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Abstract

Recent experimental data have characterized a form of long-term synaptic modi"cation that
depends on the relative timing of pre- and post-synaptic action potentials. Modeling studies
indicate that this rule can automatically adjust excitatory synaptic strengths so that the
post-synaptic neuron receives roughly equal amount of excitation and inhibition and as
a consequence "res irregular spike trains as observed in vivo. This rule also induces competition
between di!erent inputs and strengthens groups of synapes that are correlated over short time
periods. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recent experimental results indicate that the induction of long-term potentiation
(LTP) and long-term depression (LTD) at synapses in a variety of systems are highly
sensitive to the relative timing of pre- and post-synaptic action potentials [2,3,6,11].
In experiments on neocortical slices [6], hippocampal cells in culture [3], and in vivo
studies of tadpole tectum [11], long-term strengthening of synapses occurred if pre-
synaptic action potentials preceded post-synaptic "ring by no more than about 50 ms.
Maximal LTP occurred when pre-synaptic spikes preceded post-synaptic action
potentials by less than a few milliseconds. If pre-synaptic spikes followed post-
synaptic action potentials, long-term depression rather than potentiation
resulted.
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Fig. 1 . Temporally asymmetric Hebbian plasticity function. Graphed is the fractional change in synaptic
strength produced by a pair of pre- and post-synaptic spikes occuring at t

13%
and t

1045
, respectively. The

curves in the plot are exponential functions.

2. Model

The experimental results are summarized schematically in Fig. 1. For the plasticity
curve in Fig. 1, we have assumed that the area under the strengthening side of the
curve is slightly less than the area under the weakening side. This means that
pre-synaptic inputs that are not causally correlated with the post-synaptic response
are weakened by temporally asymmetric Hebbian plasticity. This is important if the
resulting synaptic modi"cation rule is to be stable against uncontrolled growth of
synaptic strengths. In our modeling studies, we examine how temporally asymmetric
Hebbian plasticity acts on the excitatory synapses driving an integrate-and-"re model
neuron with 1000 excitatory and 200 inhibitory synapses. The excitatory synapses are
activated by uncorrelated or partially correlated Poisson spike trains at various rates.
The model neuron also receives inhibitory input consisting of Poisson spike trains at
a "xed rate of 10 Hz. In the simulations, excitatory synapses are subject to the
plasticity rule shown in Fig. 1, while inhibitory synapses are held "xed. We also
impose a lower bound of zero and an upper bound on the excitatory synapses.

3. Response variability

Experimental recordings from cortical neurons typically show large variabilities in
their spike trains. However, as Softky and Koch [8] pointed out, it is di$cult to
obtain CV (coe$cient of variation) values as large as those seen in vivo. However,
a number of authors [4,7,10] have subsequently pointed out that irregular "ring could
be achieved if the amount of excitation and inhibition to a neuron are balanced.
Neurons (simulated with an integrate-and-"re model) can operate in two di!erent
modes. In the regular "ring mode, multiple synaptic inputs are integrated to generate
an approximately constant input current that brings the neuron above threshold and
produce steady "ring. In the irregular "ring mode, excitatory and inhibitory inputs to
the neuron are more balanced and the mean level of synaptic current is insu$cient to
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Fig. 2. Correlation between pre- and post-synaptic action potentials. The curve indicating the relative
probability of a pair of pre- and post-synaptic spikes separated by the indicated time interval. (A) Regular
"ring mode. There is only a small excess of pre-synaptic spikes preceding a post-synaptic spike. (B) Irregular
"ring mode. The excess of pre-synaptic spikes shortly before a post-synaptic spike is much larger.

bring the neuron above threshold. Instead, the neuron "res due to #uctuations in the
total synaptic input, and this produces an irregular pattern of action potentials.

Fig. 2 shows the probability that an action potential "red by a post-synaptic neuron
is preceded or followed by a pre-synaptic spike separated by various intervals for an
integrate-and-"re model in the two modes of operation. The histogram has been
normalized so its value for pairings that are due solely to chance is one. The histogram
when the model is in the regular "ring mode (Fig. 2A) takes a value close to one for
almost all input}output spike time di!erences. This is a re#ection of the fact that the
timing of individual action potentials in the regular "ring mode is relatively indepen-
dent of the timing of the pre-synaptic inputs. In contrast, the histogram for a model
neuron in the irregular "ring mode (Fig. 2B) shows a much larger excess of pre-
synaptic spikes occurring shortly before the post-synaptic neuron "res. This excess
re#ects the #uctuations in the total synaptic input that push the membrane potential
up to the threshold and produce a spike in the irregular "ring mode. It thus represents
the causal in#uence of pre-synaptic spikes on post-synaptic spike times.

4. Temporally asymmetric Hebbian plasticity leads to an irregular 5ring state

For a neuron to operate in the irregular "ring mode, there must be an appropriate
balance between the strength of its excitatory and inhibitory inputs. A synaptic
modi"cation rule based on the curve in Fig. 1 can automatically generate the balance
of excitation and inhibition needed to produce an irregular "ring state [1]. To
demonstrate this, we started the model in a regular "ring mode by giving it relatively
strong excitatory synaptic strengths. We then applied Poisson spike trains with the
same average rate to the excitatory synapses. Because the area under the weakening
part of the curve in Fig. 1 is greater than that under the strenthening part, excitatory
synapses will get weaker if there is an equal probability of a pre-synaptic spike to
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Fig. 3. Coe$cient of variation (CV) of the output spike train of the model neuron. (A) Evolution of CV in
a simulation where the neuron made a transition from a regular to an irregular "ring state due to the action
of the temporally asymmetric Hebbian plasticity on the synapses. (B) The equilibrium CV values of the
post-synaptic interspike intervals for di!erent input "ring rates.

either precede or follow a post-synaptic spike. This is exactly what happens in the
regular "ring mode (Fig. 2A). As the plasticity rule weakens the excitatory synapses,
the amount of excitatory input gets closer to the amount of inhibitory input, and the
neuron enters the irregular "ring mode, where there is a higher probability for
a pre-synaptic spike to precede than to follow a post-synaptic spike (Fig. 2B). This
compensates for the fact that the rule we use produces more weakening than strength-
ening on average. Equilibrium will be reached when the strenthening e!ect caused by
the excess of pre-synaptic spikes (Fig. 2A) is balanced by the weakening e!ect caused
by the #at baseline. This is achieved when the integrated product of the plasticity
curve and the curve of correlation between pre- and post-synaptic action potentials
reaches zero. The equilibrium state corresponds to a balanced, irregular "ring mode of
operation. Fig. 3A shows a transition from a regular (low CV) to an irregular (CV
close to 1) "ring state mediated by the temporally asymmetric Hebbian plasticity rule.
The solid curve in Fig. 3B shows that temporally asymmetric Hebbian plasticity can
robustly generate irregular output "ring for a wide range of input "ring rates.

5. Correlation-based Hebbian modi5cation

Correlating di!erent synaptic inputs so they are more likely to arrive together in
a cluster is an e!ective way of increasing their ability to evoke post-synaptic action
potentials [5]. This enables them to grow stronger together while weakening other
synapses that are not part of the cluster. This e!ect can be seen in Fig. 4. In this study,
we introduced correlated bursts into a group of synapses. We randomly picked
intervals from an exponential distribution. At the start of each interval, we randomly
picked 20% of the neurons from the correlated group and "red them at a random time
around the start of the interval with a mean jitter of 2 ms. As the result of the
temporally asymmetric Hebbian plasticity, the correlated group ended up with much
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Fig. 4. Synaptic strengths for synapses in an uncorrelated group (input number (500) and a correlated
group (input number '500). g/g

.!9
is the synaptic conductance as a fraction of the maximal conductance.

larger synaptic strengths, while the strengths of the other group were essentially driven
to zero. Correlations have a large e!ect only when the correlation time constant is fast,
which is to say, on the time scale of the plasticity function. In another study [9], we
generated spikes trains with a correlation function that decays exponentially with
time. We found that when correlation decayed rapidly, the correlated group ended up
with larger synaptic strengths. However, this e!ect disappears for larger correlation
times, and at intermediate correlation times the synapses of correlated group were
even weakened. We also observed that temporally asymmetric Hebbian plasticity is
insensitive to the average rate or degree of variablility of the synaptic inputs. In sum,
temporally asymmetric Hebbian learning enforces competition among synaptic in-
puts and selectively favors groups with fast correlations.

6. Conclusion

Temporally asymmetric Hebbian plasticity automatically leads to a balanced,
irregular "ring state in which pre- and post-synaptic spike times are causally corre-
lated. It regulates both the "ring rate and the coe$cient of variation of post-synaptic
"ring over a wide range of input rates. Temporally asymmetric Hebbian plasticity
shows the basic feature of Hebbian learning, the strengthening of correlated groups of
synapses. However, it also displays the desirable features of "ring rate independence
and stability and introduces competition among inputs in a novel way.
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