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Transfer of Coded Information from Sensory to Motor Networks 

Emilio Salinas and L. F. Abbott 
Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254 

During sensory-guided motor tasks, information must be 
transferred from arrays of neurons coding target location 
to motor networks that generate and control movement. We 
address two basic questions about this information trans- 
fer. First, what mechanisms assure that the different neural 
representations align properly so that activity in the sen- 
sory network representing target location evokes a motor 
response generating accurate movement toward the tar- 
get? Coordinate transformations may be needed to put the 
sensory data into a form appropriate for use by the motor 
system. For example, in visually guided reaching the lo- 
cation of a target relative to the body is determined by a 
combination of the position of its image on the retina and 
the direction of gaze. What assures that the motor network 
responds to the appropriate combination of sensory inputs 
corresponding to target position in body- or arm-centered 
coordinates? To answer these questions, we model a sen- 
sory network coding target position and use it to drive a 
similarly modeled motor network. To determine the actual 
motor response we use decoding methods that have been 
developed and verified in experimental work. We derive a 
general set of conditions on the sensory-to-motor synaptic 
connections that assure a properly aligned and trans- 
formed response. The accuracy of the response for differ- 
ent numbers of coding cells is computed. We show that 
development of the synaptic weights needed to generate 
the correct motor response can occur spontaneously 
through the observation of random movements and cor- 
relation-based synaptic modification. No error signal or ex- 
ternal teaching is needed during this process. We also dis- 
cuss nonlinear coordinate transformations and the pres- 
ence of both shifting and nonshifting receptive fields in 
sensory/motor systems. 

[Key words: sensory-motor integration, neural coding, vi- 
sually guided reaching, coordinate transformations, popu- 
lation decoding, correlation-based learning] 

Reaching for an object, turning toward a visual or auditory cue, 
and a host of other sensory-guided motor tasks require the trans- 
fer of information from sensory to motor systems. Specifically, 
in these tasks sensory information about target location must be 
transferred to motor networks that generate movement toward 
the target. The coding of both target location in sensory net- 
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works (Knudsen and Konishi, 1978; Andersen, 1989; Takahashi, 
1989; Stein, 1992) and movement direction in motor networks 
(Georgopoulos et al., 1986, 1988, 1993; van Gisbergen et al., 
1987; Lee et al., 1988) involves the collective activity of large 
numbers of neurons individually tuned to respond over a broad 
range. Given this population coding strategy, how is the appro- 
priate information transferred accurately from sensory to motor 
systems? 

To produce accurately guided movement, a sensory network 
coding target location must, through synaptic connections, evoke 
a pattern of firing in a motor network that generates movement 
to the target. By sensory network we mean an array of neurons 
coding sensory information about target location at some late 
stage in a sensory pathway. Likewise, the motor network we 
discuss is a similar array coding the direction of movement at 
an early stage in a motor pathway. Three basic questions arise 
when we consider the flow of information between such neu- 
ronal arrays. The first is the alignment problem: what set of 
synaptic connections assure that activity in a sensory network 
coding target position evokes a response in the motor system 
that generates movement precisely toward the target? This ques- 
tion is often made more complex by a second issue, the trans- 
formation problem. Coordinate transformations may be required 
to put the information coming from sensory input into a form 
that is useful for generating motor output. Consider, for example, 
visually guided reaching. In such a task, the position of the im- 
age of the target on the retina does not indicate where the target 
is located relative to the head or body. Instead, a correction for 
the direction of gaze must be made and the motor system must 
respond to an invariant combination of retinal target position 
and gaze direction. Further transformations placing the target 
location in body- and arm-centered coordinates are required as 
well (Caminiti et al., 1990, 1991; Flanders et al., 1992; Kalaska 
and Crammond, 1992; Soechting and Flanders, 1992). What set 
of synaptic cohnections assures that the correct combination of 
sensory data (retinal position, gaze direction, head and arm po- 
sition) is transferred to the motor network to evoke a pattern of 
motor activity that generates the appropriate motor response? 
Finally, a third basic question concerns the development and 
maintenance of these synaptic connections: what synaptic mod- 
ification mechanisms assure that the correct synaptic connections 
arise during development and training and are maintained during 
ongoing activity? 

The Model and Approach 
It might appear that addressing these questions would require 
the construction of a full neural network model of sensory-guid- 
ed reaching tasks (Bullock and Grossberg, 1988; Kawato et al., 
1988; Kuperstein, 1988a,b; Jeannerod, 1990; Gaudiano and 
Grossberg, 1991; Burnod et al., 1992; Kettner et al., 1993; Lu- 
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kashin and Georgopoulos, 1993). However, by making use of 
what is known about the representation of target location and 
movement direction by the ensemble activity of arrays of neu- 
rons, we can both simplify the model building process and in- 
crease the accuracy of the model. We do not attempt to model 
how firing activity arises in the neurons coding sensory infor- 
mation, but instead use mathematical fits of average firing rate 
tuning curves. The firing responses within the sensory array in 
our model are generated from these tuning curves combined 
with randomly generated fluctuations. These allow us to include 
the high degree of variability seen in the firing rates of cortical 
neurons (Softky and Koch, 1992, 1994; Shadlen and Newsome, 
1994). 

Firing in the simulated sensory array drives a motor array 
through a set of synaptic connections. To determine the motor 
response generated by the resulting pattern of firing in the motor 
array, we use population decoding methods developed precisely 
for this purpose in experimental work. Population decoding has 
been used to relate the direction of arm movements of monkeys 
performing reaching tasks to firing activity in the motor cortex 
(Georgopoulos et al., 1986, 1988, 1993) premotor cortex (Cam- 
initi et al., 1991), and cerebellum (Fortier et al., 1989). We use 
this and similar techniques (for a review, see Salinas and Abbott, 
1994) to determine the movement that would be generated by a 
particular pattern of activity in the motor array of our model. 
This enables us to compute, for a given set of synaptic connec- 
tions, the accuracy of the resulting movement and thus to de- 
termine what synaptic connections produce correctly trans- 
formed and aligned motor responses. 

Important insights about how coordinate transformations may 
be performed by neural circuits have been provided by Andersen 
and collaborators (Zipser and Andersen, 1988; Andersen et al., 
1993). Area 7a parietal neurons simultaneously represent both 
gaze direction and retinal position in a multiplicative manner 
(Andersen and Mountcastle, 1983; Andersen et al., 1985). In- 
dividual neurons in area 7a are tuned to the retinal position of 
a visual stimulus. When the gaze angle shifts, each tuning curve 
retains its retinal position selectivity but its height is modulated 
by a gaze-angle-dependent gain field. This allows both retinal 
position and gaze direction to be simultaneously encoded by the 
same sensory array. It has been suggested that such a represen- 
tation is sufficient to allow downstream networks to extract the 
information needed to guide movement (Andersen, 1989; Stein, 
1992; Andersen et al., 1993). In this view, a gaze-angle-invariant 
neuronal representation of target position does not have to ap- 
pear anywhere within the sensory system. Zipser and Andersen 
(1988) used back-propagation methods to construct a network 
model with an intermediate representation like that in parietal 
area 7a and with an output providing a gaze-angle-invariant tar- 
get position. However, as Zipser and Andersen (1988) them- 
selves note, neural representations are likely to be distributed 
throughout the nervous system. Therefore, the crucial issue is 
not whether a mathematical neural network can generate an in- 
variant output but rather whether the mixed representation of 
retinal position and direction of gaze can evoke distributed ac- 
tivity within a motor network that generates the correct motor 
response. Our model and approach allow us to examine this 
issue and they provide a mechanistic understanding of how dis- 
tributed sensory and motor representations interact as well as a 
quantitative determination of movement accuracy. 

We consider the transfer of information between only two 
networks, clearly a drastic simplification. Nevertheless, the two 

network model allows us to examine both the transfer of target 
information and coordinate transformations of this information. 
Our approach and results can be applied to any neural system 
where a sensory array guides the generation of movement by a 
motor network. Examples include saccades to visual (van Gis- 
bergen et al., 1987; Lee et al., 1988) or auditory (Knudsen and 
Konishi, 1978; Takahashi, 1989) targets or simpler actions like 
the bending reflex of the leech (Kristan, 1982; Lockery and Kris- 
tan, 1990a,b). Our analysis can also be extended to purely sen- 
sory systems (see Discussion). However, we will mainly focus 
on visually guided reaching tasks, in particular, one- and two- 
dimensional reaching tasks at fixed distance, for example, touch- 
ing a spot of light on a screen. The coding of variable distances 
can be included using a similar approach (Pouget and Sejnowski, 
1994). It has been suggested (Andersen, 1989; Glickstein, 1990; 
Stein, 1992; Andersen et al., 1993) that a representation of visual 
target location in area 7a is combined with arm position infor- 
mation in area 7b to generate a representation of intended move- 
ment direction in premotor and then motor cortex (Kalaska and 
Crammond, 1992). Along the way, a series of coordinate trans- 
formations are made from retinal to head-, body-, and arm-cen- 
tered coordinates (Caminiti et al., 1990, 1991; Flanders et al., 
1992; Kalaska and Crammond, 1992; Soechting and Flanders, 
1992). We will focus on the transformation from target location 
in retinal coordinates to the representation of movement direc- 
tion in head-centered coordinates. The same mechanisms that 
we uncover in this example can be used to generate transfor- 
mations to body- and arm-centered coordinates that incorporate 
the effects of head (Biguer et al., 1988; Roll et al., 1991; Brotch- 
ie et al., 1995) and arm position (Caminiti et al., 1990, 1991). 

We call the location that is the final target of an arm move- 
ment the goal location. Correct alignment of the sensory and 
motor representations occurs when the target location and move- 
ment goal location are identical. For our model, we will derive 
a condition on the weights of the synapses coupling the sensory 
array to the motor network that guarantees accurate alignment 
of the motor response to a correctly extracted combination of 
sensory signals. Synaptic weights satisfying this condition arise 
spontaneously in the model from an unsupervised correlation- 
based learning rule when, during development, the motor system 
provides the stimulus for the sensory system. This form of learn- 
ing has been proposed in childhood development (van der Meer 
et al., 1995) and has been used in other models of reaching tasks 
(Kuperstein, 1988a,b; Gaudiano and Grossberg, 1991). In our 
model, development of the correct synaptic connections by this 
mechanism occurs spontaneously through observation of ran- 
dom movements and does not require any externally or inter- 
nally generated error signals. 

By using prefit tuning curves and population decoding tech- 
niques we avoid considering how the sensory array finds and 
identifies the target or how the transformations from a coded 
direction to limb movement kinematics and trajectories (Abbott 
and Blum, 1995) and force dynamics (Alexander and Crutcher, 
1990a,b; Crutcher and Alexander, 1990; Mussa-Ivaldi and Gisz- 
ter, 1992; Redish and Touretzky, 1994) are made. These are 
interesting and important issues but it is a strength of our ap- 
proach that we can address other relevant questions without hav- 
ing to deal with these problems as well. 

The first example we study with our model and methods is 
the transfer of target location from a sensory to a motor array 
without including any coordinate transformations. In a visually 
guided task, this corresponds to the transfer of information from 



The Journal of Neuroscience, October 1995, 15(10) 6463 

a sensory network coding retinal position of a target at fixed 
gaze angle, to a motor network coding movement direction. In 
this case no distinction needs to be made between target location 
and retinal position. We then include the effects of a variable 
gaze angle to study how the correct coordinate transformation 
is made. Finally, we return to the case of fixed gaze direction 
to study the simultaneous encoding of many variables and to 
demonstrate a nonlinear coordinate transformation between the 
sensory and motor arrays. 

Methods 
We apply a combination of analytic and computer simulation techniques 
to study the problem of control of motor actions by a sensory array of 
neurons coding target position. The analytic approach requires some 
simplifying assumptions and approximations but produces very general 
results. These are then tested and extended by computer simulations 
that do not rely on these simplifications. 

List of symbols 
x = the location of the target coded in the sensory array. When we 

consider variable gaze directions, this is the target location relative to 
the fixation point or, equivalently, the retinal position of the target. For 
one-dimensional examples, x is a single number while in two-dimen- 
sional cases it is a vector with Cartesian components (x,, x2). 

y  = the location of the fixation point characterizing the direction of 
gaze. 

z = the goal location of the movement generated by the motor array. 
In some of our examples this is instead an angle characterizing the 
movement direction. 

& = the firing rate of neuron i in the sensory array. 
R:” = the firing rate of neuron i in the motor array. 
n; = a random noise term included in the response of neuron i in 

the sensory array. 
n1 rl, = a random noise term included in the response of neuron i in 

the motor array. 
a, = the target location evoking the maximum average firing response 

in neuron i of the sensory array (at fixed gaze direction when this is 
included). We call this the preferred target location or retinal position. 
Like the target location it is either a single number or a two-dimensional 
vector. 

b, = a particular gaze fixation point characterizing the response of 
neuron i in the sensory array as a function of gaze direction for a fixed 
retinal target location. We call this the preferred location of gaze al- 
though, for the linear gain fields we use, the average response of neuron 
i actually reaches its maximal plateau at y  = b, (see below). 

c, = the movement goal location associated with the maximum av- 
erage firing rate of neuron i in the motor array. We call this the preferred 
movement goal location for neuron i. 

f(la, - xl) = the average firing rate of neuron i in the sensory array 
when the target location is x and the gaze direction is fixed. The notation 
la, - XI means that the average firing rate depends on the distance 
between the actual target location and the preferred target location for 
this neuron. 

&, - xl, lb, - yl) = the average firing rate of neuron i in the sensory 
array when the target location in retinal coordinates or retinal position 
is x and the gaze direction is y. 

g(lc, - zl) = the average firing rate of neuron i in the motor array 
when the movement goal location is z. 

W,, = the strength of the synaptic connection from neuron j in the 
sensory array to neuron i in the motor array. 

We use the notation [RI, = R if R 2 0 and zero otherwise for any 
quantity R. This is used to eliminate negative firing rates. In addition, 
[R]$! = M if R 2 M and [RI, otherwise. This is used to set a maximum 
firing rate M. 

Firing rate tuning curves and variability 
We reproduce the firing activity of neurons in the sensory array re- 
sponding to a particular target location by modeling the average firing 
rates of the coding neurons and their variability about this mean. The 
average firing rates are characterized by tuning curves that are functions 
of target location. When we consider a sensory array coding both retinal 
position and gaze direction, the average firing rate tuning curves depend 

on both of these quantities. For simplicity, tuning curves for different 
neurons in a given array are assumed to have the same shape but dif- 
ferent preferred locations. The average firing rate tuning curves we use 
can have almost any form but they must have one important property: 
the average firing rate for a coding neuron depends only on the distance 
between the location being coded and the preferred location for that 
neuron. Mathematically, for the sensory array at fixed direction of gaze 
with target location x, the firing rate of a neuron with preferred target 
location a, will be 

R: = .A@ - 4 + q1:. (1) 
The function f  is the average firing rate and n; is a random variable that 
introduces firing rate fluctuations. Random fluctuations for the different 
neurons are generated independently from a Gaussian probability dis- 
tribution with zero mean and standard deviation equal to the average 
firing rate. Thus, the firing rate variability is characterized by a dimen- 
sionless coefficient of variation equal to one (Softky and Koch, 1992, 
1994). We have chosen Gaussian rather than Poisson variability so that 
the fluctuations can be characterized by a dimensionless parameter. 
Modeled in this way, firing rate fluctuations are uncorrelated between 
neurons. The effect of correlated noise is considered in the Discussion. 

When a variable gaze direction y  and preferred gaze location b, are 
included, the firing rate is expressed as 

R: = fib, - 4 lb, - YI) + rl:. (2) 
In this case, x is the retinal position of the target and a, is the preferred 
retinal position for neuron i. 

The assumptions that we have made about the average firing rate 
tuning curves may seem more restrictive than they really are. The tuning 
curves of individual neurons do not have to be identical, symmetric, or 
even peaked for our results to be valid. This is because our results still 
apply if we replace the tuning curves of individual neurons with average 
tuning curves obtained from summing a number of neurons with sim- 
ilarly placed receptive fields. Thus, the functionsf(and g defined below 
for the motor array) can be thought of as average tuning curves obtained 
from neurons with similar preferred locations. In this average it is pos- 
sible to combine tuning curves that individually differ, are asymmetric, 
and have no preferred location and still obtain average tuning curves 
with all the properties we assume. In the case of the linear gain curves 
characterizing gaze direction effects, we will make use of this trick. We 
should stress that our proofs can be extended to the case of nonsym- 
metric and nonidentical tuning curves if assumptions about uniformity 
across the population of coding neurons are made. However, to keep 
the derivations simple we do not include these extensions. 

For the analytic work we use average firing rates. The effects of 
fluctuations are considered in the computer simulations. This is because 
the fluctuations we include are too large for the usual linear approxi- 
mations used to calculate their effects analytically to be valid. The an- 
alytic results are extremely general, they apply for any functions f  and 
g (see below) characterizing the average neuronal responses. For com- 
puter simulations we must, of course, choose definite functions for the 
neuronal tuning curves. For the sensory array we use Gaussian tuning 
curves, which fit the retinal position data from parietal cortex (Andersen 
et al., 1985; Zipser and Andersen, 1988). At fixed gaze direction this 
means 

f(b, - xl) = Lx exp(-e). 

I f  the width of these curves is defined at e-l’* of their peak value R,,,, 
this tuning curve has a width of 2a. When variable gaze direction is 
included we express the tuning curves as the product of a Gaussian 
function of the retinal position of the target x and a gain field that 
depends on the direction of gaze y. The gaze direction effects found in 
parietal area 7a were described as products like this with approximately 
linear gaze modulation (Andersen et al., 1985). A fully linear gain mod- 
ulation is awkward for us because it is unbounded, so instead we use 
a clipped linear function that cannot increase beyond a certain maxi- 
mum value M. Thus, as a function of both retinal position and gaze 
direction, 

ftlu-xI,b.-y)=+exp(-v)[i(b.-y)+w:’, (4) 

where the notation [ I? defined in the List of symbols means the gain 
modulation is linear but bounded between 0 and M so the averaging 
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firing rate is between zero and R,,,. The plus/minus sign allows for gain 
fields that either decrease or increase as a function of gaze direction. 
The preferred gaze location b, marks the points where the maximum 
value of the gain field is reached. Note that these tuning curves are not 
functions of the absolute value of b, - y. However, if we average the 
tuning curves from two neurons with the same preferred gaze location 
b but one with a plus sign and one with a minus sign in Equation 4, 
the combination is a function of lb, - yI as in Equation 2. As mentioned 
previously, use of average tuning curves allows us to apply the theorems 
proved in the Appendices without adding addition complications, al- 
though it is not essential. 

In some of our studies we examine the coding of two or more quan- 
tities by a single sensory array. In these studies we express the average 
firing rate as a product of Gaussian tuning curves for each of the coded 
quantities. For example, when we consider the coding of target location 
in two dimensions we use tuning curves like Equation 3, where x and 
a, are two-dimensional vectors and the absolute value represents the 
vector length. 

To decode the population response of the motor array, we need to 
relate the average firing rates of the neurons to the direction of move- 
ment. I f  the movement is directed toward the location Z, we assume 
that a neuron in the motor array with preferred movement goal location 
c, fires at an average rate g(lc, - zl) that depends on the distance be- 
tween the these two locations. For the motor system we use tuning 
curves that are either Gaussian, 

dlc, - zl) = K,,exp 
or cosine, 

sdc, - zb = Rm,, [cos(+$)]+. (6) 

as seen in the motor cortex of the monkey (Schwartz et al., 1988). The 
notation [ 1, defined in the List of symbols prevents negative firing 
rates. In addition to eliminating the negative portion of the curve, we 
also use only one cycle of the cosine function (see Fig. 1). The width 
of the cosine tuning curves is measured between the zero crossings and 
is 2~. Note that the average fire rate tuning curves for the motor array 
are not used to generate firing rates (except in our initial study of de- 
coding accuracy) but to decode them. 

Synaptic weights and modification rules 
In our studies, the activity in the sensory array that encodes target po- 
sition is used to drive the motor array. This is done through synaptic 
coupling between the sensory and motor networks. We characterize the 
strength of the synaptic connection from neuron j of the sensory array 
to neuron i of the motor array by the weight Wx,. The firing rate of 
neuron i in the motor array is given by 

(7) 

where the [ 1, notation again eliminates negative firing rates. The term 
qy introduces random Gaussian fluctuations with standard deviation 
equal to the mean firing rate just as in the case of the sensory array. 

We will show that a simple training procedure allows the synaptic 
weights in Equation 7 needed to produce accurate movement toward a 
sensory-coded target to develop spontaneously. Initially we considered 
two possible candidate rules for computing how activity modifies syn- 
aptic strength. In both cases the synaptic weights arising from a devel- 
opment or training period depend on the average correlation between 
pre- and postsynaptic firing rates during that period. We denote averages 
over the development period by brackets ( ). For the Hebb rule (Hebb, 
1949), the strength of the synapse from neuron j in the sensory array 
to neuron i in the motor array following the development/training period 
is 

w, = (R:R;). (8) 
(We could include a proportionality constant in this equation but, for 
our purposes, this makes no difference. Our results depend on the pat- 
tern of synaptic weights, not on their absolute magnitude.) Another 
alternative is the covariance rule (Sejnowski, 1977), for which 

W, = (RP;) - (R”) (R;). (9) 

In our case, the last term on the right side is a constant, so we use a 
rule that encompasses both cases, 

W, = (Ry R;) - k, (10) 
and we generalize it by allowing k to be an arbitrary constant. In the 
results shown, k was set to optimize the performance of the system. 

The training procedure we use consists of generating random move- 
ments that act as target locations for the sensory array. In the case when 
the gaze direction is fixed, this means that the target location x is equal 
to the goal location z because the sensory target is the moving arm 
itself. During the development/training period random motor activity 
positions the arm at various different goal locations. We assume that if 
the arm is observed during this process, the movement goal location 
will be represented in the sensory array as a target location. Random 
movement corresponds to varying z uniformly over its entire range and 
observation of these goal locations causes the target location x to equal 
Z. During these random movements, the firing rates in the motor array 
will, on average, be given by g(lc, - zl) and those of the sensory array 
by f(lai - xl) with x = z. I f  the synaptic weights develop according to 
the rule (Eq. lo), the resulting pattern of synaptic weights that arises is 
given by the integral 

w, = 
I 

dz g(lc, - zl)f(b, - zl) - k. 

Average firing rates can be used here because the added noise terms 
are independent and average to zero. These weights are used when we 
study the case of fixed gaze direction. 

When the gaze direction is allowed to vary, the training procedure is 
identical except that the gaze direction y  is randomly varied along with 
the movement goal location z. Again we assume that the goal location 
of the randomly moving limb provides the target location for the sen- 
sory system. The target location in head-centered coordinates corre- 
sponding to retinal position x and gaze direction y  is x + y. The fact 
that the movement goal location is providing the sensory target during 
training therefore imposes the condition x + y  = Z. With this constraint 
and the arm movement goal location and gaze direction randomly vary- 
ing, we have integrals over the full ranges of y  and z with x = z - y  
so that 

w,, = 
I 

dy dz g(lc, - zl)f(b, - z + ~1, lb, - ~1) - k. (12) 

These weights are used in our studies involving a variable direction of 
gaze. 

Decoding methods 
To interpret the firing responses produced in the motor array of our 
model, we must determine what movement goal location they represent. 
We do this in two different ways. The first is a variant of the approach 
developed in studies of monkey motor cortex (Georgopoulos et al., 
1986, 1988). This is the vector method, in which the decoded goal 
location of the movement is a firing-rate weighted average of the pre- 
ferred locations of the individual neurons: 

(13) 

We use this method of decoding in all of our analytic work and in some 
of the simulations. However, we use a more accurate decoding tech- 
nique in many of the simulations. This is the maximum overlap tech- 
nique. Here the decoded value of z is the movement goal location that 
maximizes the overlap between the observed firing rates and the average 
firing rates so that 

c Ri”gdc, - ~1) = maximum. 

In the cases where we use this method it is equivalent to a least squares 
fit of the observed rates to the average rates (Salinas and Abbott, 1994). 
All of the analytic results presented here using the vector decoding 
method can be reproduced using the maximum overlap technique. How- 
ever, the proofs and derivations are more complex for this latter case 
so we only present the simpler vector method results. Likewise, there 
are no significant differences between the simulation results we obtain 
using the two methods. We present results obtained from the most ap- 
propriate method for a particular example. 
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Figure 1. Decoding accuracy using 
the maximum overlap method. The 
coded variable z lies between zero and 
one. For this example, no jitter was in- 
cluded in the positioning of preferred 
locations for the coding neurons so that 
A and B were clearer. A, An array of 
Gaussian average firing rate tuning 
curves with the standard deviation of 
firing rate fluctuations indicated. The 
width of the Gaussian curves is 118. B, 
A similar array of cosine tuning curves 
with width equal to l/4. C, The decod- 
ing accuracy for the Gaussian array as 
a function of the number of neurons N 
in the array. Accuracy is the rms de- 
coding error expressed as a percentage 
of the full range of z. D, Same as C but 
for the cosine array. 

Analytic techniques 
To perform the analytic calculations we use an extremely useful ap- 
proximation, the replacement of sums over neurons by integrals over 
their preferred locations. We assume that the coverage of locations by 
the coding neurons is dense and uniform. This allows us to approximate 
sums with integrals. We have checked the accuracy of this approxi- 
mation by computer simulation and it is remarkably good even for 
modest numbers of neurons. We ignore the limits in the resulting in- 
tegrals by allowing the coded quantities to vary over an infinite range. 
In the simulations, theses ranges are obviously finite but we avoid work- 
ing too close to the limits. 

Computer simulations 
In the computer simulations, sensory and motor arrays of a given size 
were constructed by assigning preferred locations to the different neu- 
rons. Preferred locations were determined by laying out a uniform grid 
over the range of coded values and then introducing a random variation 
about these grid locations. We call these shifts “jitter” and chose them 
randomly between plus and minus one-quarter the width of the corre- 
sponding tuning curves. We have obtained similar results by choosing 
completely random preferred locations, although this increases the size 
of the errors somewhat. In some cases we used zero jitter for clarity. 

We began a typical simulation by choosing a target location (or ret- 
inal position and gaze direction) randomly. Firing rates in the sensory 
array corresponding to this target location (and gaze direction) were 
generated as the sum of a mean firing rate and a randomly generated 
fluctuation. When this sum was negative the fluctuation was discarded 
and a new one was chosen randomly. 

The sensory responses were used to drive a motor array using Equa- 
tion 7. Again, negative rates were avoided by selecting another random 
fluctuation. The activity generated in the motor array was decoded as 
outlined above. Maximization of the overlap was done using Brent’s 
method (Press et al., 1992). Movement error was computed by com- 
paring the decoded goal location of the movement with the target lo- 
cation used to drive the sensory array. A range of target locations or, 
in later examples, retinal positions and gaze directions was sampled 
randomly. A large number of runs were performed to accumulate good 
statistics on the size of the average root-mean-square (rms) error in the 
motor response. 

Results 
Decoding accuracy 
Before analyzing coupled sensory and motor networks, we will 
show that the decoding procedure we use to determine the move- 
ment direction resulting from a particular pattern of activity in 
the motor array is accurate. To test decoding accuracy, we con- 
sidered arrays of neurons with either Gaussian (Eq. 5) or cosine 
(Eq. 6) tuning curves. We randomly chose a “true” movement 
direction and generated a set of firing rates using the tuning 
curves of the motor array to set the mean values and including 
random fluctuations. We then decoded those responses using the 
maximum overlap method. Accuracy was tested by comparing 
the decoded movement direction with the original direction used 
to generate the rates. The results are shown in Figure 1, where 
A and B illustrate the arrays of tuning curves we used as well 
as the standard deviation of the firing-rate fluctuations included 
in the model, and C and D show the decoding errors for arrays 
with different numbers of neurons. The decoding error is the 
rms average (expressed as a percentage) of the difference be- 
tween the decoded and actual goal locations divided by the full 
range of possible goal locations, which is equal to one in this 
example. Figure 1 indicates a high degree of decoding accuracy. 
For more than about 20 coding neurons, the decreasing error is 
proportional to one over the square root of the number of neu- 
rons, indicating that the method has reached the point where 
noise effects are the primary limitation on the decoding accu- 
racy. 

The accuracy of the decoding is quite remarkable considering 
the large variability in the firing rates of the model neurons. 
Figure 2 shows this variability for the entire population of neu- 
rons on one typical run. For a fixed value of 2, the firing rate of 
each cell in a 200 neuron array is plotted as a function of its 
preferred location. The dashed curve shows the mean firing rates 
for these neurons, Although the fluctuations about the mean are 
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Figure 2. Decoding accuracy for a single trial using the maximum 
overlap method. This shows a single trial using an array like that of 
Figure 1A. The firing rate of each neuron in a 200 cell array is plotted 
at a position on the horizontal axis corresponding to its preferred lo- 
cation. The dashed curve shows the average firing rate. Despite the large 
fluctuations about this average the decoding error, indicated by the small 
bar near c, = 0.5, is small. The actual encoded value was 0.5 and the 
decoded value was 0.507. an error of 0.7%. 

large, the error in the decoded value, as shown in the figure, is 
remarkably small. For this to occur, it is most important that 
silent neurons or those firing at low rates show little variability 
while large variability in rapidly firing neurons is less harmful 
to decoding accuracy. This is, of course, exactly a property of 
Gaussian fluctuations with standard deviation proportional to the 
average firing rate or of Poisson firing rate fluctuations that have 
the variance proportional to the average rate. We have obtained 
similar results using other types of tuning curves, such as sig- 
moids or more complex, multimodal shapes, We have also found 
that accurate decoding results can be obtained even if the tuning 
curves used in the decoding procedure are not exactly those used 
to generate the firing rates. The tuning curves used for decoding 
must have preferred locations fairly close to the actual tuning 
curves but the shapes or widths do not have to match particularly 
precisely. 

Alignment of sensory and motor networks 
Having checked decoding accuracy, we now use a sensory net- 
work to drive the motor network that we decode. In this case, 
the firing rates of the neurons of the motor array were not com- 
puted from their average tuning curves as they were for Figure 
1. Rather, the motor array was driven by the sensory array ac- 
cording to the rule (Eq. 7). In this section we consider the case 
of fixed gaze direction. The rates in the sensory array for a 
randomly chosen target location were generated from the aver- 
age firing rate tuning curves of the sensory array along with 
random fluctuations. The direction of movement was determined 
from the firing rates of the motor array as given by Equation 7 
through decoding. The goal location of the decoded movement 
was then compared with the target location used originally to 
generate firing in the sensory array. 

What properties of the synaptic weights assure that firing in 
the sensory array corresponding to a particular target location 
will evoke activity in the motor array that produces movement 
toward the target? In Appendix A we derive a simple condition 
that assures that this alignment will occur for any tuning curves 
that are functions of the distance between the actual and pre- 
ferred target or movement locations. The condition is simply that 
the strength of the synaptic connection from neuron j to neuron 

i depends only on the magnitude of the difference between their 
preferred locations. Mathematically, 

W, = WC, - a,I). (1% 
Note that a wide variety of functions W can be used as long as 
they depend in this way on the two preferred locations. Re- 
markably, this condition is all that is required to assure that the 
two networks align. Equally remarkable is the fact that synaptic 
connections with the necessary property can be produced by a 
simple, unsupervised training process and correlation-based syn- 
aptic learning rule. 

The procedure that produces an appropriate set of synaptic 
couplings contains one essential element, the goal location of 
the motor array must provide the target coded by the sensory 
array during the time that the synaptic weights develop. In the 
case of visually guided arm movements, the learning procedure 
would consist of randomly waving the arm around and watching 
it so that its position is coded in the sensory array. In Appendix 
B we show that the synaptic weights (Eq. 11) that arise from 
this process have exactly the property (Eq. 15) needed to align 
the two networks. 

The results of computer simulations based on this idea are 
shown in Figure 3. To produce these results we coupled a sen- 
sory and a motor array with synaptic weights generated by cor- 
relation-based synaptic modification during observation of ran- 
dom movements as given by Equation 11. In Figure 3, the ac- 
curacy of the resulting movement direction is plotted for differ- 
ent array sizes. Figure 3A shows a one-dimensional example 
much like that shown in Figure lC, but here the motor array is 
driven by a sensory array. The accuracy is comparable to the 
decoding accuracy shown in Figure 1, indicating a nearly perfect 
transfer of target location from the sensory to the motor array. 
As indicated in Figure 3A, this type of information transfer does 
not require that the sensory and motor arrays have the same 
types of firing-rate tuning curves. We have verified that accurate 
alignment occurs when the sensory array has Gaussian tuning 
curves and the motor array has either Gaussian tuning curves 
with different widths from those of the sensory array, as shown 
in Figure 3A, or cosine tuning curves (see, e.g., Fig. 7). 

Clearly synaptic weights generated by watching random 
movements and performing correlation-based synaptic weight 
modification produce extremely good alignment between the 
networks. Figure 3B shows an application of this idea to a sit- 
uation closer to actual two-dimensional reaching experiments. 
Here a two-dimensional target location vector evoked a response 
in a sensory array that drove a motor array through a set of 
synaptic weights arising from the same training process. How- 
ever, instead of coding target and movement goal location we 
assumed that the sensory and motor arrays coded angles repre- 
senting the direction to the target and the direction of the re- 
sulting movement. The tuning curves used were cosines of the 
appropriate direction angle. The error plotted is the angular dif- 
ference (in degrees) between the target direction evoking a re- 
sponse in the sensory array and the movement direction inferred 
by decoding the activity of the motor array generated by that 
response. For networks of 100 neurons, the error is only a few 
degrees and it falls as N-l’” with increasing numbers of network 
neurons. 
Coordinate transformations between sensory and motor 
networks 
As noted in the introduction, sensory information often has to 
be transformed before it can correctly guide motor actions. In 
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Figure 3. Accuracy of information transfer from a sensory to a motor 
array. A sensory array coding target location at fixed gaze direction 
drove a motor array which was then decoded using the maximum over- 
lap method. Synapses were those that developed during random 
“watched” movements according to the correlation-based learning rule 
(Eq. 10) with k = 0.055. Jitter in the positioning of individual tuning 
curves was included for both arrays. Both arrays had the same number 
of neurons, N, which was varied. A, g, and g, correspond to two Gaus- 
sians of widths l/8 and 1/(8v2), respectively. Filled circles show the 
transfer from a sensory array to a motor array using Gaussians g, of 
equal width. Open circles show the transfer from a sensory array with 
Gaussian tuning curves g, to a motor array with Gaussians g,. B, In- 
formation transfer between a sensory array coding direction to a target 
and a motor array coding the direction of the evoked movement. Both 
arrays use cosine tuning curves with widths equal to IT. Jitter was set 
equal to kO.16 radians. The value k = 0.1 was used in the synaptic 
learning rule. The vector method of decoding was used and the error 
reported is the rms angular difference between the target and movement 
directions. 

the case of a sensory array coding both retinal position x and 
gaze direction y, the motor array must respond to the appropriate 
combination of these two quantities. For the definition of retinal 
position that we use, the movement required to reach the target 
must be toward the goal location z = x + y. As in the case of 
fixed gaze direction, the motor response must align properly but, 
in addition, it must align to this particular combination of the 
two directions simultaneously coded in the sensory array. 

In Appendix C we derive a condition on the synaptic weights 
that guarantees that the activity of a sensory array coding both 
retinal position and gaze direction will evoke activity in a motor 
array that generates the correct movement to the coded target. 
This condition is again remarkably simple. We assume that the 
retinal position and gaze direction are simultaneously encoded 
in a single array but allow any form of simultaneous encoding. 
In particular, we do not require multiplicative coding or linear 
(planar) gain fields, we only require that Equation 2 is satisfied 
with any function f. In this case, neurons in the sensory array 
are characterized by two preferred locations, one for retinal po- 

sition and one for gaze direction. The correct motor response is 
assured if the synaptic weights coupling the sensory to the motor 
array depend only on the magnitude of the difference between 
the preferred direction of the motor neuron and the sum of the 
preferred retinal position and gaze direction for the sensory neu- 
ron. In other words, the motor response will be z = x + y 
provided that (Appendix C) 

w, = W(lc, - uj - b,l). 

Again, the function W is not unique. 
Synaptic weights satisfying Equation 16 can be generated by 

a correlation-based synaptic modification rule through a proce- 
dure similar to the one used in the case of fixed gaze direction. 
The only addition is that the gaze direction must be varied ran- 
domly while the motor array randomly stimulates the sensory 
array during development of the synaptic weights. In Appendix 
D, we show that the synaptic weights (Eq. 12) produced by this 
procedure satisfy Equation 16. In simple terms, this means that 
if the gaze direction is varied while the arm is waved around 
randomly acting as a visual target, the correct gaze-angle-in- 
variant alignment will take place automatically. 

Figure 4 shows the results of a simulation based on synaptic 
weights generated by this mechanism. Here the sensory cells 
were tuned to the retinal position of the target, with response 
amplitudes modulated by a gain field that was linear up to a 
saturation value, beyond which it remained constant. The sen- 
sory responses had the form given by Equation 4, with equal 
numbers of increasing and decreasing gain fields included in the 
array. After determining the synaptic weights according to the 
correlation-based rule (Eq. 12), the sensory responses were used 
to drive the motor array that coded the goal location of the 
movement. The error between the decoded goal location of the 
movement and the correct target location z = x + y was then 
obtained. This is plotted for different values of z in Figure 4A. 
Each point is the average of several combinations of retinal tar- 
get positions and gaze directions corresponding to the same tar- 
get location in head-centered coordinates. The error is a small 
fraction (expressed as a percentage) of the range of values that 
the movement goal location can take. Figure 4C shows that the 
error decreases as one over the square root of the number of 
cells in the network. 

It is interesting to note that individual neurons of the motor 
network in this example have shifting receptive fields. This oc- 
curs even though the sensory neurons driving them have fixed 
receptive fields that are gain-modulated by gaze direction but 
not shifted. In Figure 5A we plot the average response of a 
neuron in the sensory array as a function of retinal target posi- 
tion for several gaze directions. The tuning curves are modulated 
but they do not shift. Figure 5B shows average responses of a 
neuron in the motor array plotted as a function of the retinal 
target position evoking them for different gaze directions. The 
magnitude of the shift precisely matches the change in gaze 
direction. Theses tuning curves have retinal receptive fields that 
shift as a function of gaze angle but that are fixed as a function 
of target location in head-centered coordinates. 

A slight extension of the proofs in Appendices C and D allows 
us to generalize these results. When a sensory array coding two 
locations x and y drives a motor network, the movement re- 
sponse will be z = (yx + py for any values of cx and p provided 
that 

w, = W(lc, - ciu, - @,I). (17) 
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Figure 4. Information transfer from a network coding both retinal target position x and gaze direction y  to a motor network with decoded goal 
location z. The coded quantities x and y  ranged from - 10 to 10. However, to avoid edge effects the full range was not used. For the results shown, 
variables were restricted to -6.5 < x, y  < 6.5 and -4 < z < 4. The value k = 15 was used in the synaptic learning rule. All tuning curves were 
Gaussian with width equal to 2. Gain fields were clipped-linear saturating at M = 3. In A and B no jitter was present but it was used for C. In A 
and B, the sensory array had 676 neurons, the motor array 169. A, The percentage error in the goal location of the coded movement relative to the 
true target location, which is x + y. This is plotted over a range of goal location values averaged over eight x and y  combinations that give a 
particular fixed value of x + y. The solid CU~M shows the error with noise, and the dashed curve, the error without noise. Synapses were those 
arising from a correlation-based learning rule acting during the observation of random movements with random gaze directions. B, Same as A 
except that during the synaptic development the retinal target position was set equal to the goal location. As a result the motor response became 
aligned with x instead of with x + y  as in A. The error shown is the average difference between z and x. C, The average over z of the errors shown 
in A and B plotted for different network sizes. Filled circles show that case when z was correlated with x + y  and open circles correspond to z 
correlated with x. N is the number of neurons in the sensory array and the motor array has one-fourth this number of cells. 

The case of retinal position and gaze direction corresponds to 
the particular case (Y = l3 = 1. This means that any linear com- 
bination of x and y  can be extracted from the sensory array by 
a downstream network. We show this in Figure 4. The same 
sensory responses as in Figure 4A were used to drive a different 
motor array that generated movement toward a goal Z, which 
was simply the target location in retinal coordinates, x. This 
corresponds to the case (Y = 1, l3 = 0 and amounts to generating 
the same type of movement as in Figure 3A but with the gaze 
direction modulation present in the sensory responses. The syn- 
aptic connections were generated by a rule similar to Equation 
12, except that the constraint x = z was imposed. In other words, 
during development the retinal position of the target was set 
equal to the goal location of the random movements. Then the 
movement goal location was decoded from the evoked activity 
in the motor array and compared to X. The error that decreases 
like one over the square root of the number of coding neurons 
is shown in Figure 4, B and C. Similar results were obtained 
with other combinations of (Y and l3. Thus, a motor network 
receiving input from a sensory array simultaneously encoding 
two variables x and y  can generate a movement to a goal location 
that can be any linear combination of x and y. A correlation- 
based rule for synaptic development along with observation of 
random movements will produce the appropriate synaptic 
weights. I f  a motor network generates movement that is corre- 
lated with a particular linear combination of x and y  it will au- 
tomatically become aligned with that combination of sensory 
inputs. 

The results we have derived and shown also apply if the quan- 
tities x, y, and z are vectors and they do not depend on the gain 
fields being linear. We have confirmed this by carrying out the 
same kinds of simulations using Gaussian gain fields. The results 
are qualitatively the same: any linear combination z = OLX + py 
can be read out by the motor array; the error decreases as N-l” 
for N neurons and the tuning curves of the motor array neurons, 
as functions of the sensory variable x, shift for different y  values. 

Representation of more than one sensory variable 
The results of the last section raise the interesting subject of 
neuronal arrays that encode several quantities simultaneously. 
Neurons in cortical circuits may respond to a wide variety of 
stimuli, so many quantities might be encoded by their firing. In 
the last section we considered the case of simultaneous coding 
of retinal position and gaze direction. Neurons coding the lo- 
cation of auditory stimuli in the barn owl similarly display si- 
multaneous coding of the two direction angles (Knudsen and 
Konishi, 1978; Takahashi, 1989), and numerous other examples 
exist (e.g., see Knudsen, 1982). To study simultaneous coding 
of multiple variables, we considered a sensory array of neurons 
that responded to a number of quantities with average firing rate 
tuning curves that were the product of Gaussian factors for each 
of the individual quantities. We then looked at the accuracy with 
which one of these quantities could be extracted by the motor 
array when a number were coded simultaneously. The result is 
shown in Figure 6. The error increases gradually with the num- 
ber of variables encoded. This increase in the error does not 
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Figure 5. Nonshifting and shifting average firing rate tuning curves. 
A, The average firing rate of a neuron from a sensory array coding both 
retinal target position and gaze direction plotted as a function of retinal 
target position. Responses for three different values of gaze direction 
are plotted. The neuron has a retinal receptive field that does not shift 
but instead is modulated as a function of gaze direction. B, The average 
evoked response in a neuron of the motor array producing movement 
to a goal location x + y  plotted as a function of retinal target position 
for the same three gaze directions. The retinal receptive field now shifts 
and tracks the target location in head-centered coordinates. The tuning 
curves, networks and synapses used here are identical to those of Figure 
4A. 

necessarily degrade the performance of the system because, for 
each point, the error still decreases as one over the square root 
of the number of neurons. The rule used for the synaptic con- 
nections, Equation 11, was the same as for previous cases with 
one of the coded variables playing the role of target location. 
This variable was set equal to z during the development of the 
synaptic weights and all the other encoded variables were un- 
correlated with Z. Figure 6 shows that accurate alignment be- 
tween sensory and motor responses can arise even when the 
sensory neurons code for a number of additional quantities that 
do not carry information relevant to the motor actions. 

Nonlinear coordinate transformations 
We have seen that a downstream network coupled with appro- 
priate synaptic connections to an array of neurons coding two 
locations x and y can extract the sum x + y. This generates a 
representation of the location corresponding to x in a coordinate 
system shifted by y and provides a general mechanism for per- 
forming coordinate translations. However, other types of coor- 
dinate transformations may be desirable. Here we consider a 
two-dimensional example where target location is characterized 
by x, and x,, which are Cartesian coordinates. We represent the 
two-dimensional point (xl, x2) in a sensory array that simulta- 
neously codes these two quantities with tuning curves that are 
Gaussian as in Equation 3. We ask whether the motor array can 
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Figure 6. Accuracy as a function of the number of simultaneously 
coded quantities. Target location x was represented by an array of 
Gaussian tuning curves as in Figure 1A. A variable number of other 
quantities were represented by multiplying these tuning curves by ran- 
domly placed Gaussians of the other coded variables. The preferred 
location for x was distributed uniformly within its range. The sensory 
array had 5000 neurons and the motor array 200. The error between the 
motor response z and the target location x is plotted as a function of 
the number of quantities being simultaneously encoded along with x in 
the sensory array. 

extract from this representation of target position the angular 
location of the target in polar coordinates. Thus, we consider the 
nonlinear transformation from Cartesian to polar coordinate sys- 
tems rather than a simpler coordinate translation. This means 
that the motor response will be characterized by an angle z spec- 
ifying the direction of movement. Correct alignment requires 
that this movement direction angle be equal to the target direc- 
tion angle, 8 = arctan(x,/x,); that is, the network must effectively 
compute an arctan function. In this example, the tuning curves 
for the neurons of the motor array were cosines as in Equation 
6. The synapses between these two arrays were constructed by 
the same correlation-based rule we used in the other examples. 
During the development process random movement in a partic- 
ular direction was interpreted by the sensory array as a sequence 
of goal locations at various radial distances but with polar angle 
0 = Z. After synaptic development, the sensory array coding 
target location evoked activity in the motor array and we com- 
pared the decoded movement direction z, with the polar angle 8 
corresponding to the target. 

Figure 7 shows the results. The error depends on the length 
of the target position vector r2 = XT + xi. When r is small 0 
cannot be determined accurately and, not surprisingly, the error 
is large. As r increases the error decreases until we reach values 
of x, and x2 outside the receptive fields of the sensory neurons 
where, naturally, it increases again. The inset shows that for a 
given value of r the error is the same, on average, for all direc- 
tions. For the network of 500 neurons shown in Figure 7 the 
error is a few degrees. We have seen that this error also decreas- 
es as N-l”. 

Figure 8 shows three response tuning curves of neurons in 
the motor array as functions of the polar coordinate angle of the 
target location 0 for three different values of r. It is interesting 
to see that the polar coordinates of the target location are coded 
in this array much like retinal position and gaze direction are 
coded in parietal area 7a. Individual neurons have receptive 
fields that depend on 8 and these responses are gain modulated 
by a factor that depends on r. This modulation is consistent with 
the error dependence on r. For constant variance, the decoding 
accuracy increases with the amplitude of the tuning curves (Ab- 
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Figure 7. Nonlinear coordinate transformation between the sensory 
and motor arrays. The sensory array responded to the Cartesian coor- 
dinates of the target location. The angular position of the target was 
correlated during training with the coded motor response z and then the 
error between the polar angle and the evoked value of z was determined. 
The main figure shows this error as a function of the length of the target 
location vector and the inset shows the error for a particular length, Y 
= 7, over all movement direction angles. The solid curve in the inset 
is the error with noise, and the dashed line, the error without noise. The 
target location variables were in the range - 10 < xl, xz < 10. No jitter 
was included in this figure; when it was included the errors increased 
by a small amount. The sensory array consisted of 400 neurons with 
Gaussian tuning curves of width 2. The motor array had 100 neurons 
with cosine tuning curves of width 7~. The vector method of decoding 
was used and in the synaptic modification rule k = 2. 

bott, 1994). The sensory inputs contain the same amount of 
noise for all combinations of X, and x2, thus making the low- 
amplitude tuning curves, when r is small, more susceptible to 
noise degradation. 

Discussion 
We have analyzed the interface where sensory information is 
transferred to a motor system to generate movement. By decod- 
ing we have interpreted spiking activity in the motor network as 
the command to generate movement to a particular location. This 
technique is powerful because it gives neuronal activity an un- 
ambiguous meaning that can be studied quantitatively. Infor- 
mation about the position of an external object was encoded by 
the activities of a modeled neural population and we focused on 
the crucial step where this information is transmitted to a motor 
array through a set of synapses. The core of this study relates 
to the characteristics of these synapses and the mechanisms by 
which they can be established. 

We have derived a condition that guarantees proper alignment 
so that sensory input produces the desired motor output. This 
condition is just that the weight of the synapse from a presyn- 
aptic neuron of the sensory array to a postsynaptic neuron cod- 
ing motor output depends only on the magnitude of the differ- 
ence between their preferred locations. Synaptic weights in mo- 
tor cortex with exactly this property have been inferred from 
correlation data (Georgopoulos et al., 1994). We found that ap- 
propriate synaptic weights can arise spontaneously during de- 
velopment or training if the motor system output provides ran- 
dom target location input to the sensory array and if correlation- 
based potentiation occurs on synapses from the sensory to the 
motor array. In contrast, network models based on learning rules 
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Figure 8. Evoked response tuning curves for neurons of the motor 
array. The average evoked firing rates of three neurons from the motor 
array of Figure 7 are shown plotted against the polar angle of the target 
location 8. Responses are shown for three different values of the length 
Y of the target location vector. The result is a representation of the polar 
coordinates of the target with the polar angle tuning curves modulated 
as a function of radial length. A, r = 8; B, Y = 2; C, Y = 0.5. 

such as back-propagation (Hertz et al., 1991) require an error 
signal to be computed and fed back throughout the network. This 
kind of learning is generally considered unlikely in biological 
contexts (Crick, 1989). The mechanism we have studied pro- 
duces sensory-motor alignment without making use of either an 
error signal or any kind of external supervision. The only in- 
gredients are random input to the sensory network that is cor- 
related with the output of the motor network and a correlation- 
based synaptic modification rule. Randomly waving the arm 
around in front of the eyes and watching it is sufficient to align 
the sensory and motor networks. Studies have shown that vision 
of a limb is indeed required in motor development in both cats 
and monkeys (Hein, 1974; Held and Bauer, 1974), suggesting 
that this form of learning might be operating. In addition, a 
recent study has shown that human infants tend to move a 
viewed arm more than an arm that cannot be seen and that they 
require sight of an arm to counter deflecting forces (van der 
Meer et al., 1995). 

For clarity, we have chosen to describe reaching tasks using 
the location of the target and the goal location of the resulting 
arm movement. It is also possible to use the required and actual 
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direction of arm movement in place of the target and goal lo- 
cation. These are just the target and goal location in hand-cen- 
tered coordinates. Since both arm position and movement direc- 
tion are simultaneously encoded in premotor and motor cortex 
(Schwartz et al., 1988; Caminiti et al., 1990, 1991), it should be 
possible for either of these two representation to be used. When 
random arm movements are observed, we have assumed that a 
representation of the present location of the arm in the motor 
array is correlated with a representation of target location in a 
sensory array. It is probably more appropriate to say that during 
learning the actual direction of random arm movements is cor- 
related with their observed direction. This is equivalent to de- 
scribing the learning process in hand-centered coordinates rather 
than in the body-centered coordinates that we have used. Simi- 
larly, during sensory-guided movement, we can think of the sen- 
sory representation of the target as evoking a motor response 
encoding the direction of movement toward the target rather than 
a goal location. 

Noise is an important factor in the interpretation of our results. 
We have included large random variations in the neuronal re- 
sponses and the alignment errors shown depend on the amount 
of noise included. We chose a rather high coefficient of variation 
in order to verify our results under worst case conditions. With- 
out the random fluctuations the results shown would have been 
more accurate by at least two orders of magnitude and, in some 
cases, up to the accuracy of the numerical methods implemented. 
We have included examples of this in Figures 4, A and B, and 
7 (dashed lines). This implies that the algorithms used to pro- 
duce the sensory-motor alignment are very close to optimal so 
that noise limits the accuracy of the information transfer, The 
only exception is Figure 6, where the presence of additional 
variables simultaneously encoded by the sensory array essen- 
tially acts as an additional source of noise. In this case, the 
random fluctuations make less of a difference as the number of 
simultaneously encoded variables increases. Some of what we 
interpret as cortical noise may, in fact, be additional coded in- 
formation of this sort that has not been correlated with any ex- 
perimental manipulations. 

The noise that we included in our simulations was uncorre- 
lated between neurons. Experimental data suggest that, at least 
in some areas, neuronal noise is correlated (Gawne and Rich- 
mond, 1993; Shadlen and Newsome, 1994; Zohary et al., 1994). 
These results suggest that correlated noise effects become im- 
portant for populations of about 100 neurons or more. Correlated 
noise will limit the N-1/2 improvement of accuracy that we have 
seen for increasing numbers of coding neurons. Our results show 
that even with 100 neurons or less, fairly accurate transfer and 
coordinate transformations of target position can be realized. 
However, extremely high accuracy may require some additional 
mechanisms to decorrelate noise effects if correlated noise is 
indeed a widespread phenomenon. 

Our model involved firing rates, not spikes. More recently we 
have found that similar results can be obtained using model neu- 
rons generating Poisson spike trains (Salinas and Abbott, un- 
published observations). In very rapid tasks, there may only be 
time for a few spikes to be generated and thus only a rough 
approximation of firing rate can be conveyed by any single neu- 
ron. This uncertainty acts effectively as an additional source of 
uncorrelated noise and its impact is reduced by population cod- 
ing. Shadlen and Newsome (1994) point out that, with about 
100 neurons firing at normal rates, an accurate determination of 

firing rate can be obtained from measurements of single inter- 
spike intervals. 

The results presented provide an interesting view of how co- 
ordinate transformations are performed by neural networks. We 
focused on one particular coordinate transformation, that from 
retinal coordinates of target position to a head-centered, gaze- 
angle-invariant motor representation. However, the results are 
quite general. They apply whenever a motor network coding 
movement location is driven by a sensory array coding two or 
more quantities simultaneously. We have shown that synaptic 
corrections that arise spontaneously from correlation-based syn- 
aptic plasticity allow the motor network to extract vector sums, 
differences, and other linear or even nonlinear combinations 
from the sensory array. This provides a general mechanism for 
doing vector arithmetic and for making coordinate transforma- 
tions like those from retinal to head-centered, head-centered to 
body-centered, or body-centered to arm-centered systems (Cam- 
initi et al., 1990, 1991; Flanders et al., 1992; Kalaska and Cram- 
mond, 1992; Soechting and Flanders, 1992). The motor array 
we studied extracts the location of the target in head-centered 
coordinates. If this head-centered representation is encoded si- 
multaneously with a representation of head position, a subse- 
quent network can extract a body-centered representation of tar- 
get location by the same mechanism (Andersen, 1989; Stein, 
1992; Pouget and Sejnowksi, 1994; Brotchie et al., 1995). 

When we included a variable direction of gaze, we found that 
the receptive fields of neurons in the motor layer of our model 
shifted as a function of retinal position. We have studied the 
case of gaze angle and retinal position, but the same general 
mechanism can account for shifting responses in other modali- 
ties. For example, the preferred location vector of neurons in 
motor and premotor cortex can shift as a function of initial arm 
position (Caminiti et al., 1990, 1991). These shifts can, in prin- 
ciple, be accounted for by the mechanism we have studied pro- 
vided that the appropriate simultaneous representation exists in 
arrays driving the neurons with shifting fields. 

Although we have focused on information transfer between 
sensory and motor systems, our results can be applied to purely 
sensory cases as well. In particular, there are a number of ex- 
amples of shifting receptive fields in a variety of sensory mo- 
dalities. Neurons with shifting visual receptive fields have been 
recorded in parietal cortex (Duhamel et al., 1992). These dy- 
namic shifts can be explained if the difference between intended 
direction of gaze and actual gaze direction is combined with 
retinal position by the mechanism we have discussed. The re- 
ceptive fields of the driven array will then temporarily shift in 
response to an intended saccade before the visual image actually 
moves (Goldberg and Colby, 1992). Shifting auditory receptive 
fields have also been seen within area LIP (Stricanne et al., 
1994). The receptive fields of certain neurons with visual re- 
sponses in the premotor cortex of monkeys shift as a function 
of arm (Graziano et al., 1994) and head (Gross and Graziano, 
1995) position; that is, their visual fields are in arm- and head- 
centered coordinates, respectively. Shifting receptive fields 
might at first appear quite mysterious since it may seem as if 
the pattern of visual inputs to a given neuron is being actively 
switched (Anderson and Van Essen, 1987; Olshausen et al., 
1993). The model we have studied explains these shifts in terms 
of a gain modulation mechanism in the layers feeding the cells 
that actually display the shifting receptive fields (Zipser and An- 
dersen, 1988; Andersen et al., 1993). In particular, the appear- 
ance of shifting receptive fields, even in parietal areas, should 
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not be viewed as contradictory to the observation of gain-mod- 
ulated, nonshifting fields in area 7a. Rather, if this mechanism 
is operative their co-appearance is to be expected. 

Premotor neurons with visual receptive fields in head-centered 
coordinates are particularly applicable to our study (Gross and 
Graziano, 1995). These cells respond to tactile stimulation on a 
region of the face and to visual stimuli near the same area of 
the face. Naturally, the tactile field moves when the head is 
rotated, but more remarkably, the visual field also rotates with 
the head but not with movement of the eyes (Gross and Grazia- 
no, 1995). This is exactly what we would expect from correla- 
tion-based synaptic modification. These neurons receive synaptic 
input from parietal neurons collectively and simultaneously en- 
coding retinal location as well as head and eye orientation, so 
the necessary synaptic connections can arise spontaneously. In 
this case, the correlations driving the learning are not observed 
movements but rather correlations between visual and tactile re- 
sponses. These fields would develop, for example, if visual stim- 
uli in the region of the tactile field were repeatedly accompanied 
by tactile stimulation, as is likely. In this case, a postsynaptic 
premotor neuron is excited by the tactile stimulus while presyn- 
aptic parietal neurons are responding to the visual stimulus mod- 
ulated by eye and head position. The tactile response will only 
be correlated with that combination of retinal, head, and eye 
position responses corresponding to the location of the visual 
stimulus relative to the face. As a result of correlation-based 
modification, synapses conveying this information will be 
strengthened selectively and will ultimately transfer it to the pre- 
motor neurons evoking their head-dependent, gaze-invariant vi- 
sual responses. The fact that the network shown in Figure 4 
could extract either a gaze-angle-dependent or gaze-angle-in- 
variant representation has direct application to this case. We 
would predict that it might be possible to train these visual- 
tactile neurons to react to visual stimuli in laboratory or retinal 
coordinates rather than in head-centered coordinates if the cor- 
respondence between visual and tactile stimulation is appropri- 
ately modified over repeated trials. 

Buhmann et al., 1990; Foldiak, 1991; Wallis et al., 1993). When 
correlation-based learning is used to establish synaptic connec- 
tions, a network automatically selects the information that it 
needs to carry out its function. Information that is irrelevant to 
the output of a network will be eliminated from the synaptic 
input because it is not correlated with the activity of that net- 
work. As a result, a downstream network will automatically de- 
velop invariant responses to the combination of sensory infor- 
mation most correlated with its functional role. This is a pow- 
erful mechanism for channeling information effectively between 
different sensory and motor networks. 

Appendix A 
If a motor array is driven by a sensory array coding a target 
location x according to Equation 7 and if the synaptic weights 
satisfy Equation 15, the goal location of the movement z coded 
by the motor array will satisfy z = x. Average firing rates in 
the motor array can be determined by substituting the average 
rates in the sensory array (Eq. 1) into Equation 7 and ignoring 
noise terms: 

According to the vector decoding method (Eq. 13), 

I& Rye, 
z=C,= 

x,, Wijf(la, - hi 
z;j Wjfda, - xI) 

By replacing sums over neurons by integrals over their preferred 
locations and using Equation 15, we can rewrite this equation 
as 

J da dc W(lc - al)f(la - xI)c 
’ = J da dc W(lc - al)f(la - xl) ’ (20) 

Shifting the integration variables a + a + x and c + c + x 
and noting that the integral 

It is tempting to think of neural networks as representing spa- 
tial information in particular coordinate systems. However, a 
number of researchers have pointed out that this may be inap- 
propriate (Zipser and Andersen, 1988; Andersen, 1989; Stein, 
1992; Pouget and Sejnowksi, 1994; Sanger, 1994) and our re- 
sults support this latter viewpoint. If target location in retinal 
coordinates is represented simultaneously with information 
about gaze direction, any linear combination of these two quan- 
tities can be extracted by a downstream network. This means 
that the sensory array is really representing target location in a 
coordinate-invariant manner and arbitrary gaze-angle-dependent 
translations can easily be made. A network coding both arm 
position and movement direction can be considered to represent 
the goal location of the movement in a similarly coordinate- 
independent manner. We have also shown that a neuronal array 
can extract polar coordinates from another array responding to 
the Cartesian coordinates of a target location. This means that 
we should not consider the representation to be either Cartesian 
or polar. Again, it is better to think of these representations as 
coordinate independent. The advantage of such a scheme is 
clear: it allows the desired information, target location in a par- 
ticular coordinate system relative to a particular point, to be 
extracted quite easily. 

z = da dc W(lc - aI)f(laI)c = 0 

(proved by making the substitutions c + -c and a + -a) gives 

J da dc Wlc - 4>f(l4>~ = x 
’ = f da dc W(lc - al)f(laI) ’ (22) 

Thus, synaptic weights satisfying Equation 15 will produce a 
motor response perfectly aligned to the location of the target. 

Appendix B 
The learning procedure leading to Equation I1 for the synaptic 
weights produces synaptic weights satisfying Equation 15 and 
thus aligns the response. To prove this we must show that the 
synaptic weights of Equation 11 depend only on the magnitude 
of the difference between the preferred locations for the pre- and 
postsynaptic neurons Ic, - ajl. This is done by shifting the in- 
tegration variable in Equation 11 z + z + aj so that 

W, = j dz g(lc; - a, - zb &I) - k. (23) 
This is obviously function of c, - aj. The change of variables z 
-+ -z shows that it is in fact a function of Ic, - a,l. 

Appendix C 
Our results have implications for mechanisms by which gen- Synaptic weights satisfying Equation 16 evoke jiring rates in the 

eral invariant representations might arise (Fukushima, 1980; motor array, as given by Equation 7, that encode a goal location 
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z = x -t y  if the sensory array encodes x and y  simultaneously. 
On average in this case, ignoring noise terms, 

Ri” = c W<,f(la, - ~1, b, - YI>, (24) 

and for the vector method of decoding, 

2, PC, z=n= xtj W,fClaj - ~1, lb, - YIN, 
Z, W,fda, - 4, lb, - rl> ’ (25) 

In integral form using Equation 16 this equation becomes 

z = j da db dc W(lc - a - bl)f(la - 4 (lb - YI)C 
j da db dc W(lc - al)f(la - xl, (lb - yl> ’ (26) 

Shifting the integration variables a + a + x, b + b + y, and 
c + c + x + y  and noting that the integral 

Z= 
c 

da db dc W(lc - a - bl)f(bj, Ibl>c = 0 (27) 

(by making the substitutions c + -c, a -+ -a and b + -b) 
gives 

z = j da db dc W(lc - a - d)f(lak bl)(x + Y) 
5 da db dc W(lc - a - bl)f(lal, jbj) 

=x+y. 

(28) 
Thus, the motor response z, is equal to the linear combination of 
retinal and gaze directions x + y. 

Appendix D 
The expression (Eq. 12) for the synaptic weights arising from a 
correlation-based learning rule satisjies Equation 16 and thus 
produces a correctly transformed motor response. This requires 
that Equation 12 be a function of Ic, - a, - b,l. To show this 
we shift the integration variables in Equation 12 y  + y  + b, and 
z + z + a, + b, and write 

W, = 1 dy dz s<k a, - b, - zI) fh - ~1, IYI) - k. (29) 
To see that this is a function of Ic, - aJ - b,l, make the changes 
y  -+ - y  and z + -z. 
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