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Salinas, Emilio and L. F. Abbott. Invariant visual responses from of their receptive fields, in several cases the responses were
attentional gain fields. J. Neurophysiol. 77: 3267–3272, 1997. In- shown to increase as attention was directed further away
ferotemporal (IT) neurons exhibit a substantial degree of invari- from the receptive field center. Interestingly, the preferred
ance with respect to translation of images used as visual stimuli. attentional loci were found in directions that appear to be
Through theoretical and computer-modeling methods, we show

unrelated to the preferred orientations or receptive field loca-
how translation-invariant receptive fields, like those of IT neurons,

tions of the cells and that are uniformly distributed (Connorcan be generated from the responses of V4 neurons if the effects of
et al. 1996, 1997). As will be shown below, this surprisingattention are taken into account. The model incorporates a recently
feature is the crucial element that allows V4 neurons toreported form of attention-dependent gain modulation in V4 and
generate object-centered receptive fields further down theproduces IT receptive fields that shift so they are centered at the

point where attention is directed. Receptive fields of variable, atten- visual processing stream.
tion-controlled spatial scale are obtained when the mechanism is

Modelextended to scale-dependent attentional gain fields. The results
indicate that gain modulation may play analogous roles in the Our model consists of a population of V4 neurons driving
dorsal and ventral visual pathways, generating transformations

a single model IT neuron through feed-forward synaptic con-
from retinal coordinates to body- and object-centered systems, re-

nections. In accordance with the data, the firing rates of thespectively.
model V4 neurons are represented by the product of two
terms: the output of a nonlinear filter acting on the luminance
distribution of the visual scene and a gain field that dependsI N T RODUC T I O N

on the location where attention is being directed. The de-
tailed structure of the V4 receptive fields is not critical forThe ability to recognize an object regardless of the precise

location and scale of its retinal image is a striking feature of the results, but the model works better when the visual re-
sponses are nonlinear in the luminosity, for reasons givenvisual perception. Inferotemporal (IT) neurons in monkeys

provide a neuronal correlate of this phenomenon by dis- below. To satisfy this requirement, visual responses of the
model V4 neurons are generated using an ‘‘energy’’ modelplaying translation- and scale-invariant responses to complex

visual stimuli (Desimone et al. 1984; Hasselmo et al. 1989; (Heeger 1991, 1992), similar to that used to describe the
receptive fields of complex cells in primary visual cortex.Logothetis et al. 1995; Lueschow et al. 1994; Miyashita and

Chang 1988; Tovee et al. 1994). Neurons at high levels of The effect of contrast normalization (Carandini and Heeger
1994; Heeger 1991, 1992) is included by dividing all visualthe object-recognition pathway of the visual system act as

complex filters selective for specific patterns of shape and responses by the total power present in the image. Receptive
field centers for the V4 neurons are distributed uniformlycolor (Desimone et al. 1984; Fujita et al. 1992; Gallant et

al. 1993; Schwartz et al. 1983). For these cells to exhibit across the visual field. To keep the total number of model
cells reasonable, the V4 receptive fields have four orientationinvariant responses, their filters need to be translated from

a fixed retinal coordinate frame to a coordinate frame cen- and three spatial frequency preferences. The output of the
visual filter for cell i is denoted by Fi (ai ; I) , where ai is thetered on an attended object (Anderson and Van Essen 1987;

Hinton 1981a,b; Olshausen et al. 1993). Despite some inter- center of the cell’s receptive field and I is the image shown.
The visual responses are multiplied by gain fields thatesting suggestions (Olshausen et al. 1993), a neuronal mech-

anism capable of producing this shift has not been verified represent the influence of attention. For each neuron, the
gain modulation decreases as the actual point where attentionexperimentally.

Lesion studies indicate that area V4 plays an important is being focused moves away from the preferred attentional
locus with the dependence being roughly Gaussian (Connorrole in the recognition of visual objects subject to a variety

of spatial transformations (Schiller 1995; Schiller and Lee et al. 1997). In accordance with these results, the gain fields
in the model are represented by Gaussian functions, G . The1991). Attention produces a number of effects in this area

(Connor et al. 1996; Desimone and Duncan 1995; Moran modulatory term for cell i is denoted by G(y 0 bi ) , where
y is the currently attended location and bi is the preferredand Desimone 1985; Motter 1993). Recent observations

(Connor et al. 1996) indicate that the visual responses of attentional locus of cell i . The Gaussian attentional gain
fields are approximately twice the size of the visual receptivemany V4 neurons are modulated by a multiplicative gain

factor that depends on where attention is being directed. The fields. According to the experimental findings, there is no
alignment or correlation between receptive field centers andgain modulation for each cell is maximal when attention is

focused on a point that we call the preferred attentional preferred attentional loci, other than the fact that they are to
some degree near to each other. In particular, for a givenlocus, and it decreases when attention moves away from this

point (Connor et al. 1996, 1997). Although the neurons neuron, the direction that the preferred attentional locus is
displaced relative to the receptive field center is random.were not tested with attention focused directly at the center
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function hcos(x) is equal to cos(x) if 0p /2 õ x õ p /2 and to 0The visual field in the model is a pixel grid representing
otherwise. Here fi and ki determine the preferred orientation andan area of 64 1 32" (32 1 32 in the case of scaling).
spatial frequency, respectively; l determines the receptive fieldAn image I , corresponding to a pattern of activated pixels,
width at baseline, which is 4" (Å 4 pixels) for all cells. Preferreddetermines the firing rates in an array of model V4 neurons.
attentional loci are located at 24 positions uniformly spaced

The response of cell i is denoted by £i and is equal to the throughout the 64 pixels in the x direction. Each visual filter output
output of its visual filter times the corresponding modulatory Fi (ai ; I) is combined with those preferred attentional loci within
factor 8 pixels from the receptive field center ai , producing six or seven

attention-modulated responses (originally we included all 24 com-£i Å Fi (ai ; I)G(y 0 bi ) (1)
binations of preferred attentional loci for each visual filter output,

The response of the single model IT neuron, termed V, is but we found that only the 6 or 7 nearest the receptive field center
actually were needed). The Gaussian attentional gain fields havedetermined by computing a synaptically weighted sum of
a standard deviation s Å 2", and therefore a baseline width ofV4 responses, subtracting a threshold u, and rectifying the
Ç4s Å 8". The result is a total of 32 1 16 1 4 1 3 1 6 V4result
responses. The threshold u in Eq. 2 serves to enhance the selectivity

V Å !!
i

Wi£i 0 u"
/

(2) of the model IT neuron by eliminating the lower, typically broader,
part of its response curve. It is set to 50% of the maximum response
obtained when u Å 0.where [x]/ is equal to 0 if x õ 0 and equal to x otherwise.

In the simulations, the V4-to-IT synapses Wi are established
by Hebbian learning (Hebb 1949; Hertz et al. 1991). During Scale invariance
a training period, a selected image is displayed and translated

In Fig. 2, images appear on a 32 1 32 pixel array, and receptiveacross the visual field, the V4 neurons respond according to
field centers are arranged uniformly on a 16 1 16 grid. The same

Eq. 1 , and the model IT neuron is held in an active state.
variety of orientations and spatial frequencies as in Fig. 1 is used.

For each image location, the synaptic weight Wi is increased Unlike Fig. 1, the visual responses are modeled as rectified linear
by an amount proportional to £iV . During learning, the focus filters. Two kinds of visual filters are considered
of attention is always fixed at the center of the training

FSi (ai ; I) Å [Si (ai ; I)]/ FCi (ai ; I) Å [Ci (ai ; I)]/ (6)image. The particular choice of image to be used during
training is entirely arbitrary; the model IT neuron becomes where the brackets again indicate rectification. To model the modu-

lation produced by the attended scale, each neuron is assigned aselective for the pattern of pixels chosen. We use this correla-
preferred attentional scale, analogous to the preferred attentionaltion-based procedure to generate the connections Wi but, as
locus in the case of modulation by an attended location. The gaindiscussed below, other mechanisms might serve the same
modulation is a Gaussian function of the difference between thepurpose equally well. The synaptic weights that give rise to
current attended scale and the preferred attended scale of eachshifting receptive fields are not unique and thus could be
neuron. A set of 20 preferred attended scales, varying from 3 to

generated in a number of ways.
30", is used to modulate the visual responses; the standard deviation
of the Gaussian gain field is s Å 1". A total of 16 1 16 1 4 1

METHOD S 3 1 2 1 20 gain-modulated V4 responses are used. The threshold
u is set in this case to 40% of the maximum response obtained

Translation invariance
when u Å 0 (this value is slightly smaller than in the case of
translation, so the resulting response curves are not excessivelyIn Fig. 1, images appear on a 64 1 32 pixel array (1 pixel Å
narrow).1") , and receptive field centers ai are distributed uniformly on a

32 1 16 grid, separated by 2 pixels in each direction. For each
location, there are neurons with four orientation preferences, 0, 45, R E S U L T S
90, and 135", and three frequency selectivities, 1/8, 2/8 and 3/8

In the computer simulations, an image is shown at a partic-cycles per degree. Complex-cell-like responses Fi (ai ; I) are gener-
ated using an energy model (Heeger 1991, 1992) by adding the ular location, the model V4 neurons respond according to
squared outputs of two linearly filtered versions of the image I Eq. 1 and drive the model IT neuron as specified by Eq. 2 .

The synaptic connections are established first by translatingFi (ai ; I) Å [Si (ai ; I)]
2 / [Ci (ai ; I)]

2 (3)
the training image and enabling the Hebbian synaptic modi-

Si and Ci stand for the outputs of localized sine and cosine linear fication process described above. After training, the synaptic
filters, i.e., weights are not modified any more and the model then is

tested. During training, the value of y , corresponding to theSi (ai ; I) Å ! dx I(x) f Si (x 0 ai )
position of the attentional locus, is equal to the position of
the image presented; during testing, it is set to a variety of

Ci (ai ; I) Å ! dx I(x) f Ci (x 0 ai ) (4)
fixed locations. The results plotted in the figures show IT
responses during the testing phase.

The linear filters are similar to Gabor functions (Field and Tolhurst Figure 1 shows the results when the letter R was used as
1986; Jones and Palmer 1987) except that, for reasons of computa-

the training image. The model IT neuron is selective for this
tional efficiency, half-cosine envelopes (rather than Gaussian) are

shape, firing at a maximum rate when the R is centered withinused
its receptive field (a, top). A different letter, or a degraded

f Si (x) Å hcos (x1 /l)hcos (x2 /l) sin {ki[cos (fi )x1 / sin (fi )x2]} version of the R, evokes less rapid firing (c and e). To test
for receptive field translation, the locus of attention y wasf Ci (x) Å hcos (x1 /l)hcos (x2 /l)
moved (a, bottom). The similar responses at the top and bottom1 cos {ki[cos (fi )x1 / sin (fi )x2]} (5)
of a and the results of b show that the receptive field shifts
with attention. The firing rate varies with the type of imageThe position vector x has components (x1 , x2) , and the half-cosine
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FIG. 1. Computer simulation of model network
for images translated across visual field. Center of
circle indicates locus of attention. a : inferotemporal
(IT) responses to translated versions of a letter R,
which was presented previously during learning.
Spike trains on right are generated for visualization
purposes using a Poisson process based on mean fir-
ing rate of model IT cell. IT neuron response depends
on location of R relative to current attentional locus.
Examples are shown with attention focused at pixels
16 and 48. Scale bar is 4 pixels. b : IT response (nor-
malized mean firing rate) plotted as a function of
image location. As in d and f , filled circles indicate
attention centered at pixel 16; open circles indicate
attention at pixel 48. c and d : responses of same
model neuron to an M. e and f : responses to a de-
graded version of R. In all cases, IT receptive field
moves with attention.

presented and with its location, but the neuronal response de- This expression indicates that the synaptic weight from a
particular V4 cell depends on the displacement between itspends on the position of the image relative to the locus of

attention, not on its absolute location. This is shown for two preferred attentional locus and receptive field center but not
on these two locations independently. It also implies that,different attentional loci in Fig. 1, a and b , but is true for

attention focused at any point in the visual field. Therefore, the viewed as functions of ai , the synaptic weights for two
groups of neurons with different bi are translated versionsneuron selectively reacts to an image in an attention-centered

coordinate system. Equivalent results are obtained when other of one another. The weights also may depend on other pa-
rameters, such as preferred orientation, and no constraintsimages are used during training: in all cases the IT neuron

becomes selective for the training image, firing at higher rates are placed on those additional dependencies. For simplicity,
we will ignore these additional dependencies in the followingthan when other test images are shown and keeping its receptive

field center in register with the attentional locus. analysis. If condition 7 is satisfied, it can be shown, under
fairly general assumptions, that gain modulation gives riseThe model gives rise to translating receptive fields because

collections of V4 neurons with similar preferred attentional to shifting receptive fields. For clarity, we consider the sim-
ple case in which the visual responses are given by linearloci act as separate pools to construct local IT filters centered

at different locations. The modulatory gain fields select pools filters acting on the image I
acting near the point of attention, interpolate seamlessly

F(ai ; I) Å ! dx I(x) f(x 0 ai ) (8)
among them, and suppress irrelevant pools acting far from
the attentional locus. The result is that the IT receptive fields However, it should be stressed that nothing restricts the anal-
filter the luminance distribution relative to the locus of atten- ysis to this case; similar results can be derived for nonlinear
tion, not to any fixed retinal location. filters.
Analytic work supports the results shown and can provide To proceed further with this analytic approach, we must

some intuition into the mechanism at work in the model. assume that preferred attentional loci corresponding to a
The crucial elements in Eq. 2 are the synaptic weights Wi , given receptive field placement are uniformly distributed
defined as the strength of the synapse connecting the model over the entire visual field, something not seen in the data.
IT neuron to V4 neuron i. The requirement for attention to However, in computer simulations, we have found that neu-
produce shifting receptive fields is that the weights Wi de- rons with attentional loci that are far away from the corre-
pend on the receptive field centers ai and preferred atten- sponding receptive field centers have a negligible impact.
tional loci bi only through their difference, i.e. Thus this assumption can be relaxed without changing the

performance of the model. To see that the IT response shiftsWi Å W (ai 0 bi ) (7)
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Equation 10 is precisely a filtered version of I that shifts
with the locus of attention, y . Thus the receptive field of the
IT neuron, determined by the resulting filter F, will move
with the attentional locus. The simulations confirm this result
because the simple Hebbian synaptic modification scheme
used produces synaptic weights that satisfy Eq. 7; this too
can be shown analytically (for a related example see Salinas
and Abbott 1995). The particular values of the synaptic
weights determine the precise form of the final shifting filter
F. This is not limited significantly by Eq. 7 because the
single-variable function on the right side of Eq. 7 is entirely
arbitrary. Furthermore, sets of weights Wi and wi projecting
to two different IT neurons can satisfy simultaneously the
conditions Wi Å Wi (ai 0 bi ) and wi Å wi (ai 0 bi ) and still
be completely different from each other. Thus the same array
of gain-modulated V4 neurons can serve as a basis for multi-
ple, arbitrary shifting filters.
The same mechanism that we have described for generat-

ing shifting receptive fields also can produce receptive fields
that are scaled to an image size specified by an attentional
signal. This requires gain fields that depend on an attended
scale. In this case, we model the gain field for each neuron
as a Gaussian function of the difference between the attended
scale and a neuron-specific preferred attentional scale. An
analogous Hebbian mechanism is used to establish the syn-
aptic weights. During learning, an image is presented at a
variety of sizes while the attended scale is set to the size of
each image, the model IT neuron is held in an active state,
and the synaptic connections change by an amount propor-
tional to pre- and postsynaptic activity. In this case, images
are presented always at the same position (just as size was
kept constant in the case of translation). After training, the
model then is tested by computing the IT response evoked
by different images. Figure 2 shows the results of a computer
simulation in which letters E of different sizes were used
during training. In this case, the resulting IT response de-

FIG. 2. Computer simulation of model network for images shown at pends on the match between the size of the presented image
different scales. Letters E, previously presented during learning, are shown. and the attended scale, but not on the absolute size of the
a : IT responses to images of sizes 27, 25, and 19 pixels when attended image (Fig. 2, a–c) . The responses are also selective for
scale is set at 27 pixels ( – – – ). Spike traces are produced for visualization

the image used during training, as shown in e ; the degradedpurposes using a Poisson process based on resulting IT firing rates. b :
E elicits a weaker response than the original E used duringresponses when attended scale is equal to 9 pixels, for images of sizes 9,

11, and 17 pixels. In both a and b, neuron responds strongly when attended training. Interestingly, this graph reveals that the optimal
scale closely matches size of image. c : mean normalized IT response plotted attended scale for the degraded E is slightly bigger than for
as a function of image size. Filled circles, attended scale of 9 pixels; open

the original E, consistent with the fact that the former iscircles, attended scale of 27 pixels. d : degraded version of an E and neural
effectively one pixel wider than the latter.response when attended scale is 15 pixels. e : mean normalized IT response

vs. attended size. Filled circles, responses to original E of size 15 pixels;
open circles, responses to degraded E shown in d .

D I S CU S S I ON

with attention, all that is needed is to substitute expression There are two costs associated with a gain modulation
8 into Eq. 1 and approximate the sum over cells in Eq. 2 mechanism for producing object-centered receptive fields.
by an integral over their labels, assuming uniformity, high First, there is some loss of resolution in the relative place-
density, and independence. The synaptically weighted sum ment of the different V4 filters because the synaptically
then becomes weighted sum that determines the IT neuron response acts

effectively as a convolution over the gain field profile (see!
i

Wi£i " ! dxdadb W (a 0 b)G(y 0 b)I(x) f ( x 0 a) (9)

Eq. 9) . However, analytic calculations show that the atten-
tional gain field causes no loss of resolution for featuresMaking the substitutions a r a / y and b r b / y, the
within the receptive field of a given V4 cell, provided thatintegral takes the following form
the visual filter is a nonlinear functional of the luminance! dx I(x)F(x 0 y) (10)
distribution. Indeed we found that the simulated IT responses
are more selective when the V4 neurons are modeled aswith
nonlinear filters ( like, for example, those of complex cells)

F(x 0 y) Å ! dadb W (a 0 b)G(b) f ( x 0 y 0 a) (11)
than as linear filters. Nevertheless, not all nonlinearities are
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equally resistant to the ‘‘smearing’’ caused by the convolu- of the maximum weight were kept, the rest being set to 0.
In simulations analogous to those shown in Fig. 1, a cutofftion over the gain field profile. In the case of translation, the

complex-cell-like responses used to generate Fig. 1 (Eq. 3) equal to one-half the maximum weight eliminated all but
Ç3,300 connections. Rather than interfering with the shiftingresult in a more pronounced IT selectivity than the simple-

cell-like filters of Eq. 6 , although, because of rectification, effect, or distorting the shape of the model IT tuning curve,
this manipulation noticeably increased the selectivity of thethese too are nonlinear. The opposite happens in the case of

scaling; the rectified linear filters produce IT receptive fields IT neuron, leaving the shifting effect intact. These results
indicate that, in the model, most of the highly selective partthat are more selective than those obtained through the en-

ergy model. Thus each invariance is best achieved using a of the IT response is determined by relatively few V4 neu-
rons. They also suggest that synaptic pruning might act asparticular type of matched nonlinearity.

Second, the number of V4 cells needed to cover the visual an effective mechanism to enhance the selectivity of neural
responses.field with both receptive fields and attention gain fields is

greater than the number required without attentional modula- Visual neurons with gain fields that depend on the location
where attention is being focused thus can form an effectivetion. We estimate this redundancy factor at somewhere be-

tween 20 and 100. In the simulations, only six attentional basis for receptive fields that shift across the retina. Simi-
larly, visual responses that are gain modulated by the scaleloci near to a given receptive field center were needed to

achieve full translation invariance; adding more loci had no that is being attended could serve to generate receptive fields
that zoom into or out of a region. Like others (Hintoneffect on the results. The exact number required depends on

the size of the image that needs to be translated (images 1981a,b; Olshausen et al. 1993), we envision that the re-
sponses of high-level visual neurons are fed back to guideused were 16" wide). If a factor of 6 corresponds to transla-

tion along a single dimension, a factor of 36 would be needed the attentional signal, so that receptive fields are scaled accu-
rately and centered on objects that produce robust responses.for two dimensions (scale invariance would require an addi-

tional factor between 10 and 50). The actual redundancy The mechanism described here is distinct from previous
models that achieve translation invariance either throughfactor required may be higher, because of effects that are not

included in the model: not all V4 cells are equally modulated multilayered connectionist architectures engineered to pro-
duce ‘‘grandmother-cell’’-like responses (Fukushima 1980)(Connor et al. 1996) and IT neurons also show some degree

of rotation and perspective invariance (Logothetis et al. or by specifying a hypothesized learning or recall dynamics
at single synapses (Anderson and Van Essen 1987; Földiák1995). The combinatorial growth could require attentional

modulation acting through successive stages in the ventral 1991; Hinton 1981a,b; Olshausen et al. 1993; Wallis 1994).
The present model exploits the mechanism of gain modula-visual pathway, such that a sequential transformation gradu-

ally accumulates. There is some evidence that attentional tion within a neuronal array in a way that is consistent with
reported observations (Connor et al. 1996, 1997) and placeseffects are present in early visual cortical areas (Moran and

Desimone 1985; Motter 1993). B. Olshausen has pointed a much looser constraint on the individual synapses. Our
model is related closely to ideas developed during the studyout (personal communication) that the modest shifting effect

seen in V4 neurons (Connor et al. 1996) could be due to of parietal cortex, where gaze-direction-dependent gain mod-
ulation of visual responses has been reported (Andersen etattentional gain modulation acting at visual stages before V4.

The gain modulation mechanism has the outstanding ad- al. 1985, 1990; Brotchie et al. 1995). Theoretical work (An-
dersen et al. 1990, 1993; Pouget and Sejnowski 1995, 1996;vantage that IT neurons with complex and specialized selec-

tivities do not have to be duplicated across the visual field, Salinas and Abbott 1995; Zipser and Andersen 1988) sug-
gests that gain-modulated parietal activity forms the basis forbecause they can be shifted to the location where they are

needed. Although we considered only a single model IT transformations from retinal to body-centered coordinates
useful in visually guided motor tasks. We propose here thatneuron, the same set of V4 neurons can project to other

neurons that respond selectively to different images. Atten- a similar mechanism acts to transform images from a retinal
basis to an object-centered form useful for invariant percep-tional gain modulation in V4 then will cause all of the differ-

ent IT receptive fields to shift with attention. The price paid tion. Thus gain modulation may be used in a similar manner
to perform coordinate transformations in both the dorsal-is the large number of V4 neurons required, but these have

much simpler receptive fields and, once generated, can serve ‘‘where’’ and the ventral-‘‘what’’ visual pathways.
as a basis for an arbitrary set of highly selective receptive
fields that then will be shifted by attention. We are grateful to D. Van Essen and E. Connor for enlightened discus-

sions and for telling us about their experiments. We also thank C. AndersonA related point concerns the number of synapses used in
and B. Olshausen for helpful comments and discussions.the model. The model IT neuron potentially could make
This research was supported by the Sloan Center for Theoretical Neurobi-

connections with all the neurons in the V4 array, Ç40,000 ology at Brandeis University, National Science Foundation Grant DMS-
of them. However, analysis of the weights produced by the 9503261, the W. M. Keck Foundation, and the Conacyt-Fulbright-IIE pro-

gram.computer simulations showed that, for the parameters used
Address reprint requests to L. F. Abbott.in Fig. 1, many of them were essentially 0 (i.e., õ5% of

the maximum weight) . The reason is that, for a given image Received 11 September 1996; accepted in final form 7 February 1997.
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