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Introduction

Studies of population coding, which explore how the activity of ensembles of
neurons represent the external world, normally focus on the accuracy and reliabil-
ity with which sensory information is represented. However, the encoding strate-
gies used by neural circuits have undoubtedly been shaped by the way the encoded
information is used. The point of encoding sensory information is, after all, to gen-
erate and guide behavior. The ease and efficiency with which sensory information
can be processed to generate motor responses must be an important factor in de-
termining the nature of a neuronal population code. In other words, to understand
how populations of neurons encode we cannot overlook how they compute.

Gain modulation, which is seen in many cortical areas, is a change in the re-
sponse amplitude of a neuron that is not accompanied by a modification of response
selectivity. Just as population coding is a ubiquitous form of information represen-
tation, gain modulation appears to be a widespread mechanism of neuronal com-
putation. In particular, it allows information from different sensory and cognitive
modalities to be combined. Gain modulated neurons simultaneously represent mul-
tiple forms of information in a population code. The responses of ensembles of
neurons are necessary to understand what the population is representing, no sin-
gle neuron is sufficient. The distributed, multi-modal representations of gain mod-
ulated neurons are ideally configured to facilitate certain kinds of computations,
namely coordinate transformations. Functionally, the gain-modulated population
code forms a distributed substrate for both information representation and process-
ing.

Cortical areas that process visual information are subdivided functionally and
anatomically into two pathways. The ‘where’ pathway runs dorsally from primary
visual cortex into posterior parietal cortex, and the ‘what’ pathway runs ventrally
from primary visual cortex into inferotemporal cortex (Ungerleider and Mishkin,
1982; Goodale and Milner, 1992). Parietal cortex is involved in the spatial analysis
necessary for motor planning and for the localization of external objects (Ander-
sen, 1989; Andersen et al., 1997), whereas inferotemporal (IT) neurons are impor-
tant for object recognition (Goodale and Milner, 1992; Gross, 1992). In spite of their
distinct functional roles, neuronal populations in the two streams are subject to sim-
ilar forms of gain modulation. Gaze direction provides a strong gain control signal
in the dorsal stream, while attention provides a similar signal in the ventral stream.
Although gaze-dependent and attention-dependent gain modulation act preferen-
tially on separate processing streams and, to a good extent, independently of each
other, they seem to serve the same purpose, the computation of coordinate trans-
formations. This functional interpretation of a widespread neuronal modulatory
mechanism is the subject of this chapter. We review experimental evidence reveal-
ing gain modulatory processes in the dorsal and ventral visual pathways, focus-
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ing on two questions that have been addressed through analytical and simulation
methods: 1) How can gain modulation be implemented by cortical microcircuitry?
and 2) How can gain modulation be used to perform behaviorally useful computa-
tions?

Retinocentered receptive fields

Neurons that respond to sensory stimuli are typically characterized by their se-
lectivity, which is expressed in terms of a receptive field. In this context, we use
a somewhat expanded definition of a receptive field. For example, the receptive
field of a visually responsive neuron defines not only the location in the visual field
where an image must be placed to trigger a response, but also the specific image
pattern that elicits the maximal response at a given stimulus intensity. The recep-
tive field thus defines both the preferred location and preferred visual stimulus for
a given neuron. These two receptive field attributes change progressively as infor-
mation flows more centrally in the visual system, so that receptive field sizes tend
to increase while preferred images become more complex.

The receptive fields of neurons early in the visual pathway, such as those of reti-
nal ganglion cells and cells in the lateral geniculate nucleus of the thalamus (LGN),
are best described in retinal coordinates. This is because the locations of the recep-
tive fields of these neurons are fixed to the eye or, equivalently, are always the same
relative to the direction of gaze. Neurons in primary visual cortex or V1 are usu-
ally described in retinal coordinates as well, although recent reports suggest a more
complex description (Guo and Li, 1997; Trotter and Celebrini, 1999; but see Sharma
et al., 1999). A retinocentric receptive field is schematized in Figure 1. At this level
of processing the actual gaze direction, which is determined by a combination of
eye and head positions with respect to the body, does not influence neuronal ac-
tivity by itself. If an image is shown at two different locations in visual space, the
neuronal response does not change systematically as long as these locations corre-
spond to the same position on the retina.

Figure 1. Early visual neurons operate in retinocentered coordinates. Thalamic visual neu-
rons respond to contrasting center-surround patterns. The bars on the right represent the
expected firing rate of a hypothetical thalamic neuron in response to the images shown on
the left. The cross indicates the fixation point, the location to which gaze is directed. a, The
image is aligned with the receptive field, and the neuron fires rapidly. b, If the pattern is
shown at the same physical location but at a different position with respect to the fixation
point, the neuron does not fire. c, If the pattern is moved to the original location with re-
spect to the fixation point the neuron responds again, regardless of the actual gaze angle.
In other words, when the gaze direction changes, the receptive field moves with the eyes.
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Gain modulation in parietal cortex

Richard Andersen, initially working with Mountcastle (Andersen and Mount-
castle, 1983) and later in collaboration with others (Andersen et al., 1985; Andersen,
1989; Andersen et al., 1990; Brotchie et al., 1995), showed that, in contrast to thala-
mic or retinal ganglion neurons, visual responses in parietal cortex depend on both
the retinal location of a visual stimulus and on gaze direction. In these experiments,
parietal neurons responded to spots of light located at various places within the vi-
sual field. If gaze direction is held fixed and the response is plotted as a function of
the position of the spot, the resulting curve typically has a single peak and can be
fitted to a Gaussian function. Figure 2c shows an example. Notice that the x axis
represents retinal coordinates, referring to the stimulus position with respect to the
location of gaze (the fixation point). If the set of measurements is repeated using
a different fixation point and thus a different gaze direction, the neural response
follows a curve with similar shape and preferred location, but with a different am-
plitude. Thus, the amplitude or gain of the receptive fields of these parietal neu-
rons depends on gaze. As a comparison, the same experiment probing early visual
neurons would produce the same peaked curve for all gaze directions. The term
‘gain field’ was coined to describe this gaze-dependent gain modulation and how
it varies as a function of gaze direction. The dependence on gaze direction is fairly
linear, although sometimes it is closer to sigmoidal due to saturation effects.

Figure 2. Gain modulation of parietal neurons. a, Visual stimuli are displayed at different
locations while a monkey directs its gaze (fixates) straight ahead. The cross indicates the
fixation point, the large circle indicates the location of the neuron’s receptive field, and the
small circles show the locations where stimuli are presented, one at a time. b, Visual stimuli
are displayed at a similar set of locations while the monkey directs its gaze to the left. In a
and b the stimuli are presented at the same locations as measured by retinal coordinates.
c, Neuronal activity recorded at two different gaze angles during experiments like those
in a and b (although both eye and head position were varied). A neuron’s firing rate is
plotted as a function of stimulus location in retinal coordinates, and the two data sets (filled
and open symbols) correspond to two different gaze directions. The continuous lines are
Gaussian fits. The peaks, which correspond to the preferred spot locations, are the same
in the two cases, but the amplitude or gain is different. d, Hypothetical gain field (i.e. gain
factor as a function of gaze angle) for the same neuron. For simplicity, only dependence
on the horizontal direction is indicated. Full gain fields are two-dimensional. Diagrams
redrawn from Andersen et al., 1985; data redrawn from Brotchie, et al., 1995.

A network-based mechanism for gain-modulatory interactions

One of the striking aspects of gain modulation is that the interaction between
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gaze direction and retinal location of the visual image is very close to being mul-
tiplicative. Neither the baseline firing rate nor the shape of the response curves of
the parietal neurons change as a function of gaze direction, and the gain modulated
responses are well described by a product of two functions. One, , depends
on stimulus location in retinal coordinates, , and corresponds to the Gaussian re-
sponse curve discussed above. The other function, , depends on gaze angle, ,
and corresponds to the gain field. The firing rate can then be written as

(1)

Neurons are typically modeled and thought of as integrators that compute weight-
ed sums of their inputs. How can they achieve the type of nonlinear, multiplica-
tive behavior seen in gain modulation? An early study (Mel, 1993) proposed that
nonlinear cooperative interactions between neighboring synapses connected to the
same neuron could generate responses that depended multiplicatively on the in-
puts. This explained multiplicative interactions between two input signals on the
basis of nonlinear interactions between synaptic conductances. Although this is a
plausible scenario, the extent to which these or other nonlinearities (Koch and Pog-
gio, 1992) give rise to an effective gain-like multiplication remains a question.

Figure 3. A model circuit that produces multiplicative gain fields. a, A group of parietal
neurons (filled circles) receives input from two external networks (open circles). The net-
work on the left provides a signal that depends on gaze angle, , and is identical for
all target cells. The network on the right provides visual signals that depend on the
location of the visual stimulus, , and are different for different target cells. The terms
correspond to Gaussian receptive fields centered at different locations. As indicated by the
equation, the firing rate of target cell is determined by the sum of its external inputs plus a
weighted sum of the activity of its neighbors minus a constant threshold. The square brack-
ets with a plus subscript indicate rectification. As indicated by the upper plot, the weight

is positive (excitatory) if neurons and have similar receptive fields and negative (in-
hibitory) otherwise. b, The upper graph shows the responses of a model parietal neuron.
Each curve traces the firing rate as a function of stimulus location in retinal coordinates
for a fixed gaze angle. The three curves correspond to three different gaze directions. The
squares are the actual simulation results, and the lines are fits using Equation 1. The lower
panel shows the total external input (the sum of the two terms) for each neuron in the
network. Because the gaze signal is the same for all neurons, the input curves simply shift
up or down as a function of gaze. Nevertheless, the output curve shows a multiplicative
interaction. Results modified from Salinas and Abbott, 1996.

Another mechanism proposed later (Salinas and Abbott, 1996), is based on the
rich dynamics of networks with recurrent connections. Recurrent connectivity is a
well described feature of cortical circuits (Gilbert and Wiesel, 1983, 1989; Ahmed et
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al., 1994, 1997), and its dynamical properties have been implicated in many aspects
of cortical function such as response selectivity (Ben-Yishai et al., 1995; Somers et al.,
1995; Chance et al., 1999), signal amplification (Douglas et al., 1995), and sustained
neuronal activity (Seung, 1996). Figure 3a shows a model network representing a
small patch of parietal cortex where all cells have similar gain fields. Each of the
model parietal cells receives two kinds of external inputs. One, , provides an
eye-position signal and is the same for all target neurons. The other input, ,
provides visual information which can be thought of as coming from early visual
cells responding to spots of light. This input is different for each target neuron, giv-
ing them different preferred stimulus locations.

The two external inputs to target neuron , and , are added together. How-
ever, the response is not simply additive because, in addition to these external in-
puts, the model parietal cells receive recurrent input from their neighbors. This is a
key property of the network, and the critical parameters are the connection weights

. For the multiplicative responses to arise, similarly tuned neurons (with over-
lapping receptive fields) should excite each other, whereas neurons with different
(non-overlapping) receptive fields should inhibit each other. As long as this gen-
eral rule holds, the exact dependence of the connection strengths on receptive field
properties does not affect the result.

The top graph of Figure 3b shows the responses of one model parietal neuron
as a function of stimulus position. The curves match those of Figure 2 discussed
above. The bottom graph shows the input to all of the neurons in the network.
For different gaze angles all inputs are displaced up or down by the same amount
because the gaze input signal is the same for all neurons. The resulting response
curves on the top panel are almost exactly scaled versions of each other. The re-
sponse curve changes in amplitude but does not change its shape. These model
neurons are well described by Equation 1, so they have an almost perfectly multi-
plicative gain field. This result is quite robust. When noise is added to the inputs
or when variability is introduced in the network parameters, the response func-
tions are somewhat distorted and some variability across neuronal response curves
arises, but the effect is still close to multiplicative. However, when the recurrent
connections are turned off in the model, the responses are far from multiplicative.
Thus, recurrent connections seem to be critical for generating multiplicative gain
modulation (Salinas and Abbott, 1996).

This model has an additional property: if two inputs at two different retinal lo-
cations are presented to the network, the activity profile will have a single peak lo-
cated at or close to the location of the strongest input. Thus the network also pro-
vides a mechanism for target selection, suppressing the activity driven by weak in-
put stimuli. This is consistent with the finding that at least some parts of parietal
cortex have a very sparse representation of the visual scene, coding faithfully the

6



locations of only those stimuli that are salient or behaviorally relevant (Gottlieb et
al., 1998).

In summary, individual neurons in a recurrently connected network may add
inputs driven by independent sources corresponding to different sensory variables,
and nevertheless generate responses characterized by a a product of functions for
each of those variables. In this mechanism there is no need to invoke explicit mul-
tiplication at the synaptic or cellular level. Gain modulation is an emergent prop-
erty of the network. Since recurrent connections are ubiquitous in the cortex, this
connectivity may also provide a basis for multiplicative interactions between other
kinds of input signals across cortical areas and modalities (see below).

Figure 4. Schematic example of a simple coordinate transformation. Gaze is directed to-
ward the left corner of the monitor and the task is to reach the mouse without shifting gaze.

is the location of the mouse in retinal coordinates and is the gaze angle. To reach the
mouse a movement in the direction specified by must be performed.

Coordinate transformations for object localization

Imagine that you are facing a computer monitor (Figure 4), directing your eyes
toward the left corner of the screen, and you want to reach the mouse without shift-
ing your gaze. Arm movements are generated with respect to body position (see for
example Georgopoulos, 1995), and to compute the direction to the mouse in body-
centered coordinates, the retinal location of the mouse must be combined with the
current eye position relative to the body. The angle corresponding to the retinal
location of the mouse and the gaze direction must be added to obtain the angle

describing the mouse location with respect to the body axis (Figure 4). How
do neurons perform this addition needed to generate the coordinate transformation
from retinal to body-centered reference frames?

The first indication that gain modulation could be useful for such coordinate
transformations came from the work of Zipser and Andersen (1988). They trained a
three-layered artificial neural network to perform the transformation just described.
The network was presented with various target locations in retinal coordinates and
with various gaze angles. The network was trained, using backpropagation and
many examples of correct input-output associations, to compute the target loca-
tions in body-centered coordinates. Once the network had learned the correct trans-
formations, they examined the properties of the neurons in the hidden layer. These
responses, generated by connections that the backpropagation procedure had pro-
duced during training, were similar to the gain-modulated receptive fields found
in the recorded parietal neurons. This result suggested that gain modulation pro-
vides an efficient solution to the coordinate transformation problem given the input
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Figure 5. A model network that performs a coordinate transformation using gain modu-
lation. a, The large, square network represents a population of parietal neurons with all
combinations of the receptive field locations and gain modulation parameters described ex-
perimentally. These neurons respond to object location and gaze angle according to the
equation appearing under the network. The network on the top represents an array of neu-
rons that must encode a linear combination of and to generate a motor response given,
as indicated by the equation above the linear array of neurons, as a function of the sum .
The output neurons are driven by the parietal model neurons through synaptic connections
indicated by arrows. b, The bottom panel illustrates the responses of one gain-modulated
parietal neuron, with the three curves corresponding to different gaze directions. The am-
plitude of the response changes with gaze, but the location of the peak response remains
constant. The top panel shows the response of one output neuron. The tuning curve shifts
when the gaze angle changes, but its amplitude remains constant. Results modified from
Salinas and Abbott, 1995.

and output representations. This work revealed that the measured neurophysio-
logical properties of real neurons could be understood to underlie a specific, non-
trivial computation.

Zipser and Andersen imposed the computation of a coordinate transformation
on a network and observed that gain-modulated responses resulted. Another ap-
proach is to put gain-modulated responses into a network from the start, and deter-
mine the conditions under which coordinate transformations arise. This provides
insight into how and under what conditions gain modulation can perform coor-
dinate transformation calculations (Salinas and Abbott, 1995). The network used
for this purpose is shown in Figure 5. The bottom portion of Figure 5a represents
a set of parietal neurons that have gain-modulated receptive fields like those de-
scribed experimentally. Their responses are determined by Equation 1, with the set
of neurons including combinations of receptive field locations and gain field modu-
lations taken from the reported distributions across the population of parietal neu-
rons. The output neurons at the top of the network figure represent an array of neu-
rons that encode the target location in body-centered coordinates and can generate
a motor response such as reaching to the target. They must have firing rates that
are functions of the sum of stimulus location and eye position. The connections
between the two layers allow the bottom array to drive the top one. For a particu-
lar target position in retinal coordinates, , and gaze angle, , some of the parietal
neurons are activated, and they must drive the output neurons so that these encode

, the target location in body-centered coordinates. Given this setup, we can de-
termine the synaptic connections that allow the parietal neurons, which combine
and through a gain interaction, to drive downstream neurons that have responses
that depend on .
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Our analytical and computer simulation calculations produced three results. First,
all that is needed to guarantee that the output neurons encode is that the synap-
tic weights satisfy a simple mathematical condition (Salinas and Abbott, 1995). Fig-
ure 5b (top) shows the response function of one output neuron when this condition
is satisfied. When gaze is directed straight ahead, the preferred location of the neu-
ron (the peak of its response as a function of target location ) is at 0. When the gaze
angle changes, the receptive field shifts by an equal amount without changing
shape, exactly as expected from a neuron responding as a function of . Once the
condition that guarantees a correct transformation is known, the question becomes
what synaptic modification mechanisms can produce connections that satisfy such
condition? The second result is that a simple Hebbian or correlation-based synap-
tic modification rule operating during a learning period in which self-generated
movements are watched will automatically produce the appropriate connections.
During learning, arm movements to different parts of space must be generated by
the activity of the output neurons, and they must also be watched, thereby driving
the responses of parietal neurons. Observations of these movements should occur
for all possible combinations of retinal and gaze angles. These images provide ex-
amples of correct transformations because, when the hand acts as the target, the
retinal and body-centered representations are automatically aligned, i.e. the arm an-
gle always equals . Indeed babies watch their own limb movements before they
can control them (Van der Meer et al., 1995). Finally, a third result is that not only
the sum but also any other linear combination of target location and gaze angle can
be represented by the array of output neurons, as long as this linear combination
corresponds to the output representation used during learning. This means that
one downstream network may extract or read out from the activity of parietal
neurons, while another downstream network may equally well read out another
combination such as from the same responses using similar mechanisms.

This last point has been thoroughly elaborated by Pouget and Sejnowski (1997a).
They showed that many psychophysical and lesion data in which the coordinate
frame used for object localization could not originally be determined unambigu-
ously, are actually consistent. The key is that the positions of objects are not en-
coded in one fixed coordinate frame, but through neural activity in parietal cortex
from which any appropriate coordinate frame may be read out according to ongo-
ing task requirements (Pouget and Sejnowski, 1997a). They also simulated the ef-
fects of a lesion in a model of parietal cortex (Pouget and Sejnowski, 1997b) and
found that the model reproduced many of the typical effects found in patients. In
particular, the deficit affected multiple frames of reference, including object-centered.
The consequences of parietal lesions have been difficult to reconcile, perhaps be-
cause the flexibility of the gain-modulated spatial representation used by parietal
cells led to widely different outcomes, depending on the combination of encoded
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quantities being read out by downstream networks.
In conclusion, the advantage of a gain-modulated representation, consisting of

a set of neurons tuned to a quantity and gain modulated by a quantity , is that
a downstream network can easily extract any linear combination of and us-
ing correlation-based learning. This is particularly useful for sensory-motor control
where movements can be practiced.

Additional evidence for modulatory gain control

Following the early studies of Andersen and colleagues, gaze-dependent gain
modulation has been reported at numerous stages of the visual system (Galletti and
Battaglini, 1989; Galletti et al., 1995; Van Opstal et al., 1995; Guo and Li, 1997; Sny-
der et al., 1999; Trotter and Celebrini, 1999) and in areas involved in motor functions
(Boussaoud et al., 1998). Some studies have shown that even in primary visual cor-
tex around 50% of the neurons display substantial gaze-dependent gain modula-
tion of their orientation or disparity tuning curves (Guo and Li, 1997; Trotter and
Celebrini, 1999; but see Sharma et al., 1999). Thus, gain modulation depending on
eye position may operate simultaneously at different processing stages, possibly
generating a larger final effect.

Reaching for objects requires the computation of multiple coordinate transfor-
mations similar to the one shown in Figure 4. The gain-modulated representations
in parietal cortex may be the basis for the subsequent spatial representations needed
for motor execution and object localization (Pouget and Sejnowski, 1997a, 1997b).
The simple two-layer network model for such transformations shows that explicit
visual representations of the world in head-centered or body-centered coordinates
are not absolutely necessary, because the readout units could be the same neurons
producing the motor commands. However, visual neurons that are invariant to
eye position have indeed been found (Graziano et al., 1997; Duhamel et al., 1997).
They represent the output readout layer of a transformation process. In fact, the
full transformation from retinal to world-centered coordinates seems to be explic-
itly computed, and the underlying mechanism appears to be gain modulation. Re-
cent recordings from parietal cortex have shown that area LIP has mostly gain fields
that depend on gaze direction, leading to body-centered coordinates useful for gaze
control and object reaching, whereas area 7a has mostly gain fields that depend
on body position with respect to the world, which may lead to world-referenced
responses invariant to eye, head, and body orientation (Snyder et al., 1998). This
is consistent with the existence of place fields in the rat hippocampus that encode
the animal’s position with respect to its environment. Area 7a projects directly to
this structure (Snyder et al., 1998) which is believed to be strongly involved in spa-
tial computation (O’Keefe and Nadel, 1978). Thus, gain-modulated signals that de-
pend on eye, head, and body position may be progressively combined until a map
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of extra-personal space is formed that is fully invariant with respect to the subject’s
position.

Coordinate transformations for object recognition

We mentioned at the beginning that thalamic and retinal ganglion neurons oper-
ate in retinocentered coordinates because their receptive fields move with the eyes.
This, however, poses a problem. A characteristic feature of our visual system is that
we are able to recognize objects independently of their location and size. This is
not true for the full visual field, since a familiar face may not be recognizable if it
appears far in the periphery, but it is true for a large, central region where we can
identify a familiar image or object even if we don’t look directly at it.

A neural correlate of this phenomenon is provided by high-level visual neurons
like those found in area IT. IT neurons are often selective for highly structured com-
plex images (Desimone, 1991; Logothetis et al., 1995). They may respond strongly
to faces, for example, producing little or no response for a large variety of other
objects. The receptive fields of these neurons are large; diameters of 60 or more
are not unusual. More important than sheer size is the property that a relatively
small image can have approximately the same effect no matter where it is placed,
as long as it is inside the receptive field perimeter (Schwartz et al., 1983; Desimone
et al., 1984; Tovee et al., 1994). Thus, if a neuron is selective for faces, a face pre-
sented anywhere inside the receptive field will typically produce a much stronger
response than a non-face image anywhere inside the receptive field. This is known
as translation invariance.

Translation-invariant responses correlate with our capacity to perform location-
independent object recognition, but how are these responses generated? This is not
a trivial problem, since translation-invariant responses must be evoked by the ac-
tivity of early visual neurons that are not themselves translation-invariant. Some
models achieved invariance to location (and to other image parameters such as scale
and perspective) through synaptic modification rules that link the images of objects
appearing close together in time (Földiák, 1991; Wallis and Rolls, 1998). Buono-
mano and Merzenich (1998) also exploited temporal structure, in this case the spike
patterns arising from a distribution of latencies, to generate position-invariant neu-
ral responses. Other models have been based on the hierarchical multi-layered struc-
ture and nonlinearities exhibited by the visual system (Fukushima, 1980; Wallis and
Rolls, 1998; Riesenhuber and Poggio, 1998, 1999). Detailed experimental support
for these mechanisms is not abundant, but it is possible that the visual system uses
some or all of them in order to achieve the level of translation invariance exhibited
behaviorally.

A different approach was taken by Olshausen, Anderson and Van Essen who,
building on earlier ideas proposed by Hinton (1981a, 1981b), developed a model in
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which the translation invariance problem is cast as a coordinate transformation, in
this case from a retinocentered representation to an object-centered one based on
attention (Anderson and Van Essen, 1987; Olshausen et al., 1993). Their model re-
quired precisely coordinated synaptic interactions between inputs carrying atten-
tional and visual signals. It motivated an important experiment by Connor and col-
laborators in David Van Essen’s laboratory (Connor et al., 1996, 1997). The results
ended up providing only partial support for the proposed mechanism, but uncov-
ered an unexpected and dramatic effect that gave rise to yet another framework
for the translation invariance problem. The resulting model (Salinas and Abbott,
1997a, 1997b), like that of Olshausen et al. (1993), implemented a transformation
from retinal to attention-centered coordinates, but it was based on gain modula-
tion, very much like the coordinate transformations in parietal cortex.

Connor and collaborators (1996, 1997) studied the responses of neurons in V4,
an area that projects directly to IT (Felleman and Van Essen, 1991). V4 neurons have
receptive fields that are more complicated than those in V1 (Gallant et al., 1993,
1996), but they also respond well to oriented bars flashed inside their receptive fields.
More importantly, their responses also depend on attention. This dependence was
determined quantitatively, and the effect can be described as a gain field, an atten-
tional gain field.

Attention is frequently described as a spotlight; an activity beam that enhances
neural responses in the vicinity of a particular region of visual space. Whatever the
accuracy of this analogy, it should be stressed that the locus of attention is not equal
to gaze location. This is an important feature of attention; it can modulate visual
responses even when the eyes are fixed, and in the absence of any apparent change
in behavior. In the experiments by Connor et al. (1996, 1997), eye position was kept
fixed and the location where attention was directed, , varied independently of eye
position. In this context, attention is a ‘spotlight’ that can be directed to various
locations and that moves independently of eye position.

According to the experimental data (Connor et al., 1996, 1997), the firing rate
of a V4 neuron can be expressed as a product of two factors. The first one, , corre-
sponds to a purely visual response and depends on the image being shown. The
function describes the visual receptive field properties such as location, orienta-
tion preference, spatial frequency selectivity, and so on, and it can be characterized
by filtering operations like those commonly used to describe the responses of V1
complex cells (Heeger, 1991). The second term, , depends on the location where
attention is directed, relative to a point called the preferred attentional locus of the
neuron, . The function defines the attentional gain field, and is the locus where
directed attention produces the maximum gain (Figure 6a). When is equal to ,
this modulatory term is maximal, whereas if attention is directed far away from the
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preferred attentional locus, it goes to zero. Combining the two terms gives

(2)

Here corresponds to the receptive field center. This expression, which represents
a reasonable mathematical fit to the data, summarizes the experimental findings
and describes how the locus of attention controls the gain of V4 cells.

Figure 6. A model of translation-invariant responses based on attentional gain modulation.
a, The response of a V4 neuron depends on the product of its receptive field and its atten-
tional gain field (Connor et al., 1996, 1997). The small open circle represents the receptive
field of a V4 neuron with its center at position . The large gray circle represents the atten-
tional gain field of the neuron with its center at position , the preferred attentional locus.
To evoke a strong response, an image that matches the receptive field selectivity must ap-
pear at , while attention is directed to a location near . b, Network model for translation-
invariant responses. The bottom grid is a pixel array on which images are displayed. The
middle grid represents an array of V4 neurons that respond to the image and are gain mod-
ulated by attention according to Equation 2. Each crossing point in this grid represents a set
of V4 neurons with the same receptive field location but with different combinations of pre-
ferred orientation, optimal spatial frequency, and preferred attentional locus. The topmost
neuron represents an IT cell that is driven by the activity of the V4 layer through synaptic
connections . In the expression shown, is a constant threshold, is the firing rate of
V4 cell , and the square brackets with a plus subscript indicate rectification. c, Response of
the model IT neuron versus the location of a preferred image. The response is large because
this is the same image used during the training of the network. Filled symbols correspond
to attention located at pixel 16 and open symbols correspond to attention located at pixel
48. The IT response depends on the location of the image relative to the point where at-
tention is focussed. d, Response of the same model IT neuron versus the location of a less
effective image. The response is much reduced, because the cell is selective for the image
used during training, not this image. As in c, the response depends on stimulus location in
attention-centered coordinates. Images sizes were 16 by 16 pixels. Results modified from
Salinas and Abbott, 1997a.

Neurons with visual responses modulated by attentional gain fields can gener-
ate translation-invariant responses in downstream neurons if theses are driven by
synapses with appropriate strengths (Salinas and Abbott, 1997a, 1997b). This can
be shown analytically if a few simplifications are allowed, and its validity under
more general conditions can be verified by simulating a model network. The key
for this result to be true is that the set of V4 neurons should include many combi-
nations of receptive field properties and gain field centers that are not correlated
or aligned. Thus, a given location in the visual field must be covered by neurons
with different combinations of preferred orientation, preferred spatial frequency,
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and other receptive field parameters. For each of these receptive fields, there must
be several neurons with different preferred attentional loci that are independent of
the receptive field parameters. The experimental data support these assumptions
(Connor et al., 1997).

The model used in the simulations is schematized in Figure 6b. An image is
projected on a pixel array to generate a set of model V4 responses determined by
Equation 2. These responses are then synaptically weighted through feedforward
connections to produce a model IT response. The array of V4 responses consists
of a set of 32 by 16 receptive field centers spread uniformly. At each location, there
are neurons with 4 orientation preferences, 3 frequency selectivities, and 6 different
gain field centers (for horizontal translation only). This gives a total of about 37,000
model V4 responses. The crucial elements in the network are the synaptic weights

. We have found a mathematical condition that the weights must satisfy in or-
der for the IT neuron to be translation-invariant. This condition can be satisfied if
the weights develop through simple correlation-based learning, which is precisely
how they were set in the simulations.

One simple training procedure that produces synaptic connections that satisfy
the condition for translation invariance is the following. During a training period,
a selected image is presented and translated to all locations while the IT neuron is
set active (i.e. its firing rate, , is set to a high value throughout this period) while
Hebbian learning takes place. Every time the training image appears at a given lo-
cation, the V4 responses are computed and an amount proportional to the product

is added to each synapse , where represents the firing rate of V4 neuron
and is the preset response of the IT neuron. During the training period, the lo-

cation of attention is maintained at the center of the training image. Once the image
has appeared at all locations, the weights are not modified any more, and the model
is tested to determine how the IT cell responds. It is important to stress that this
particular mechanism for establishing the connections is not crucial for the success
of the model. Weights that satisfy the condition needed for translation-invariant
responses are not unique and could thus be established in different ways.

Figure 7. Correspondence between invariant object recognition and activity in inferotem-
poral cortex according to the model based on attentional gain modulation. Rectangles cor-
respond to visual displays. The small crosses represent the fixation point (the point to
which gaze is directed), and the crosshairs, which are not part of the actual visual display,
indicate the location where attention is directed. The bars on the right show the expected
response of a hypothetical face-selective IT neuron in the three situations a, b, and c, ac-
cording to the model.

Figure 6c shows the response of the model IT neuron to translated versions of
the same image used during learning. The plot shows the firing rate of the IT cell
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as a function of image location. The filled circles correspond to attention located
at pixel 16, whereas the hollow circles correspond to attention directed at pixel 48.
The IT neuron responds strongly whenever attention is focussed close to the cen-
ter of the image, regardless of the location of the image on the retina or viewing
screen. Figure 6d shows that when a different pattern is shown to the same IT cell
the evoked response is smaller. This response falls off gradually as the image moves
away from the location of attention. The receptive field of the model IT neuron thus
shifts with attention, while retaining its selectivity for a specific image pattern; the
model neuron operates in attention-centered coordinates.

Figure 7 schematizes the relationship between object recognition and IT activity
according to the mechanism based on a coordinate transformation from a retinal
to an attention-centered reference frame. This figure applies equally to the mod-
els by Olshausen et al. (1993) and Salinas and Abbott (1997a, 1997b). When an ob-
ject for which the neuron is selective appears in the visual field, the IT neuron re-
sponds when attention is directed toward that object (Figure 7a). If a different ob-
ject appears and attention is drawn to it, the neuron stops responding because, even
though the new image is located at the center of the neuron’s receptive field, the cell
is not selective for it (Figure 7b). However, when attention is directed back to the
first image, the neuron fires rapidly again (Figure 7c). Notice that the visual display
is exactly the same in Figures 7b and 7c, only the locus of attention has changed.
The models predict that an object may be recognized when attention is focused on
it, but not when it appears far away from the attended location.

Mack and Rock and collaborators have performed psychophysical experiments
that support this prediction (Mack and Rock, 1998). They designed a paradigm in
which a test stimulus is displayed while subjects perform an attentionally demand-
ing visual task unrelated to the test stimlus. In trials in which subjects performed
the task and expected the appearance of the additional but unspecified stimulus,
they were able to identify it reliably, without affecting performance of the primary
task. In this condition, the subjects presumably divided their attention in such a
way that they focused on the two stimuli simultaneously and effectively. In con-
trast, when subjects were engaged in the primary task and were not expecting the
appearance of a test stimulus, a significant fraction of the time they were not even
able to detect it; the test stimulus simply went unnoticed in many of these trials
( 25%), presumably because attention was fully devoted to the primary task. This,
in itself, was quite remarkable, but most importantly for our discussion, the sub-
jects that did report seeing an additional stimulus in this ‘inattention’ condition
could not identify its shape above chance levels. This is in marked contrast to other
attributes of the test stimulus, such as color, orientation, location and numerosity,
which were not correctly identified all the time, but still were identified more often
than expected from random guessing. These results suggest that, if attention is far
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away from a visual stimulus, its shape cannot be determined. This provides strong
evidence for attention playing an essential role in object recognition, as suggested
by the theoretical models.

Two important points should be stressed about the mechanism for translation
invariance that we have described. First, we have modeled only a single IT neuron,
but other units could be included in the network, driven by the same population
of V4 neurons. Different IT neurons could then be selective for different images.
The major constraint imposed by the simple learning mechanism that we have pro-
posed is that only small numbers of neurons should be active at the same time dur-
ing learning. But regardless of the specific mechanism, if the synaptic weights sat-
isfy the proper condition, any number of receptive fields can operate in attention-
centered coordinates. The second point is that the model requires on the order of
250,000 V4 neurons modulated by attention for full two-dimensional translation. It
thus seems that the cost of invariance is a large number of driving neurons. How-
ever, these V4 cells have simpler receptive fields than IT neurons, and the same pop-
ulation of V4 neurons can provide the basis for any number of complex IT receptive
fields that need to be translated to an attention-centered system.

Desimone et al. (1983) found that face-selective neurons in IT cortex of anes-
thetized monkeys responded strongly to faces presented anywhere inside a large
bilateral receptive field. This does not necessarily constitute evidence against an
attention-centered reference frame as a basis for these responses, because attention
could operate under the control of ‘automatic’ mechanisms. Eye movements can
be controlled consciously but they need not be, and they can also take place during
sleep. Similarly, we can consciously direct our attention, but this does not prove
that an attentional locus is absent under anesthesia. Manipulations that are known
to eliminate attentional effects selectively would be required to settle this question.

A word should also be said about learning mechanisms that could possibly give
rise to synaptic weights satisfying the condition for translation invariance. We al-
ready mentioned that there is no unique set of such synaptic connections. Never-
theless, regardless of the synaptic modification rules considered, one aspect of the
training procedure does put a general constraint on the model: an object can be rec-
ognized at a given position only if it has appeared previously at that position during
learning. Therefore, if during learning an object appears only in the left hemifield,
later the model IT cell will respond to that object strongly and independently of
position only when it appears in the left hemifield. No response will be observed
when it is shown anywhere in the right hemifield. The learning process itself is
not translation invariant. This applies particularly to distances larger than a few
degrees, because invariance over smaller distances could also be obtained through
other mechanisms, for example from the properties of complex cells (Logothetis et
al., 1995; Riesenhuber and Poggio, 1998, 1999). This restriction is consistent with
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the results of psychophysical experiments. In certain visual tasks such as discrimi-
nation of unfamiliar images, in which increases in psychophysical performance can
be controlled and quantified, learning is location-specific. Increases in performance
are either absent outside the specific location used during learning (Karni and Sagi,
1991; Dill and Fahle, 1997), or acquired gradually for subsequent locations (Sigman
et al., 1999). These results suggest that translation invariance may indeed require
objects to appear at different locations during a training period.

Gain modulation as a generalized control mechanism

In the ‘where’ visual pathway, eye position affects activity at multiple points in
the processing chain. Attention also seems to act in parallel at multiple sites, as ef-
fects have been found in many visual areas, including primary visual cortex (Mot-
ter, 1993; Connor et al., 1996, 1997; Luck et al., 1997; Vidyasagar, 1998; McAdams
and Maunsell, 1999; Treue and Martı́nez-Trujillo, 1999). As noted for eye position,
attentional control may be more effective when acting at different points along a
hierarchical processing stream.

Visual neurons are typically selective for a number of stimulus attributes, such
as orientation, color, and spatial frequency, and may be modulated by multiple quan-
tities as well, such as eye position and attention. Previously, we argued that recur-
rent connections could give rise to gaze-dependent gain modulation, but could this
mechanism account for the effects of other or even multiple modulatory influences?
In the model, the same modulatory input (see Figure 3) is added to a group
of recurrently connected neurons. As long as this input is common to them and
independent of other tuning properties, its modality or origin is irrelevant. An in-
put that was a function of the location of attention would produce exactly the same
scaling of a tuning curve as seen in the example using eye position modulation. If
two modulatory inputs depending on quantities and act independently, so that
the total modulatory input is , the two influences would be combined
additively to determine the total gain.

Recent studies are consistent with this prediction. McAdams and Maunsell (1999)
investigated the effects of attention on the orientation selectivity of neurons in V4
and V1, and found that tuning curves were almost exactly scaled by attention. The
authors pointed out the ubiquity of multiplicative interactions among many stim-
ulus dimensions, noting that by virtue of its multiplicative effect attention is put on
the same footing as many other sensory attributes. Contrast, for instance, provides
a well-known example of a multiplicative influence on tuning properties (McAdams
and Maunsell, 1999). In another study, Treue and Martı́nez-Trujillo (1999) showed
that attending to a selected location and to a selected feature both have almost per-
fectly multiplicative effects on direction tuning in area MT. Furthermore, they showed
that the effects combined additively. Thus, the model based on recurrent activity
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fits well with a variety of measured interactions between tuning properties and mod-
ulatory inputs. Nevertheless, its tendency to select one stimulus over others when
many of them are presented simultaneously may be incompatible with the many
cortical areas that are subject to attentional modulation under a wide variety of con-
ditions. Attention sometime does act as if it were suppressing irrelevant stimuli
(Reynolds and Desimone, 1999), but not all observations are consistent with this
(Treue and Martı́nez-Trujillo, 1999). Thus, although the recurrent network may cap-
ture some important properties of the circuits underlying gain modulation in gen-
eral, the specific mechanisms that may produce attentional modulation consistent
with the growing body of experimental observations need to be worked out in more
detail.

Although we have discussed and modelled gain modulation that is multiplica-
tive, this is not a critical feature. The key property is that gain modulation must
combine information about the modulatory influence with information about the
sensory stimulus in a nonlinear way. In simulations, we have found that even large
deviations from a product relationship can produce results similar to those found
with exact multiplication, as long as the two terms involved are combined nonlin-
early. However, our results suggest that multiplicative gain control may be advan-
tageous if it is combined with a Hebbian synaptic modification mechanism. In this
case, neural representations in a new reference frame can be established through
correlation-based learning. The repertoire of synaptic modification rules available
to a circuit must place strong constraints on the neural representations that it can
use.

Closing remarks

In conclusion, gain modulation may be a generalized mechanism by which pop-
ulations of neurons may encode sensory stimuli and other kinds of information,
with the advantage that such representation may greatly facilitate certain computa-
tions. The two models for coordinate transformations that we discussed involved
separate anatomical structures in the dorsal and ventral visual pathways, as well
as independent modulatory effects. However, as can be appreciated by comparing
Equations 1 and 2, the two gain control signals exert identical effects, regulating the
amplitude of a set of visual responses. Our findings support earlier conclusions by
Andersen and collaborators, who suggested that gain fields are an efficient means
to perform coordinate transformations in general. The presence of gain fields at one
stage of a processing pathway suggests that responses at a downstream stage will
be in a different coordinate system. Similarly, the presence of transformed or in-
variant responses at one area suggests that gain modulated responses will be found
at points upstream from this area. We also found that gain fields arise naturally
from the recurrent connectivity that is characteristic of cortical circuitry (Gilbert and

18



Wiesel, 1983, 1989; Ahmed et al., 1994, 1997). Further experiments should outline
more precisely how gain fields are built and exploited by the nervous system, but
they will probably remain a prime example of neural design serving a computa-
tional purpose.
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