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The strength of many synapses is modified by various use and
time-dependent processes, including facilitation and depres-
sion. A general description of synaptic transfer characteristics
must account for the history-dependence of synaptic efficacy
and should be able to predict the postsynaptic response to any
temporal pattern of presynaptic activity. To generate such a
description, we use an approach similar to the decoding
method used to reconstruct a sensory input from a neuronal
firing pattern. Specifically, a mathematical fit of the postsynap-
tic response to an isolated action potential is multiplied by an
amplitude factor that depends on a time-dependent function
summed over all previous presynaptic spikes. The amplitude
factor is, in general, a nonlinear function of this sum. Approxi-
mate forms of the time-dependent function and the nonlinearity
are extracted from the data, and then both functions are con-

structed more precisely by a learning algorithm. This approach,
which should be applicable to a wide variety of synapses, is
applied here to several crustacean neuromuscular junctions.
After training on data from random spike sequences, the
method predicts the postsynaptic response to an arbitrary train
of presynaptic action potentials. Using a model synapse, we
relate the functions used in the fit to underlying biophysical
processes. Fitting different neuromuscular junctions allows us
to compare their responses to sequences of action potentials
and to contrast the time course and degree of facilitation or
depression that they exhibit.
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The behavior of neural circuits depends critically on the proper-
ties of the synaptic connections within them. Modifications of
synaptic transfer characteristics can have a significant impact on
circuit dynamics. Various processes such as facilitation and de-
pression alter effective synaptic strength over time scales similar to
those of normal activity. To determine whether particular changes
in the temporal pattern and rate of activity are sufficient to modify
synaptic strength and alter network dynamics, we need to under-
stand how postsynaptic potentials (PSPs) and postsynaptic cur-
rents (PSCs) are affected by presynaptic activity. To this end, we
have developed a general procedure for predicting postsynaptic
responses to arbitrary presynaptic spike trains.

Prediction of the PSCs or PSPs evoked by a presynaptic spike
train is closely related to the reconstruction of a stimulus from
the spike train of a sensory neuron, a process known as spike
decoding (Bialek et al., 1991; Warland et al., 1991). In both
cases, a map must be constructed from a discrete set of spike
times to a continuous function of time that describes either the
stimulus or, in our case, the PSC or PSP; however, our appli-
cation of this approach is essentially inverted. Rather than
reconstructing the stimulus that evoked a particular spike train
as has been done previously, we use the spike train to predict
the postsynaptic response that it evokes. Because of the simi-
larity in the two approaches, we refer to the construction of an
accurate description of postsynaptic responses as synaptic de-
coding. In developing the methodology, we have tried to satisfy

the following conditions. (1) The method should be applicable
to any spike train; (2) the method should be as simple as
possible both to apply and to describe; and (3) it should be
possible to relate parameters extracted from fitting the data to
the underlying biophysical processes governing the behavior of
the synapse.

A standard method for describing synaptic transmission is to
measure responses to various spike trains and then build a model
that accounts for the results (Mallart and Martin, 1967; Magleby
and Zengel, 1975; Zengel and Magleby, 1982; for related models,
see Zucker, 1989; Yamada and Zucker, 1992; Delaney and Tank,
1994). An alternative, model-independent approach is based on a
Volterra expansion of the PSP time course (Krausz and Friesen,
1977). This method is extremely attractive because it provides a
well defined program for building the description that is of gen-
eral applicability; however, it has some limitations. Specifically,
the statistics of the stimulus spike trains are restricted, and the
method uses multivariable functions that are difficult to plot and
describe and involves parameters that are not easily related to the
relevant underlying biophysical processes.

Here we describe an approach that combines the desirable
features of modeling techniques (Magleby and Zengel, 1975;
Zengel and Magleby, 1982) with the generality and programmatic
nature of the Volterra method (Krausz and Friesen, 1977). Our
method can be applied to arbitrary spike trains, and it uses only
functions of a single variable. One function describes the postsyn-
aptic response to single, isolated presynaptic action potentials. In
the examples shown here, a set of two functions accounts for the
effects of the previous history of spiking. These functions are
constructed by a learning algorithm that steadily improves the
quality of the prediction (Abbott, 1994). After training on data
from random spike sequences, postsynaptic responses to arbitrary
trains of presynaptic action potentials can be predicted.
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MATERIALS AND METHODS
Experimental procedures
All experiments were performed on male rock crabs (Cancer borealis)
purchased from local fishermen in Boston, MA, and the crabs were held
in aerated salt water aquaria at 12!C until used. Isolated neuromuscular
preparations were dissected, placed in a 5 ml chamber, and superfused
continuously with physiological saline at 10–15 ml/min with use of a
gravity-fed system. Bath volume was "3 ml. The saline temperature was
held between 10 and 12!C by means of a Peltier cooling system and was
monitored continuously with a thermoelectric probe in the bath. Physio-
logical saline had the following composition (in mM/l): 440 NaCl, 11.3
KCl, 13.3 CaCl2, 26.3 MgCl2, 11 Trizma Base, and 5.2 maleic acid, pH
7.4–7.5.

Crustacean stomatogastric muscles are innervated by excitatory motor
neurons (Maynard and Dando, 1974; Hooper et al., 1986; Weimann et al.,
1991). The motor nerve innervating the isolated muscle was stimulated
with a suction electrode. Intracellular recordings from single muscle
fibers were obtained with conventional microelectrodes with resistances
of 8–12 M# filled with 2.5 M KCl. Synaptic currents were obtained with
two microelectrode voltage clamps (Axoclamp 2A). The input impedance
and the time constant of muscle fibers were measured under current-
clamp conditions. One microelectrode was used to inject a family of
hyperpolarizing currents, and the other electrode was used to measure
the passive properties of the muscle fiber membrane. The distance
between the electrodes was less than the length constant of the
membrane.

A digital stimulus isolator (A–M Systems, Everett, WA) was used to
stimulate the motor nerve with various spike trains generated by a
modified version of the program IsoStim (A–M Systems). Stimulation
consisted of Poisson spike trains with different average firing rates (1–10
Hz), but with the minimum interval between spikes restricted to 100–250
msec. Uniform trains at different frequencies (1–10 Hz) with different
train durations (1–4 sec) were also used.

Elicited PSPs or PSCs were digitized, displayed, and stored in real time
on a Macintosh IIfx using the ITC-16 interface board and the software
Acquire (Instrutech). The sampling rate was 2 kHz. Additional copies of
intracellular recordings were taped (Vetter digital model 3000A) and
recorded on chart paper (Gould Instruments, Glen Burnie, MD). The
data files from Acquire were processed using Igor Pro (WaveMetrics) to
eliminate the stimulus artifacts from recordings and to format the data
for further analysis. Final data consisted of a sequence of spike times and
the corresponding time sequence of recorded electrode currents or volt-
ages, called collectively Rexp(t) in the following equations. Analysis of the
data consisted of constructing an estimate Rest(t) of this time sequence on
the basis of knowledge of the spike times.

Analysis
Our description of the general method used to analyze postsynaptic
responses is divided into several parts. First, we discuss the general
mathematical equations we use to predict responses to arbitrary spike
trains. These equations involve three unknown functions, called K1, K2,
and F, that must be extracted from experimental data. Determining K1 is
easy; it is just a fit of the postsynaptic response to a single, isolated action
potential. Extracting the other two functions is more complicated and
involves a two-step procedure. First, we derive a rough estimate of the
shape and form of these functions using methods described below. These
estimates allow us to construct functions dependent on a relatively small
number of parameters that match these rough initial fits. Then, a training
procedure is used to determine the parameter values that best fit the data.
This two-step approach is first applied to the function K2 and then to F,
and finally both functions are fit together.

General formalism. We begin our analysis by describing the postsynap-
tic response to a single isolated presynaptic spike. If an isolated presyn-
aptic spike arrives at time ti, a fit of the postsynaptic response (either a
PSC or a PSP, depending on which is being described) at any later time
t can be written as a function of the time difference, t $ ti, K1(t $ ti). The
function K1 is obtained by fitting average responses to isolated spikes. In
all cases studied, a linear rise followed by an exponential decay provided
an adequate fit of these responses. One such fit is shown in Figure 1 (first
response). Figure 1 also shows, for comparison purposes, the result of a
crude and inaccurate attempt to describe the response to a second spike
simply by summing the isolated-spike responses K1(t $ ti) over the two
spike times t1 and t2. As seen in Figure 1, such a prediction accounts for

temporal summation of postsynaptic responses but fails to account for the
facilitation seen in the figure.

To account for the dependence of individual PSCs or PSPs on the
previous history of spiking, we introduce an amplitude factor that multi-
plies K1 to adjust the magnitude of the response (Magleby and Zengel,
1975; Krausz and Friesen, 1977):

Rest%t& ! !
ti't

K1%t " ti&(1 # A%ti&). (1)

The factor 1 * A(ti) scales the isolated-spike response evoked at time ti
by an amount that depends on the timing of this spike relative to others
in the train. The factor A(ti) depends on the history of spiking before the
time ti. To monitor this history, we introduce another time-dependent
function K2 and calculate a sum over spikes occurring before the time ti:

S%ti& ! !
tj'ti

K2%ti " tj&. (2)

One simple approach to describing history-dependent processes would be to
use this sum directly as the amplitude factor: A(ti) + S(ti). This produces a
much better description of the postsynaptic response than the summation of
K1 alone; however, it does not provide an adequate description of the
response to high-frequency spike trains. To improve accuracy, Krausz and
Friesen (1977) add functions of two or more temporal differences to Equa-
tion 2. Although this strategy improves the fit, it can introduce artificial
multiple time constants (see Results) and requires multivariable functions. In
the cases we studied, a simpler procedure that does not suffer from these
problems provided excellent fits.

Rather than introducing more complexity into the sum given by Equa-
tion 2, we reexpress the amplitude factor A in a more general form that
allows for a nonlinear dependence on the sum over previous spikes:

A%ti& ! F%S%ti&&, (3)

with F an arbitrary function of the sum S given by Equation 2. This
approach has the potential for solving the multiple time constant prob-
lem, and it eliminates the need for additional multivariable functions. The
higher-order functions that would be introduced in other approaches may
serve, in some cases, merely to reproduce a power series expansion of the
function F; however, these advantages come with a price. We must extract
from the data both K2 and the function F.

The general procedure we use to determine K2 and F is gradient
descent reduction of the discrepancy between the predicted response Rest
and the true response Rexp at every time step. Specifically, the algorithms
we use minimize the squared difference between the measured response
Rexp(t) and its predicted value Rest(t) given by Equation 1. As with all

Figure 1. Fit of EJPs by a sum of single-spike responses K1. Open circles
show recorded EJPs evoked by a pair of spikes. The solid line is a
prediction using a linear sum of two single-spike responses K1. K1 was
chosen to fit single isolated spikes, and it fits the first EJP accurately.
Although temporal summation is seen, the prediction based on a sum of
single-spike responses fails to account for the facilitation displayed by the
data. Data are from a gm8 muscle with a baseline membrane potential
of $59 mV.
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gradient descent procedures (Press et al., 1992), this is carried out by
making small changes in the functions that maximize the decrease in the
error as estimated by linear extrapolation. The procedure requires that
we parameterize K2 and F and then use gradient descent to determine the
parameter values that provide the best fit to the data.

To deal with the problem of extracting both K2 and F from the data, we
start by ignoring F and determining K2 alone. Thus, we initially ignore any
nonlinear dependence of the response amplitude on the sum over spikes
and set the amplitude factor A equal to the sum (Eq. 2), which is
equivalent to assuming F + S. We then find the function K2 that provides
the best possible fit to the experimental data under this constraint.
Because initially we have no idea what shape K2 might have, we start with
a very general parameterization. The large number of parameters in-
volved at this stage makes it impractical to generate the final fit this way,
but it allows us to extract an estimate of the general form of K2. From this
estimate, we construct more compact parameterizations of K2 and a
better fit to the data. We next estimate the general shape of F, find a
parameterization that fits this estimate, and finally extract the optimal
values of the parameters describing both K2 and F by gradient descent.
All of these steps are described in more detail below.

Estimating K2. As an initial description of K2, we use a very general
parameterization that describes virtually any smooth function. We divide
time into discrete intervals t + n,t for integer n and define K2 in terms of
its values at these times K2(n,t). For other times, the value of K2 can be
obtained from these values by interpolation (we use a simple nearest
point approximation). We then consider each of these discrete functional

values K2(n,t) as an independent, free parameter describing the full
function K2. As with any gradient descent method, we change the param-
eters K2(n,t) at a rate proportional to the negative of the derivative of the
error:

dK2%n,t&
dt ! $$

d%Rexp%t& " Rest%t&&2

dK2%n,t& , (4)

where $ is a small number that determines the learning rate. The deriv-
ative on the right side of this equation can be computed to yield the
learning rule:

dK2%n,t&
dt ! $(Rexp%t& " Rest%t&) !

ti't

K1%t " ti& !
tj'ti

Dn%ti " tj&, (5)

where Dn(ti $ tj) is 1 if ti $ tj lies between (n $ 1/2),t and (n * 1/2),t and
is zero otherwise. A disadvantage of this approach, especially if ,t is
small, is that it is quite noisy, i.e., the points K2(n,t) tend to be fairly
scattered. We sometimes apply a smoothing procedure to reduce this
noise.

A plot of the discrete values K2(n,t) provides an estimate of the
function K2, which can be fit by a smooth curve. Typically, this curve is
described by a function that depends on a small number of parameters. In
most of the cases that we studied, K2 could be described by a single
exponential, K2(t) + A exp($Bt), although in one case the sum of two

Figure 2. Conventional analysis of facilitation. A, EJPs in response to a 10 sec conditioning burst at 10 Hz followed by a test impulse 5 sec and 30 sec
after the burst. B, Buildup of facilitation as a function of time for different impulse frequencies during the train. This was obtained by measuring the
change in the membrane potential from rest during the 10 sec burst. Symbols are defined in C. C, Decay of facilitation as a function of time for different
impulse frequencies during the train. Results were obtained by measuring the amplitude of the test EJP at various intervals after the burst. Data are from
a gm8 muscle with a baseline membrane potential of $65 mV.
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Figure 3. Fitting the response of a computational model synapse. The responses of the model are shown as open circles, and the fit is indicated
by solid curves. A, The fit using K1 alone. This fails to capture the facilitation seen in the model. B, Fits with both K1 and K2 but no nonlinearity;
we have taken F + S. In this case, the fit is much better but is not perfect. The functions used are shown below the PSC plot. The middle figure
is a scatter plot of the discrete point parameterization of K2 and an exponential fit of these points. The figure at the bottom right of this panel,
plotting Aexp against S, shows that the assumption F + S is not correct and suggests the form of the function F that is needed. C, Fit with K1 and
K2 and nonlinearity F. These functions are plotted below the PSC plot. The graph at the bottom right corner of this panel compares the amplitude
Aexp extracted from the data, with its prediction F.
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exponentials was required. Once we have such a parameterization, the
gradient descent procedure can be repeated to extract the best fitting
values of A and B. The relevant equations for this, determined by
computing the derivatives of the error with respect to A and B, are:

dA
dt ! $(Rexp%t& " Rest%t&) !

ti't

K1%t " ti&"S%ti&

A # , (6)

with S given by Equation 2 and:

dB
dt ! $(Rexp%t& " Rest%t&) !

ti't

K1%t " ti& !
tj'ti

%tj " ti&K2%ti " tj&. (7)

Of course, this procedure is not restricted to exponential functions. If %
is any parameter that controls the shape of the function K2, then its best
fitting value can be determined by the equation:

d%

dt ! $(Rexp%t& " Rest%t&) !
ti't

K1%t " ti& !
tj'ti

dK2%ti " tj&

d%
. (8)

Estimating F. Once an estimate of K2 has been constructed by the method
described above, we can generate an estimate of the general shape of the
function F. To do this, we compare the amplitude factors predicted by the
method for each presynaptic spike with the experimentally determined
response amplitudes. Response amplitudes Aexp (see Eq. 1) can be
extracted from the data by measuring the peak height of each postsyn-
aptic response, dividing this by the height of the isolated spike response
(the peak of the function K1), and subtracting 1. A plot of these numbers

Figure 4. Fit of EJCs from the gm8 muscle. In both A and B, the upper dotted line is the result of a linear sum of single-spike responses K1, with no
amplitude factor included. The open circles are data points, and the solid curve is the prediction using the functions K1, K2, and F plotted in the bottom
row of graphs. These fits were the end result of a gradient-descent training session based on data that included the sequence shown. A, Over the entire
data set, the r.m.s. error in the prediction of the peak EJC amplitude was 1.9 nA, corresponding to a 9% relative error. B, Stimulation of another synapse
at higher frequency. In this case, the r.m.s. error in the prediction of the peak EJC amplitude was 1.2 nA, corresponding to an 8% relative error.
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against the sums S(ti) determined using the function K2 extracted above
provides a direct estimate of F. Each spike produces one point on this
plot [the point S(ti), Aexp(ti)], and collectively they trace out an estimate
of the shape of F, because in our formalism A(ti) + F(S(ti)). In the cases
that we studied, F could be fit accurately by a quadratic polynomial, F +
S * bS2 with free parameter b.

Determining K2 and F. Once compact parameterizations of K2 and F
have been obtained, we determine the best fit parameters for both of
these functions by simultaneous gradient descent. For K2(t) +
A exp($Bt) and F + S * bS2, the free parameters A, B, and b are
determined by iterating the gradient descent equations:

dA
dt ! $(Rexp%t& " Rest%t&) !

ti't

K1%t " ti&(1 # 2bS%ti&)"S%ti&

A # , (9)

dB
dt ! $(Rexp%t& " Rest%t&) !

ti't

K1%t " ti&(1

(10)
# 2bS%ti&] !

tj'ti

%tj " ti&K2%ti " tj&,

and

db
dt ! $(Rexp%t& " Rest%t&) !

ti't

K1%t " ti&S2%ti&, (11)

until an acceptable fit is obtained. This typically requires a number of
passes through the data set.

The above equations apply when K2 is described by a single exponential
function and F by a quadratic polynomial; however, it is possible to use
more complex fits involving a number of free parameters such as sums of
exponentials or other functions. In this case, the optimal set of parameter
values is again determined from the data by a gradient descent procedure.
If % is any parameter affecting the form of K2, then the learning rule used
to set its value is:

d%

dt ! $(Rexp%t& " Rest%t&) !
ti't

K1%t " ti&
dF%S%ti&&

dS !
tj'ti

dK2%ti " tj&

d%
. (12)

Similarly, if & is any parameter controlling the shape of the function F:

d&

dt ! $(Rexp%t& " Rest%t&) !
ti't

K1%t " ti&
dF%S%ti&&

d&
. (13)

Both of these equations are iterated while predictions and data are
compared until an acceptable fit is obtained.

During the training procedure that determines the best fit parameters,
the learning rate $ should be adjusted carefully to provide the best fit in
the shortest possible time. This requires some care, because $ must be
kept small enough to keep the algorithm stable but large enough to allow
a reasonable rate of change in the parameter values. During the learning
procedure, we periodically check that parameter changes are within an
acceptable range and that the error is actually decreasing. If not, we
adjust the value of $. For the simultaneous fit of K2 and F, we sometimes
use two different $ values to achieve faster convergence.

We used data from three 30-sec-long random spike trains to determine
the fitting parameters. We then used the description constructed in this
way to predict the postsynaptic responses to random spike trains that
were not part of the training set used to extract the fitting parameters. We
also compared predictions with data from uniform trains of different
frequencies and durations. Finally, we quantified the discrepancies be-
tween the predictions and the data using a percentage root–mean–
squared error. This consists of subtracting the prediction from the mea-
sured response at the peak of each response, squaring the result,
averaging over all presynaptic spikes, taking the square root of the result,
and finally expressing the error as a percentage of the average response
amplitude. To avoid jitter associated with the peak point in the response,
we typically averaged over a few points around the peak.

Computational model synapse and muscle
Part of our analysis uses computational models of a synapse and of a
postsynaptic muscle fiber. For the model synapse, each presynaptic spike

introduces a pulse of one unit of Ca2* into the presynaptic terminal. The
Ca2* concentration decays exponentially, with a time constant of 1 sec.
The model produces PSCs of a fixed shape with an amplitude propor-
tional to the square of the calcium concentration in response to each
input spike.

The muscle model was a simple RC-cell with resistance 0.3 M# and
membrane time constant of 130 msec, as determined by measurements of
typical passive properties of the recorded muscles. To model the PSP, the
synaptic current predicted for a given spike train was injected into the
RC-cell, and the voltage was determined by integration. In some cases,
synaptic noise was included in the model by the addition of a small
random number to the synaptic current to simulate variability seen in the
data.

RESULTS
The synaptic decoding method was applied both to a computa-
tional model of a synapse and to various real synapses. In the case
of the computational model, all of the “mechanisms” affecting
synaptic transmission are known, and we can determine whether
the extracted functions characterize them correctly. The real
synapses we studied are crustacean neuromuscular junctions: spe-
cifically, synapses between stomatogastric ganglion motor neurons
and muscles of the crab Cancer borealis (Maynard and Dando,
1974; Hooper et al., 1986; Weimann et al., 1991). Unlike verte-
brate neuromuscular junctions, in which each presynaptic action

Figure 5. Predicting the response to a test train. This figure uses the
synapse and fit shown in Figure 4A, but involves EJCs evoked by a spike
train not included in the training set used in that figure. The top trace
shows the actual response during one trial. The second trace shows the
average of EJCs evoked by two identical spike trains, and the third trace
shows an average of five trials. The bottom trace is the predicted response.
The prediction errors for the data shown in these cases were 0.48 nA or
10% for the top trace, 0.34 nA or 7% for the second trace, and 0.24 nA or
5% for the third trace.
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potential evokes a muscle fiber action potential, each presynaptic
action potential at a crustacean neuromuscular junction evokes a
graded postjunctional (postsynaptic) potential. Crustacean neuro-
muscular synapses display many of the features of central synapses
in vertebrates, such as facilitation and depression, along with
spatial and temporal summation, and they provide the reproduc-
ible long-term recordings needed to verify the method.

Before the synaptic decoding approach is applied, it is useful to
illustrate the properties of one of the neuromuscular junctions
that we studied by using a more conventional approach. This
consists of applying spike trains of different durations and fre-
quencies that are followed at a variable time intervals by a test
pulse. The results of such a procedure applied to the gm8 muscle
(Maynard and Dando, 1974) are shown in Figure 2. During the
fixed frequency train, facilitation builds up during the first 1–2 sec,
resulting in a five- to sixfold increase in the excitatory junctional
potential (EJP) amplitude at the highest frequencies. The re-
sponse to an isolated test spike shows that the degree of facilita-
tion that develops during the train diminishes within "10-20 sec.
Although curves like those of Figure 2 capture the basic phenom-
enon, they are not in a form that is useful for predicting responses
to novel spike trains not included in the test set, which violates

condition 1 cited in the introductory remarks. In addition, this
format is not compact enough for convenient incorporation into
network models (condition 2), nor is it well-suited for extracting
underlying biophysical properties (condition 3).

Description of PSCs in a computational model of
a synapse
As a first example, we fit the PSCs produced by a computational
model of a synapse. Although this is an artificial situation, it
illustrates the use of the method on an example that allows direct
connections between the fitting functions and the underlying
synaptic dynamics. This example should not be viewed as a test of
the method, because to a certain extent the method was con-
structed to fit such a model. The model synapse (described in
Materials and Methods) displays facilitation attributable to Ca2*

buildup in the presynaptic terminal. The response to a single
action potential was fit, in this case, by a single exponential with a
time constant of 50 msec. Figure 3A shows clearly that a linear
sum of single spike responses (A + F + 0) does not adequately
describe the PSCs of the model synapse. Therefore, we introduce
an amplitude factor, as in Equation 1, and construct the functions

Figure 6. Model EJPs compared with data. A, The EJCs in response to 4 Hz and 8 Hz spike trains as predicted by K1, K2, and the nonlinearity of Figure
4A were fed into a simple RC model of the gm8 muscle based on measured passive properties of the muscle fiber. The resulting predicted EJPs are
plotted. B, EJPs produced by the same model as in A but with added noise. C, Measured EJPs from the gm8 muscle in response to 4 Hz and 8 Hz trains.
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K2 and F that describe its dependence on the previous history of
spiking.

As outlined in Materials and Methods, we first ignored any
possible nonlinear dependence of the response amplitude on the
sum over spikes and set the amplitude factor A equal to the sum
(Eq. 2) so that A + F + S. We then applied Equation 5 to get an
idea of the shape of the function K2. The resulting values of
K2(n,t) are plotted in a scatter plot in Figure 3B. The smooth
curve fit to these points in the figure is an exponential function,
K2(t) + A exp($Bt). Because the exponential fits quite well, we
next found the parameters A and B that gave the best possible fit
to the experimental data by using Equations 6 and 7. The fit and
function that K2 obtained in this way are shown in Figure 3B. Even
without a nonlinear F function, the fit is much better than in
Figure 3A, but the limitations of the linear assumption for the
function F can be seen in the form of K2. This was fit by a single
exponential with a time constant of 0.7 sec; however, the time
constant for calcium removal in the computational model was 1
sec. Thus, the linear algorithm has extracted a time constant that
does not agree with the dynamics of the underlying model.

Both the quality of the fit and the value of the extracted
facilitation time constant can be improved by including a nonlin-
ear F function. We can see that nonlinearities are present by using
the procedure discussed in Materials and Methods for extracting
an estimate of F. Experimentally determined (or in this case
model-generated) response amplitude factors are plotted against
the sum S computed from Equation 2 in the right bottom plot of
Figure 3B. Each spike generates an individual point on this scatter
plot. If the assumption A + F + S used in the fit of Figure 3B were
correct, the dots would fall along a diagonal line at 45! in this plot.
The fact that they do not indicates that nonlinearities are present,
and the pattern of dots provides an idea of what the function F
should be. In this case, a polynomial is suggested, and the smooth
curve fit to the data points in the right bottom plot of Figure 3B
is a quadratic function.

Our final fit uses Equation 1 with Equation 3 for the amplitude

factor. The fitting parameters were determined by the gradient
descent procedure on the basis of Equations 9–11. The result,
shown in Figure 3C, is an essentially perfect match to the model-
generated PSCs. The function F plotted in the lower part of
Figure 3C matches the expectation for F extracted from the
scatter plot in Figure 3B. We repeated the self-consistency check
that we performed for the fit of Figure 3B, this time plotting the
amplitude Aexp extracted from the “data” with the prediction A +
F. In this case, the dots on the scatter plot lie accurately on a
diagonal straight line, indicating that the nonlinear function F has
been extracted correctly. Furthermore, the time constant for K2 is
now 1 sec, in exact agreement with the time constant of calcium
removal in the computational model.

In this analysis of a model synapse, the failure of the initial fit
of Figure 3B to account for the nonlinear nature of the facilitation
amplitude F caused the time constant extracted from K2 to differ
from the calcium uptake time constant of the underlying model. A
simple example illustrates why this problem arose. Suppose that
each spike elevates an exponentially decaying intracellular Ca2*

concentration by an amount ,C. Consider a train of two spikes,
one at time t + $,t and the other at time t + 0. The subsequent
Ca2* concentration at time t is then [Ca2*] + ,C exp($t/'C)[1 *
exp($,t/'C)], where 'C is the decay constant for intracellular
Ca2*. This expression decreases exponentially as both a function
of t and of ,t, with a single time constant 'C; however, if the
postsynaptic response amplitude depends on [Ca2*] through a
nonlinear polynomial function (as experimental data indicate), its
dependence on both t and ,t will involve a sum of exponential
terms with a number of different time constants ( 'C. As a result,
the number and the values of time constants extracted directly
from the time or interspike interval dependence of the response
amplitude without taking into account the nonlinearity have little
relation to the underlying dynamics. In addition to incorrect
characterization of the relevant time scales, this may create the
false impression that more independent processes are involved in
the synaptic biophysics than are actually present. Our method for

Figure 7. A direct fit of EJPs for the gm8 muscle. The procedure and results are exactly like those in Figure 4 except that EJPs rather than EJCs were
fit. Over the entire data set, the r.m.s. error in the prediction of the peak EJP amplitude was 0.4 mV, corresponding to a 13% relative error.
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introducing the nonlinear function F is designed to alleviate this
problem, although of course there is no guarantee that any math-
ematical fit will produce parameters that correspond directly to
biophysical processes.

Application to the crustacean neuromuscular junction
We next developed a description of both PSCs and PSPs [or in this
case, excitatory junctional currents (EJCs) and EJPs] in muscles
responding to spike trains. The muscles we considered are the
gm8, gm6, cpv4, and cpv7 muscles from the crab stomatogastric
musculature (Maynard and Dando, 1974).

Figure 4 shows two fits of the model to EJCs from the gm8
muscle. To generate these fits, we followed exactly the same
procedure that we used in fitting the model PSCs. We extracted K1

from EJCs in response to single, isolated spikes. This function is
described by a linear rise during the first 45 msec, followed by an
exponential decay with a time constant of 26 msec for the synapse
in Figure 4A. K1 for the synapse of Figure 4B had a similar shape,
with these two parameters taking the values 28 mS and 40 mS,
respectively. We then made the approximation F(S) + S and
estimated the shape of K2, which fit an exponential. Then we
determined an initial estimate of the value of the parameters of
this exponential using the gradient descent learning rules (Eqs. 6
and 7) to minimize the difference between the predicted EJCs and
those recorded in response to a random spike train. We next
estimated the nonlinear function F(S) by comparing EJC ampli-
tudes extracted from the data with the predicted values of the sum
S. F was well fit by a quadratic function. Finally, we performed a
simultaneous fit of K2 and F using Equations 9–11. The best fitting
function K2 was an exponential, with a time constant of 2.7 sec for
Figure 4A and 2.0 sec for 4B.

The predictions from the fit of Figure 4A were next compared
with data not in the training set used to extract K2 and F. Figure
5 shows the prediction for such a sequence compared with exper-
imental data for the synapse and fit shown in Figure 4A. When we
compare the prediction with data from a single run we find that
the average error in the prediction is 10%; however, if we com-
pare the prediction with data averaged over two runs with iden-
tical stimulation patterns the error drops to 7%. A comparison
with data averaged over five runs reduces the error further to 5%.

From this we conclude that the larger discrepancies between the
predictions and data for single runs are primarily attributable to
variability in the synaptic response itself and that on average the
match is extremely good.

Once a precise description of PSCs has been constructed, it can
be combined with a model of the postsynaptic cell to predict the
PSP response. We show the results of such a combination in
Figure 6. Here we have taken the EJCs predicted by the descrip-
tion in Figures 4A and 5 and have used them to generate a
prediction of the postjunctional potential (EJP) in the gm8 mus-
cle. The simple RC model of the muscle described in Materials
and Methods was sufficient for this purpose. As seen in Figure 6,
the predicted EJPs match the measured responses quite well, and
the match improves if a noise term is included in the model.

An alternative approach to predicting EJPs (or PSPs for a
postsynaptic neuron), rather than combining EJC predictions with
a postsynaptic cell model, is to describe them directly. To do this,
we use the same formalism that we used for PSCs and EJCs, but
in this case we compared the predictions of Equation 1 with
measured EJPs. The resulting fits to the training data are shown
in Figure 7. Figure 8 shows the match of the prediction to data not
in the training set. Note that for EJPs, K1 and K2 and F reflect
both the time course of the synaptic current and the active
conductances of the postsynaptic cell. K1 has a linear rise followed
by an exponential decay with a time constant of 130 msec. This is
longer than the time constant of K1 for EJCs because it includes
the effects of the membrane time constant of the muscle. For this
fit, K2 was the same as that for the synaptic current fit in Figure
4A, but the nonlinearity was modified. This modification is attrib-
utable to the extra complications introduced by the conversion of
synaptic current into membrane potential within the muscle. Fig-
ure 8 shows the response to relatively brief spike trains. We have
determined that for longer trains the fit matches the steady-state
level of the EJP amplitudes at various rates (not shown).

All of the examples given thus far show facilitation. The cpv7
muscle of the stomatogastric system, however, exhibits both rapidly
acting facilitation and more slowly developing depression. Figure 9
shows a fit of this muscle. The presence of both facilitation and
depression is revealed by the fact that K2 is initially positive but then

Figure 8. Predictions for a spike sequence not in the training set of Figure 7. The breaks in the traces represent time intervals of 20 sec and then 10 sec.
A, Measured EJP response. B, The predicted response using K1, K2, and the nonlinear function of Figure 7. Over the entire data set, the r.m.s. error in
the prediction of the peak EJP amplitude was 0.3 mV (12% relative error).
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becomes negative. K1 here was fit by a single exponential with a decay
constant of 95 msec, whereas K2 was fit by the sum of two exponen-
tials: a positive contribution with a decay time constant of 0.8 sec and
a negative term with a time constant of 14.3 sec.

The description of synaptic transfer characteristics we have
developed is useful both for studying a single synapse under
different conditions and for comparing the properties of different
synapses. Figure 10 shows such a comparison for the gm6 and
cpv4 muscles. As can be seen from K1 and K2, cpv4 is character-
ized by a larger single spike response and shorter-acting facilita-
tion, whereas gm6 has a small response to isolated spikes but
facilitation that is affected by a longer time period of previous
spiking. Interestingly, the larger facilitation seen in the gm6 re-
sponse is not the consequence of a larger amplitude K2, which
would reflect the fact that each spike produces more facilitation.
Rather, it is the result of a more slowly decaying K2, so that
facilitation is affected by more of the previous spiking history. The
function K2 describing facilitation for the cpv4 muscle has a time
constant of 1.8 sec, whereas the corresponding time constant for
the gm6 muscle is 5 sec.

DISCUSSION
Changes in the synaptic or modulatory inputs to a neuron can
modify its pattern of activity in ways that are easily measured;
however, interpreting the functional significance of such changes
is more difficult. This requires knowing whether the modified
spiking patterns produce appreciably different responses in the
postsynaptic targets of the observed neuron. For example, in the
stomatogastric nervous system, a large number of neuromodula-
tory substances alter the firing patterns of stomatogastric ganglion
motor neurons (Marder and Hooper, 1985; Harris-Warrick and
Marder, 1991; Elson and Selverston, 1992; Harris-Warrick et al.,
1992; Marder and Weimann, 1992; Dickinson, 1995). In the past
it has been difficult to predict whether a change in motor neuron
output produces a significant change in movement, because of the
complex dynamics of facilitation, depression, and nonlinear mus-
cle depolarization. We have now established a method that de-
termines directly how changes in spiking patterns translate into

changes in a postsynaptic membrane potential without requiring
new experimental measurements for each novel case that arises.
In addition, a precise description of synaptic transmission is an
essential element for modeling neural circuits. Predicted PSCs
associated with an arbitrary spike train can be combined with
single-neuron models to construct realistic descriptions of synap-
tically coupled neural circuits.

Detailed models of synaptic facilitation, augmentation, poten-
tiation, and depression have been developed from analyses of the
responses of postsynaptic cells to families of spike trains (Mallart
and Martin, 1967; Magleby and Zengel, 1975; Zengel and
Magleby, 1982; Zucker, 1989; Yamada and Zucker, 1992; Delaney
and Tank, 1994). Like the synaptic decoding method, these mod-
els can be used to predict the responses to novel spike trains. The
description that resulted from the decoding approach is similar to
that of some synaptic models (Magleby and Zengel, 1975; Zengel
and Magleby, 1982). This is more reassuring than surprising,
because both are describing similar phenomena; however, the
procedure for constructing the description is quite different in the
two cases. The synaptic decoding approach follows a well defined
procedure involving gradient descent learning and in this respect
is more similar to the Volterra series method (Krausz and Friesen,
1977). By including nonlinearities, however, the method avoids
some of the complications and limitations of the Volterra series.

We set out three conditions that should be met by a successful
scheme for describing synaptic transmission. First, we required
that the method apply to any presynaptic spike train. Because the
method is based on a general sum over spikes and is developed
from a learning procedure that does not require any particular
spike train statistics, this condition has been met; however, the
stimulus spike train nevertheless must be chosen with some care.
The stimulus set used to determine the parameters of the required
functions must represent the full range of presynaptic activity
patterns over which postsynaptic responses are to be predicted.
Specifically, the intervals in the random stimulus that are used
must span the interspike and interburst intervals of the stimuli
whose responses are to be predicted. The second condition was

Figure 9. A synapse displaying both facilitation and depression. The top trace shows the fit to the EJPs evoked by a random spike train. The functions
extracted by the fitting procedure are plotted underneath the EJP trace. The nonlinear function F is similar to that in other figures and is not plotted.
Data are taken from a cpv7 muscle with a baseline potential of $63 mV. Over the entire data set, the r.m.s. error in the prediction of the peak EJP
amplitude was 1.3 mV (17% relative error).
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simplicity, and indeed the neuromuscular junctions we studied were
described accurately by relatively simple expressions. In most cases,
facilitation was described with a single time constant. Although we do
not expect this always to be the case, the method can be extended
easily by including multiple exponential terms. Because the approach
allows for an arbitrary nonlinear dependence of facilitation and
depression on the sum over previous spikes, it will generate the
minimum number of time constants needed to describe these pro-
cesses. In addition to simplification of the description, this will help

in the identification of potential underlying biophysical mechanisms.
Thus, the third condition is met as well.

We have applied the synaptic decoding approach to both PSCs
and PSPs. In many applications, we expect that the method will
deal successfully with either of these, but in some cases it may be
limited to PSC prediction. Such a limitation will arise if the PSP is
strongly affected by the nonlinear characteristics of the membrane
potential of the postsynaptic cell. If such nonlinearities play an
important role, it is better to use the decoding method to describe

Figure 10. Comparison of two synapses. The breaks in the traces represent time intervals of 20 sec and then 10 sec. In both cases, the functions used
for the prediction are shown underneath the two EJP traces. Nonlinear functions F similar to those shown in previous figures were used here but are not
plotted. A, Comparison of the measured and predicted responses of a cpv4 muscle to a test spike train. The baseline membrane potential was $56 mV.
Over the entire data set, the r.m.s. error in the prediction of the peak EJP amplitude was 0.7 mV (5% relative error). B, Comparison of the measured
and predicted responses of a gm6 muscle to a test spike train. The baseline membrane potential was $54mV. Over the entire data set, the r.m.s. error
in the prediction of the peak EJP amplitude was 0.4 mV (8% relative error).
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PSCs and then to build a conventional, conductance-based model
of the postsynaptic cell. When combined, these two models should
provide an accurate description of PSPs in cases in which the
synaptic decoding method by itself cannot account for both the
transfer characteristics of the synapse and the membrane-
response properties of the postsynaptic cell.

In developing the mathematical framework used here, we have
been guided by basic features of the biophysical mechanisms
underlying synaptic facilitation. When fitting the model synapse,
K2 acts as an integrator of the intracellular Ca2* concentration,
and the nonlinear function F mimics the dependence of transmit-
ter release on the Ca2* concentration. We cannot be sure that
such a correspondence applies to fits of real data, but we should
stress that the method can work whether or not these intuitive
relations accurately reflect the synaptic biophysics. Nevertheless,
such biophysical intuition can serve as an extremely useful guide
for constructing the functional forms to be used for the descrip-
tion. For example, if transmitter depletion seems to be a dominant
effect at a given synapse, the functions K2 and F should be chosen to
model the amount of available transmitter and its effect on synaptic
strength. In some cases, a multiplicative description, rather than the
additive procedure (Eq. 2) used here, may provide a better descrip-
tion of synaptic depression (Magleby and Zengel, 1975).

The crustacean neuromuscular junctions that we studied have
an intermediate quantum yield, so they display some stochastic
variability but do not often exhibit outright transmission failures.
This had the advantage of allowing us to see the effects of synaptic
variability, and yet it admitted a deterministic description like the
one we have developed. Nevertheless, the errors in the predicted
responses were dominated by stochastic variability in the actual
postsynaptic responses, and they decreased significantly when
predictions were compared with trial-averaged data. At vertebrate
CNS synapses with low quantum yields, this variability will be even
higher, and failures are likely to occur quite frequently (Smetters
and Nelson, 1993; Stevens and Wang, 1995). If the method used
here is applied, the output Rest(t) of the model will predict the
average response. A variant of the approach, however, can be
used to provide a stochastic prediction that will agree with the
data on average and match its statistics. This variant consists of
comparing the data during the training procedure used to extract
K2 and F with either the prediction of the model or the prediction
of the model assuming a transmission failure (no response to a
given spike), whichever fits the data better. This procedure will
assure that the model will provide the best fit to the actual
responses rather than to their average, and by collecting the
statistics on whether the prediction or failure matched better, the
probability of failure can also be extracted. We anticipate that the
decoding approach, either in this form or in the original averaging
formulation, will be useful for CNS synapses (S. B. Nelson, J. A.
Varela, K. Sen, and L. F. Abbott, unpublished observations).
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