Recordings were aborted if they con-

tained significant movement artifact or weak signal. Offline, EMG recordings were high-pass filtered at 40 Hz and rectified. Rectified

EMG voltages were smoothed with a Gaussian (25 ms SD, same as neural data) and trial averaged (see below). Recordings were

made from the following muscles: the three heads of the deltoid, the two heads of the biceps brachii, the three heads of the triceps

brachii, trapezius, latissimus dorsi, pectoralis, brachioradialis, extensor carpi ulnaris, extensor carpi radialis, flexor carpi ulnaris, flexor

carpi radialis, and pronator. Recordings were made from 1-8 muscles at a time, on separate days from neural recordings. We often

made multiple recordings for a given muscle, especially those that we previously noted could display responses that vary with

recording location (e.g., the deltoid). We made 29 (monkey C) and 35 (monkey D) total muscle recordings.

Trial alignment and averaging
To preserve response features, it was important to compute the average firing rate across trials with nearly identical behavior. This

was achieved by 1) training to a high level of stereotyped behavior, 2) discarding rare aberrant trials, and 3) adaptive alignment of

individual trials prior to averaging. Because of the temporally extended nature of cyclingmovements, standard alignment procedures
e2 Neuron 107, 745–758.e1–e6, August 19, 2020
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(e.g., locking to movement onset) often misalign responses later in the movement. For example, a seven-cycle movement lasted

�3500 ms. By the last cycle, a trial 5% faster than normal and a trial 5% slower than normal would be misaligned by 350 ms, or

over half a cycle.

To ensure response features were not lost tomisalignment, we adaptively aligned trials within a condition (Russo et al., 2018). First,

trials were aligned on movement onset. Individual trials were then scaled so that all trials had the same duration (set to be the median

duration across trials). Becausemonkeys usually cycled at a consistent speed (within a given condition) this brought trials largely into

alignment; e.g., the top of each cycle occurred at nearly the same time for each trial. An adaptive alignment procedure was used to

correct any remaining slight misalignments. To do so, the time-base for each trial was scaled so that the position trace on that trial

closely matched the average position of all trials. This involved a slight non-uniform stretching, and resulted in the timing of all key

moments – such as when the hand passed the top of the cycle – being nearly identical across trials. This ensured that high-frequency

temporal response features were not lost to averaging.

Neural firing rates and EMG activity were computed on each trial before adaptive alignment. Thus, the above procedure never al-

ters the magnitude of these variables, but simply aligns when those values occur across trials. The adaptive procedure was used

once to align trials within a condition on a given recording session, and again to align data across recording sessions. A similar align-

ment procedure was used within the response distance analysis to ensure all cycles were of the same duration. For all datasets, av-

erages were made across a median of �15 trials.

Data Preprocessing
We standardly (Churchland et al., 2012; Russo et al., 2018; Seely et al., 2016) use soft normalization to balance the desire for analyses

to explain the responses of all neurons with the desire that weak responses not contribute on an equal footing with robust responses.

For example, many of our analyses employ PCA. Because PCA seeks to capture variance, it can be disproportionately influenced by

differences in firing rate range (e.g., a neuron with a range of 100 spikes/s has 25 times the variance of a similar neuron with a range of

20 spikes/s). The response of each neuron was thus normalized prior to application of PCA. Neural data were ‘soft’ normalized:

response : = response=ðrangeðresponseÞ + 5Þ. Soft normalization is also helpful for non-PCA-based analyses (e.g., of response

distance) to avoid results being dominated by a few high-firing-rate neurons.

QUANTIFICATION AND STATISTICAL ANALYSIS

Response distance
Response distance assesses the degree to which the population response is different on two different cycles (either within a seven-

cycle movement, or between seven-cycle and four-cycle movements of the same type). Consider r iðtÞ, a vector containing the trial-

averaged firing rate of every neuron at time t within cycle i. The simplest definition of response distance between cycles i and j is

equivalent to
P
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di;j tð Þ$Di;j tð Þ

p
where Di;j tð Þ= r i tð Þ � r j tð Þ and ‘$’ indicates the dot product. However, this approach allows distance

to be increased by sampling error in r. We therefore employed the crossnobis estimator (Diedrichsen and Kriegeskorte, 2017; Yokoi

et al., 2018), which provides an unbiased estimate of squared distance. We randomly divided trials into two non-overlapping parti-

tions, and computed two trial-averaged firing rate vectors: r
ð1Þ
i ðtÞ and r

ð2Þ
i ðtÞ. (Partitioning was done separately for each neuron as

most neurons were not recorded simultaneously). The crossnobis estimator was then the average, across twenty random partitions,

of
P
t

D
1ð Þ
i;j tð Þ$D 2ð Þ

i;j tð Þ. Virtually identical results were obtained if we employed a different method to combat sampling error: denoising

the average firing rate of each neuron by reconstructing it based on the top twelve population-level principal components.

We employed temporal alignment to ensure that response distance was not inflated if two cycles had similar responses but

different durations. This is of little concern when comparing among steady-state cycles (duration was highly stereotyped) but be-

comes a concern when comparing an initial-cycle responsewith a steady-state cycle response. To avoidmisalignment, the response

on each cycle was scaled both to have the same duration and such that the angular position matched at all times. After alignment,

response distance is zero if two responses are the same except for their time-course.

Comparisons were made within a given seven-cycle condition and between seven-cycle and four-cycle conditions. Comparisons

were always made between conditions of the same type (i.e., the same cycling direction and starting position). Response distances

were normalized by response magnitude within a steady-state cycle of the same condition type. For simplicity, we chose the fourth

cycle of the seven-cycle movement. Response magnitude was the squared distance of the firing rate from its mean (computed in a

cross-validated fashion).

We used resampling, across neurons, to assess the statistical significance of differences between SMA and M1. For example, we

found that response distance, averaged across steady-state cycles, was higher in SMA than in M1. A key question is whether this

difference is reliable, or might simply have occurred between any two random populations of neurons. To address this, we pooled

all neurons for both areas, and created two resampled ‘areas’ by random partition. We computed the key metric (e.g., average

response distance across steady-state cycles) for both resampled areas, and took the difference. The distribution of such differ-

ences, across 100 random partitions, is an estimate of the sampling distribution of measured differences if there is no true difference

between the two populations. This distribution was approximately Gaussian, and p values were thus based on a Gaussian fit.
Neuron 107, 745–758.e1–e6, August 19, 2020 e3
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Subspace overlap
Subspace overlap was used to measure the degree to which the population response occupied different neural dimensions on

different cycles (different cycles within a distance, or between distances). Subspace overlap was always computed for a pair of cy-

cles: a reference cycle and a comparison cycle. The population response for the reference cycle was put inmatrix form,Rref, of size t x

n where t is the number of times within that cycle and n is the number of neurons. Analogously, the population response during the

comparison cycle wasRcomp.We applied PCA toRref, yieldingWref, an n x kmatrix of principal components.We similarly applied PCA

to Rcomp, yielding Wcomp. We define variance captured as V R;Wð Þ = 1� jR�RWWTj jjF
jRj jjF . Subspace overlap was then computed as:

V Rcomp; Wref

� �
=V Rcomp; Wcomp

� �
.

Subspace overlap should be unity if the population response on reference and comparison cycles occupies the same dimensions

(i.e., are spanned by the same PCs). However, subspace overlap can be diluted by sampling error (i.e., two responses that are in truth

identical, but appear slightly different because average firing rates were computed for a finite number of trials). We thus computed

subspace overlap using cross validation. To do so we partitioned the data (by randomly partitioning the trials recorded for each

neuron) to produce R
ð1Þ
ref , R

ð2Þ
ref , R

ð1Þ
comp, and R

ð2Þ
comp. Cross-validated subspace overlap was then the average (over 20 partitions) of:

1

2

2
4 V

�
R

ð1Þ
comp; W

ð2Þ
ref

�

V
�
R

ð1Þ
comp; W

ð2Þ
comp

� +
V
�
R

ð2Þ
comp; W

ð1Þ
ref

�

V
�
R

ð2Þ
comp; W

ð1Þ
comp

�
3
5

Cross-validation was helpful in reducing the impact of sampling error. However, similar results were obtained if we did not employ

cross-validation and simply computed the uncorrected subspace overlap as above. To test for statistical significance, we used the

resampling procedure described in the previous section.

Trajectory Divergence
Consider times t and t0. These times could occur within the samemovement. E.g., t could be a time near the middle of the movement

and t0 could be a time near the end. The two times could also occur for different distances within the same condition type. E.g., if we

consider forward cycling that starts at the top, t could occur during a two-cycle movement and t0 could occur during a seven-cycle

movement. Consider the associated neural states xt and xt0 . The squared distance between these states is jxt � xt0
�� ��j2. The squared

distance between the corresponding states, some time D in the future, is jxt +D � xt0 +Dj jj2. Divergence assesses whether this future

distance ever becomes large despite the present distance being small. We define the divergence for a given time, during a given con-

dition, as:

D tð Þ=max
t0 ; D

jxt+D � xt0 +Dj jj2
jxt � xt0j jj2 +a

Where t
0
indexes across all times within all movements of the same type, and D indexes from one to the largest time that can be

considered: minðT �t; T
0 �t0Þ where T is the duration of the condition associated with time t and T

0
is the duration of the condition

associated with time t
0
. For our primary analysis, divergence was measured separately for each of the four condition types. For

example, if the condition type is forward cycling starting at the top, t
0
indexes across times and across distances of that type. The

same effect was observed (SMA divergence lower than M1 divergence) if t
0
indexed across all conditions regardless of type

(Figure S7).

The state vectors xt were found by applying PCA to the population response across all times (starting 100 ms before movement

onset and ending 100 ms after movement offset) and across all conditions considered by the analysis. We term this full dimensional

matrix Xfull. Every column of Xfull contains the data for one neuron. We used PCA to reduce the dimensionality of the data to twelve,

yielding a matrix X with twelve columns. The state vector xt was then the appropriate row (corresponding to the time and condition in

question) of X. Twelve PCs captured an average of 89% and 87% of the data variance in M1 and SMA respectively. Results were not

sensitive to the choice of dimensionality; divergence was always much lower for SMA versus M1. This was also true if we did not

employ PCA, but simply used Xfull. That said, we still preferred to use PCA as a preprocessing step. Reducing dimensionality makes

analysis much faster, and the accompanying denoising of the data reduces concerns that sampling error might impact the denom-

inator in the divergence computation. To ensure that the denominator was well behaved (e.g., did not become too close to zero) we

also included the constant a, set to 0.01 times the variance of X. Results were essentially identical across a range of reasonable

values of a.

We used a bootstrap procedure to assess the statistical significance of differences in trajectory divergence between SMA and

M1. For each region for each monkey, neurons were resampled with replacement before application of PCA. Trajectory

divergence was then analyzed for the resampled populations. The difference was taken between trajectory divergence in

the resampled SMA population and the resampled M1 population and we assessed whether the resulting distribution of differ-

ences had a negative mean (i.e., whether divergence tends to be lower for SMA). This bootstrap procedure was repeated for

1000 iterations.
e4 Neuron 107, 745–758.e1–e6, August 19, 2020
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Recurrent Neural Networks
We trained recurrent neural networks to produce four and seven cycles of a sinusoid in response to external inputs. A network con-

sisted of N = 50 firing-rate units with dynamics:

t
dr

dt
= � rðtÞ+ fðAr + IðtÞ + bÞ
z = wT
outr

where t is a time-constant, r represents an N-dimensional vector of firing rates, f = tanh is a nonlinear input-output function, A is an

N3Nmatrix of recurrent weights, IðtÞ represents time-varying external input, and b is a vector of constant biases. The network output

z is a linear readout of the rates. Components of both A and wout were initially drawn from a normal distribution of zero mean and

variance 1=N. b was initialized to zero. Throughout training, A, wout, and b were modified.

Context-tracking networks were trained to generate a four-cycle versus seven-cycle output after receiving a short go pulse (a

square pulse lasting half a cycle prior to the start of the output) without the benefit of a stopping pulse. For context-tracking networks

only, go pulses were different depending on whether four or seven cycles should be produced. The two go pulses were temporally

identical, but entered the network through different sets of random input weights; IðtÞ=w4IðtÞ or IðtÞ = w7IðtÞ, where IðtÞ is a square

pulse of unit amplitude.

Context-naive networks received both a go pulse and a stop pulse. Go and stop pulses were distinguished by entering the network

through different sets of random input weights; IðtÞ=wgoIðtÞ or IðtÞ = wstopIðtÞ. Go and stop pulses were separated by an appropriate

amount of time to complete the desired number of cycles. We analyzed network activity only when go and stop pulses were sepa-

rated by four or seven cycles. Yet we did not wish context-naive networks to learn overly specific solutions. Thus, during training, we

also included trials where the network had to cycle continuously in the absence of a stop-pulse. This ensured that context-naive net-

works learned a general solution; e.g., they could cycle for six cycles and stop if the go and stop pulses were separated by six cycles.

We also considered a modification of context-tracking networks that received a downward ramping input through another set of

weights,wramp. The ramping input has a constant slope but different starting values for different numbers of desired cycles. The end

of the cycling period was indicated by the ramp signal reaching zero. Thus, such networks received explicit and continuous informa-

tion about time to the end of movement, and could inherit this information rather than constructing it through their own internal

dynamics.

Networks were trained using back-propagation-through-time (Werbos, 1988) using TensorFlow and an Adam optimizer to adjust

A,wout, and b to minimize the squared difference between the network output z and the sinusoidal target function. Input weights,w4;

w7,wgo, wstop and wramp, were drawn from a zero-mean unit-variance normal distribution and remain fixed throughout training. The

amplitude of pulses and cycles were set to a value that produced a response but avoided saturating the units. Themaximum height of

the ramp signal was set to the same amplitude as the input pulses for the seven-cycle condition. For each condition, we trained 500

networks, each initialized with a different realization of A and wout.

Trajectory-constrained Neural Networks
To test the computational implications of trajectory divergence, we trained recurrent neural networks with an atypical approach.

Rather than training networks to produce an output, we trained them to autonomously follow a target internal trajectory (DePasquale

et al., 2018; Russo et al., 2018).We then askedwhether networkswere able to follow those trajectories frombeginning to end, without

the benefit of any inputs indicating when to stop.

Target trajectories were derived fromneural recordings (M1 and SMA) during the four-cyclemovements for each of the four condition

types (forward-bottom-start, forward-top-start, backward-bottom-start, backward-top-start). Target trajectories spanned the time

period from movement onset until 250 ms after movement offset. To emphasize that the network should complete the trajectory and

remain in the final state,weextended the final sampleof the target trajectory for anadditional 500ms. Toobtain target trajectories, neural

dataweremean-centered and projected onto the top six PCs (computed for that condition). Each target trajectorywas normalized by its

greatest norm (across times). We trained a total of 160 networks, eachwith a different weight initialization. The eighty networks for each

monkey included ten each for the two cortical areas and four condition types (two starting positions by two cycling directions).

Network dynamics were governed by:

v t +Dtð Þ = v tð Þ+Dt=t �v tð Þ+A f v tð Þð Þ+w tð Þð Þ
where fðvÞ= tanhðvÞ and w � N 0;s2wI

� �
adds noise. v can be thought of as the membrane voltage and fðvðtÞÞ as the firing rate.

AfðvðtÞÞ is then the vector of inputs to each unit: i.e., the firing rates weighted by the connection strengths. Network training

attempted to minimize the difference between this input vector and a target trajectory: stargðtÞ. Training focused on the vector of in-

puts, rather than the vector of outputs (firing rates) purely for technical purposes. The end result is much the same as inputs and out-

puts are related by a monotonic function. A was trained using recursive least-squares. The target trajectory was constructed as

stargðtÞ = GytargðtÞ. ytarg is the six-dimensional trajectory derived from the physiological data. G is an N36 matrix of random weights,

sampled from U½� :5; :5�, that maps the global target trajectory onto a target input of eachmodel unit. This construction ensures that
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the target network trajectory is isomorphic with the physiological trajectory, with each unit having random ‘tuning’ for the underlying

factors. The entries of Awere initialized by draws from a centered normal distribution with variance 1=N (where N = 50, the number

of network units). Simulation employed 4 ms time steps.

To begin a given training epoch, the initial state was set with vð0Þ based on stargð0Þ and A. The network was simulated, applying

recursive least-squares (Sussillo and Abbott, 2009) with parameter a= 1 to modify A as time unfolds. After 1000 training epochs,

stability was assessed by simulating the network 100 times, and computing the mean squared difference between the actual and

target trajectory. That error was normalized by the variance of the target trajectory and converted to an R2 value. An average (across

the 100 simulated trials) R2 < 0.9 was considered a failure.

Because the empirical population trajectories never perfectly repeated, it was trivially true that networks could follow the full tra-

jectory, for both M1 and SMA, in the complete absence of noise (i.e., for sw = 0). For the larger value of sw used for our primary anal-

ysis, all networks failed to follow the M1 trajectories while most networks successfully followed the SMA trajectories (although there

were still some network initializations that never resulted in good solutions). It is of course unclear what value of sw is physiologically

relevant. We therefore also performed an analysis where we swept the value of sw until failure. The level of noise that was tolerated

was much greater when networks followed the SMA trajectories. Indeed, someM1 trajectories (for particular conditions) could never

be consistently followed even at the lowest noise level tested.

To visualize network activity (Figures 8B–8D) we ‘decoded’ the network population. To do so, we reconstructed the first three di-

mensions of the trajectory (which should match the first three dimensions of the target trajectory) by pseudo-inverting G.
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