
Neuron

Article
Generating Coherent Patterns of Activity
from Chaotic Neural Networks
David Sussillo1,* and L.F. Abbott1,*
1Department of Neuroscience, Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons,

New York, NY 10032-2695, USA

*Correspondence: sussillo@neurotheory.columbia.edu (D.S.), lfa2103@columbia.edu (L.F.A.)
DOI 10.1016/j.neuron.2009.07.018
SUMMARY

Neural circuits display complex activity patterns both
spontaneously and when responding to a stimulus or
generating a motor output. How are these two forms
of activity related? We develop a procedure called
FORCE learning for modifying synaptic strengths
either external to or within a model neural network
to change chaotic spontaneous activity into a wide
variety of desired activity patterns. FORCE learning
works even though the networks we train are sponta-
neously chaotic and we leave feedback loops intact
and unclamped during learning. Using this approach,
we construct networks that produce a wide variety of
complex output patterns, input-output transforma-
tions that require memory, multiple outputs that can
be switched by control inputs, and motor patterns
matching human motion capture data. Our results
reproduce data on premovement activity in motor
and premotor cortex, and suggest that synaptic plas-
ticity may be a more rapid and powerful modulator of
network activity than generally appreciated.

INTRODUCTION

When we voluntarily move a limb or perform some other motor

action, what is the source of the neural activity that initiates

and carries out this behavior? We explore the idea that such

actions arise from the reorganization of spontaneous neural

activity. This hypothesis raises another question: How can

apparently chaotic spontaneous activity be reorganized into

the coherent patterns required to generate controlled actions?

Following, but modifying and extending, earlier work (Jaeger

and Haas, 2004; Maass et al., 2007), we show how external feed-

back loops or internal synaptic modifications can be used to alter

the chaotic activity of a recurrently connected neural network

and generate complex but controlled outputs.

Training a neural network is a process through which network

parameters (typically synaptic strengths) are modified on the

basis of output errors until a desired response is produced.

Researchers in the machine learning and computer vision

communities have developed powerful methods for training arti-

ficial neural networks to perform complex tasks (Rumelhart and

McClelland, 1986; Hinton et al., 2006), but these apply predom-
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inantly to networks with feedforward architectures. Biological

networks tend to be connected in a highly recurrent manner.

Training procedures have also been developed for recurrently

connected neural networks (Rumelhart et al., 1986; Williams

and Zipser, 1989; Pearlmutter, 1989; Atiya and Parlos, 2000),

but these are more computationally demanding and difficult to

use than feedforward learning algorithms, and there are funda-

mental limitations to their applicability (Doya, 1992). In particular,

these algorithms generally will not converge if applied to recur-

rent neural networks with chaotic activity, that is, activity that

is irregular and exponentially sensitive to initial conditions (Abar-

banel et al., 2008). This limitation is severe because models of

spontaneously active neural circuits typically exhibit chaotic

dynamics. For example, spiking models of spontaneous activity

in cortical circuits (van Vreeswijk and Sompolinsky, 1996; Amit

and Brunel, 1997; Brunel, 2000), which can generate realistic

patterns of activity, and the analogous spontaneously active

firing-rate model networks that we use here have chaotic

dynamics (Sompolinsky et al., 1988).

To develop a successful training procedure for recurrent

neural networks, we must solve three problems. First, feeding

erroneous output back into a network during training can cause

its activity to deviate so far from what is needed that learning fails

to converge. In previous work (Jaeger and Haas, 2004), this

problem was avoided by removing all errors from the signal fed

back into the network. In addition to the usual synaptic modifica-

tion, this scheme required a mechanism for removing feedback

errors, and it is difficult to see how this latter requirement could

be met in a biological system. Furthermore, feeding back a signal

that is identical to the desired network output prevents the

network from sampling fluctuations during training, which can

lead to stability problems in the final network. Here, we show

how the synaptic modification procedure itself can be used to

control the feedback signal, without any other mechanism being

required, in a manner that allows fluctuations to be sampled and

stabilized. For reasons given below, we call this procedure

FORCE learning.

A second problem with training that is particularly severe in

recurrent networks is credit assignment for output errors. Credit

assignment amounts to figuring out which neurons and

synapses are most responsible for output errors and therefore

most in need of modification. This problem is particularly chal-

lenging for network units that do not produce the output directly.

Jaeger and Haas (2004) dealt with this issue by restricting

modification solely to synapses directly driving network output.

Initially, we follow their lead in this, using the architecture of
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Figure 1A. However, the power of FORCE learning allows us to

train networks with the architectures shown in Figures 1B and

1C, in which modifications are not restricted to network outputs.

For reasons discussed below, these architectures are more

biologically plausible than the network in Figure 1A.

The third problem we address is training in the face of chaotic

spontaneous activity. Jaeger and Haas (2004) avoided this

problem by starting with networks that were inactive in the

absence of input (which is the basis for calling them echo-state

networks). As we show in the Results, there are significant

advantages in using a network that exhibits chaotic activity prior

to training. To exploit these advantages, however, we must avoid

chaotic network activity during training. The solution for learning

in a recurrent network and for suppressing chaos turn out to be

one and the same: synaptic modifications must be strong and

rapid during the initial phases of training. This is precisely what

the FORCE procedure achieves.

FORCE learning operates quite differently from traditional

training in neural networks. Usually, training consists of perform-

ing a sequence of modifications that slowly reduce initially large

errors in network output. In FORCE learning, errors are always

small, even from the beginning of the training process. As

a result, the goal of training is not significant error reduction,

but rather reducing the amount of modification needed to keep

the errors small. By the end of the training period, modification

is no longer needed, and the network can generate the desired

output autonomously.

From a machine learning point of view, the FORCE procedure

we propose provides a powerful algorithm for constructing

recurrent neural networks that generate complex and control-

lable patterns of activity either in the absence of or in response

to input. From a biological perspective, it can be viewed either

as a model for training-induced modification or, more conserva-

tively, as a method for building functioning circuit models for

further study. Either way, our approach introduces a novel way

to think about learning in neural networks and to make contact

with experimental data.

RESULTS

The recurrent network that forms the basis of our studies is

a conventional model in which the outputs of individual neurons

are characterized by firing rates and neurons are sparsely inter-

connected through excitatory and inhibitory synapses of various

strengths (Experimental Procedures). Following ideas devel-

oped in the context of liquid-state (Maass et al., 2002) and

echo-state (Jaeger, 2003) models, we assume that this basic

network is not designed for any specific task but is instead

a general purpose dynamical system that will be co-opted for

particular applications through subsequent synaptic modifica-

tion. As a result, the connectivity and synaptic strengths of the

network are chosen randomly (Experimental Procedures). For

the parameters we use, the initial state of the network is chaotic

(Figure 2A).

To specify a task for the networks of Figure 1, we must define

their outputs. In a full model, this would involve simulating activity

all the way out to the periphery. In the absence of such a

complete model, we need to have a way of describing what
the network is ‘‘doing,’’ and here we follow another suggestion

from the liquid- and echo-state approach (Maass et al., 2002;

Jaeger, 2003; see also Buonomano and Merzenich, 1995). We

define the network output through a weighted sum of its activi-

ties. Denoting the activities of the network neurons at time t by

assembling them into a column vector r(t) and the weights

A

B

C

Figure 1. Network Architectures

In all three cases, a recurrent generator network with firing rates r drives a linear

readout unit with output z through weights w (red) that are modified during

training. Only connections shown in red are subject to modification.

(A) Feedback to the generator network (large network circle) is provided by the

readout unit.

(B) Feedback to the generator network is provided by a separate feedback

network (smaller network circle). Neurons of the feedback network are recur-

rently connected and receive input from the generator network through

synapses of strength JFG (red), which are modified during training.

(C) A network with no external feedback. Instead, feedback is generated within

the network and modified by applying FORCE learning to the synapses with

strengths JGG internal to the network (red).
Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc. 545
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Figure 2. FORCE Learning in the Network of Figure 1A

(A–C) The FORCE training sequence. Network output, z, is in red, the firing rates of 10 sample neurons from the network are in blue and the orange trace is the

magnitude of the time derivative of the readout weight vector. (A) Before learning, network activity and output are chaotic. (B) During learning, the output matches

the target function, in this case a triangle wave and the network activity is periodic because the readout weights fluctuate rapidly. These fluctuations subside as

learning progresses. (C) After training, the network activity is periodic and the output matches the target without requiring any weight modification.

(D–K) Examples of FORCE learning. Red traces are network outputs after training with the network running autonomously. Green traces, where not covered by

the matching red traces, are target functions. (D) Periodic function composed of four sinusoids. (E) Periodic function composed of 16 sinusoids. (F) Periodic

function of four sinusoids learned from a noisy target function. (G) Square-wave. (H) The Lorenz attractor. Initial conditions of the network and the target

were matched at the beginning of the traces. (I) Sine waves with periods of 60 ms and 8 s. (J) A one-shot example using a network with two readout units (circuit

insert). The red trace is the output of unit 2. When unit 1 is activated, its feedback creates the fixed point to the left of the left-most blue arrow, establishing the

appropriate initial condition. Feedback from unit 2 then produces the sequence between the two blue arrows. When the sequence is concluded, the network

output returns to being chaotic. (K) A low amplitude sine wave (right of gray line) for which the FORCE procedure does not control network chaos (blue traces)

and learning fails.
546 Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc.
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connecting these neurons to the output by another column

vector w, we define the network output as

zðtÞ= wT rðtÞ: (1)

Multiple readouts can be defined in a similar manner, each with

its own set of weights, but we restrict the discussion to one

readout at this point. Although a linear readout is a useful way

of defining what we mean by the output of a network, it should

be kept in mind that it is a computational stand-in for complex

transduction circuitry. For this reason, we refer to the output-

generating element as a unit rather than a neuron, and we call

the components of w weights rather than synaptic strengths.

Having specified the network output, we can now define the

task we want the network to perform, which is to set z(t) = f(t)

for a predefined target function f(t). In most of the examples we

present, the goal is to make a network produce the target func-

tion in the absence of any input. Later, we consider the more

conventional network task of generating outputs that depend

on inputs to the network in a specified way. Due to stability

issues, this is an easier task than generating target functions

without inputs, so we mainly focus on the no-input case.

In the initial instantiation of our model (Figure 1A), we follow

Jaeger and Haas (2004) and modify only the output weight

vector w. All other network connections are left unchanged

from their initial, randomly chosen values. The critical element

that makes such a procedure possible is a feedback loop that

carries the output z back into the network (Figure 1A). Learning

cannot be accomplished in a network receiving no external input

without including such a loop. The strengths of the synapses

from this loop onto the neurons of the network are chosen

randomly and left unmodified. The strength of the feedback

synapses is of order 1 whereas that of synapses between

neurons of the recurrent network is of order 1 over the square

root of the number of recurrent synapses per neuron. The feed-

back synapses are made stronger so that the feedback pathway

has an appreciable effect on the activity of the recurrent network.

Later, when we consider the architectures of Figures 1B and 1C,

we will no longer need such strong synapses.

FORCE Learning
Training in the presence of the feedback loop connecting the

output in Figure 1A back to the network is challenging because

modifying the readout weights produces delayed effects that

can be difficult to calculate. Modifying w has a direct effect on

the output z given by Equation 1, and it is easy to determine

how to change w to make z closer to f through this direct effect.

However, the feedback loop in Figure 1A gives rise to a delayed

effect when the resulting change in the output caused by modi-

fying w propagates repeatedly along the feedback pathway

and through the network, changing network activities. Because

of this delayed effect, a weight modification that at first appears

to bring z closer to f may later cause it to deviate away. This

problem of delayed effects arises when attempting to modify

synapses in any recurrent architecture, including those of Figures

1B and 1C.

As stated in the Introduction, Jaeger and Haas (2004) elimi-

nated the problem of delayed effects by clamping feedback
during learning. In other words, the output of the network, given

by Equation 1 was compared with f to determine an error that

controlled modification of the readout weights, but this output

was not fed back to the network during training. Instead the feed-

back pathway was clamped to the target function f. The true

output was only fed back to the network after training was

completed.

We take another approach, which does not require any clamp-

ing or manipulation of the feedback pathway, it relies solely on

error-based modification of the readout weights. In this scheme,

we allow output errors to be fed back into the network, but

we keep them small by making rapid and effective weight modi-

fications. As long as output errors are small enough, they can be

fed back without disrupting learning, i.e., without introducing

significant delayed, reverberating effects. Because the method

requires tight control of a small (first-order) error, we call it

first-order reduced and controlled error or FORCE learning.

Although the FORCE procedure holds the feedback signal close

to its desired value, it does not completely clamp it. This differ-

ence, although numerically small, has extremely significant

implications for network stability. Small differences between

the actual and desired output of the network during training allow

the learning procedure to sample instabilities in the recurrent

network and stabilize them.

A learning algorithm suitable for FORCE learning must rapidly

reduce the magnitude of the difference between the actual and

desired output to a small value, and then keep it small while

searching for and eventually finding a set of fixed readout weights

that can maintain a small error without further modification. A

number of algorithms are capable of doing this (Discussion). All

of them involve updates to the values of the weights at times

separated by an interval Dt. Each update consists of evaluating

the output of the network, determining how far this output devi-

ates from the target function, and modifying the readout weights

accordingly. Note that Dt is the interval of time between modifica-

tions of the readout weights, not the basic integration time step

for the network simulation, which can be smaller than Dt.

At time t, the training procedure starts by sampling the

network output, which is given at this point by wT (t � Dt)r(t).

The reason that the weights appear here evaluated at time

t� Dt is that they have not yet been updated by the modification

procedure, so they take the same values that they had at the end

of the previous update. Comparing this output with the desired

target output f(t), we define the error

e�ðtÞ= wTðt � DtÞrðtÞ � fðtÞ: (2)

The minus subscript signifies that this is the error prior to the

weight update at time t. The next step in the training process is

to update the weights from w(t�Dt) to w(t) in a way that reduces

the magnitude of e_(t). Immediately after the weight update, the

output of the network is wT(t)r(t), assuming that the weights are

modified rapidly on the scale of network evolution (Discussion).

Thus, the error after the weight update is

e+ ðtÞ= wTðtÞrðtÞ � fðtÞ; (3)

with the plus subscript signifying the error after the weights have

been updated.
Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc. 547
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The goal of any weight modification scheme is to reduce errors by

making je+(t)j < je�(t)j and also to converge to a solution in which

the weight vector is no longer changing so that training can be

terminated. This latter condition corresponds to making e+(t)/

e�(t) /1 by the end of training. In most training procedures, these

two conditions are accompanied by a steady reduction in the

magnitude of both errors (e+ and e�) over time, which are both

quite large during the early stages of training. FORCE learning

is unusual in that the magnitudes of these errors are small

throughout the learning process, although they are similarly

reduced over time. This is done by making a large reduction in

their size at the time of the first weight update and then maintain-

ing small errors throughout the training process that decrease

with time.

If the training process is initialized at time t = 0, the first weight

update will occur at time Dt. A weight modification rule useful for

FORCE learning should make je+(Dt)j, the error after the first

weight update has been performed, small, and then keep je�(Dt)j
small while slowly increasing e+(t)/e�(t) /1. Given a small

magnitude of e+(t � Dt)), e�(t), which is equal to e+(t � Dt) plus

a term of order Dt, is kept small by keeping the updating interval

Dt sufficiently short. This means that learning can be performed

with an error that starts and stays small.

As stated above, several modification rules meet the require-

ments of FORCE learning, but the recursive least-squares

(RLS) algorithm is particularly powerful (Haykin, 2002), and we

use it here (see Discussion and Supplemental Data, available on-

line, for another, simpler algorithm). In RLS modification,

wðtÞ= wðt � DtÞ � e�ðtÞPðtÞrðtÞ; (4)

where P(t) is an N3N matrix that is updated at the same time as

the weights according to the rule

PðtÞ= Pðt � DtÞ � Pðt � DtÞrðtÞrTðtÞPðt � DtÞ
1 + rT ðtÞPðt � DtÞrðtÞ : (5)

The algorithm also requires an initial value for P, which is taken

to be

Pð0Þ= I

a
; (6)

where I is the identity matrix and a is a constant parameter.

Equation 4 can be viewed as a standard delta-type rule (that

is, a rule involving the product of the error and the presynaptic

firing rate), but with multiple learning rates given by the matrix

P, rather than by a scalar quantity. In this algorithm, P is a

running estimate of the inverse of the correlation matrix of the

network rates r plus a regularization term (Haykin, 2002), i.e.,

P =
�P

t rðtÞrT ðtÞ+ aI
��1

.

It is straightforward to show that the RLS rule satisfies the

conditions necessary for FORCE learning. First, if we assume

that the initial readout weights are zero for simplicity (this is not

essential), the above equations imply that the error after the first

weight update is

e�ðDtÞ= � afðDtÞ
a + rTðDtÞrðDtÞ: (7)

The quantity rTr is of order N, the number of neurons in the

network, so as long as a � N, this error is small, and its size
548 Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc.
can be controlled by adjusting a (see below). Furthermore, at

subsequent times, the above equations imply that

e+ ðtÞ= e�ðtÞ
�
1� rTðtÞPðtÞrðtÞ

�
; (8)

The quantity rTPr varies over the course of learning from some-

thing close to 1 to a value that asymptotically approaches 0, and

it is always positive. This means that the size of the error is

reduced by the weight update, as required, and ultimately

e+(t)/e�(t) / 1.

The parameter a, which acts as a learning rate, should be

adjusted depending on the particular target function being

learned. Small a values result in fast learning but sometimes

make weight changes so rapid that the algorithm becomes

unstable. In those cases, larger a should be used (subject to

the constraint a� N), but if a is too large, the FORCE algorithm

may not keep the output close to the target function for a long

enough time, causing learning to fail. In practice, values from

1 to 100 are effective, depending on the task.

In addition to dealing with feedback, FORCE learning must

control the chaotic activity of the network during the training

process. In this regard, it is important to note that the network

we are considering is being driven through the feedback

pathway by a signal approximately equal to the target function.

Such an input can induce a transition between chaotic and

nonchaotic states (Molgedey et al., 1992; Bertschinger and

Natschläger, 2004; K. Rajan, L.F.A., and H. Sompolinsky, unpub-

lished data). This is how the problem of chaotic activity can be

avoided. Provided that the feedback signal is of sufficient

amplitude and frequency to induce a transition to a nonchaotic

state (the required properties are discussed in K. Rajan, L.F.A.,

and H. Sompolinsky, unpublished data), learning can take place

in the absence of chaotic activity, even though the network is

chaotic prior to learning and afterwards there may exist addi-

tional chaotic trajectories.

Examples of FORCE Learning
Figures 2A–2C illustrates how the activity of an initially chaotic

network can be modified so that it ends up producing a periodic,

triangle-wave output autonomously. Initially, with the output

weight vector w chosen randomly, the neurons in the network

exhibit chaotic spontaneous activity, as does the network output

(Figure 2A). When we start FORCE learning, the weights of the

readout connections begin to fluctuate rapidly, which immedi-

ately changes the activity of the network so that it is periodic

rather than chaotic and forces the output to match the target

triangle wave (Figure 2B). The progression of learning can be

tracked by monitoring the size of the fluctuations in the readout

weights (orange trace in Figure 2B), which diminish over time as

the learning procedure establishes a set of static weights that

generate the target function without requiring modification. At

this point, learning can be turned off, and the network continues

to generate the triangle wave output on its own indefinitely

(Figure 2C). The learning process is rapid, converging in only

four cycles of the triangle wave in this example.

FORCE learning can be used to modify networks that are

initially in a chaotic state so that they autonomously produce

a wide variety of outputs (Figures 2D–2K). In these examples,
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training typically converges in about 1000t, where t is the

basic time constant of the network, which we set to 10 ms. This

means learning takes about 10 s of simulated time. Networks

can be trained to produce periodic functions of different

complexity and form (Figures 2D–2G and 2I), even when the

target function is corrupted by noise (Figure 2F). The dynamic

range of the outputs that chaotic networks can be trained to

generate by FORCE learning is impressive. For example, a 1000

neuron network with a time constant of 10 ms can produce sine

wave outputs with periods ranging from 60 ms to 8 s (Figure 2I).

FORCE learning is not restricted to periodic functions. For

example, a network can be trained to produce an output match-

ing one of the dynamic variables of the three-dimensional

chaotic Lorenz attractor (Experimental Procedures; see also

Jaeger and Haas, 2004), although in this case, because the

target is itself a chaotic process, a precise match between

output and target can only last for a finite amount of time (Fig-

ure 2H). After the two traces diverge, the network still produces

a trace that looks like it comes from the Lorenz model.

FORCE learning can also produce a segment matching a one-

shot, nonrepeating target function (Figure 2J). To produce such

a one-shot sequence, the network must be initialized properly,

A

B

E

D

F

1.2sec

1.2sec

PC 1

PC 2

PC 80

PC 1

10050

C
3

0

-3

-6

Eigenvalue #

Eigenvalue #

time

lo
g1

0(
ei

ge
nv

al
ue

)

PC 2

Learned

Learned

Learned

Learning

Learning

Learning

Learning

Controlling

Controlling

Controlling

Controlling

10050

Figure 3. Principal Component Analysis of

Network Activity

(A) Output after training a network to produce

a sum of four sinusoids (red), and the approxima-

tion (brown) obtained using activity projected

onto the 8 leading principal components.

(B) Projections of network activity onto the leading

eight PC vectors.

(C) PCA eigenvalues for the network activity that

generated the waveform in (A). Only the largest

100 of 1000 eigenvalues are shown.

(D) Schematic showing the transition from control

to learning phases of learning as a function of

time and of PC eigenvalue.

(E) Evolution of the projections of w onto the two

leading PC vectors during learning starting from

five different initial conditions. These values

converge to the same point on all trials.

(F) The same weight evolution but now including

the projection onto PC vector 80 as a third dimen-

sion. The final values of this projection are different

on each of the 5 runs, resulting in the vertical line at

the center of the figure. Nevertheless, all of these

networks generate the output in A.

and we do this by introducing a fixed-

point attractor as well as the network

configuration that produces the one-shot

sequence. This is done by adding

a second readout unit to the network

that also provides feedback (Experi-

mental Procedures; network diagram in

Figure 2J). The first feedback unit induces

the fixed point corresponding to a

constant z output (horizontal red line in

Figure 2J), and then the second unit

induces the target pattern (red trace

between the arrows in Figure 2J). As shown below, initialization

can also be achieved through appropriate input.

As discussed above, FORCE learning must induce a transition

in the network from chaotic to nonchaotic activity during training.

This requires an input to the network, through the feedback loop

in our case, of sufficient amplitude. If we try to train a network to

generate a target function with too small an amplitude, the

activity of the network neurons remains chaotic even after

FORCE learning is activated (Figure 2K). In this case, learning

does not converge to a successful solution. There are a number

of solutions to this problem. It is possible for the network to

generate low amplitude oscillatory and nonoscillatory functions

if these are displaced from zero by a constant shift. Alternatively,

the networks shown in Figures 1B and 1C can be trained to

generate low amplitude signals centered near zero.

PCA Analysis of FORCE Learning
The activity of a network that has been modified by the FORCE

procedure to produce a particular output can be analyzed by

principal component analysis (PCA). For a network producing

the periodic pattern shown in Figure 3A, the distribution of

PCA eigenvalues (Figure 3C) indicates that the trajectory of
Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc. 549
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network activity lies primarily in a subspace that is of consider-

ably lower dimension than the number of network neurons. The

projections of the network activity vector r(t) onto the PC vectors

form a set of orthogonal basis functions (Figure 3B) from with the

target function is generated. An accurate approximation of the

network output (brown trace in Figure 3A) can be generated

using the basis functions derived from only the first eight prin-

cipal components (with components labeled in decreasing order

of the size of their eigenvalues). These eight components are not

the whole story, however, because, along with generating the

target function, the network must be stable. If we express the

readout weight vector in terms of its projections onto the PC

vectors of the network activity, we find that learning sets about

the top 50 of these projections to uniquely specified values

(Figure 3E). The remaining projections take different values

from one learning trial to the next, depending on initial conditions

(Figure 3F). This multiplicity of solutions greatly simplifies the

task of finding successful readout weights.

The uneven distribution of eigenvalues shown in Figure 3C

illustrates why the RLS algorithm works so well for FORCE

learning. As mentioned previously, the matrix P acts as a set of

learning rates for the RLS algorithm. This is seen most clearly

by shifting to a basis in which P is diagonal. Assuming learning

has progressed long enough for P to have converged to the

inverse correlation matrix of r, the diagonal basis is achieved by

projecting w and r onto the PC vectors. Doing this, it is straight-

forward to show that the learning rate for the component of w

aligned with PC vector a after M weight updates is 1/(Mla + a),

where la is the corresponding PC eigenvalue. This rate divides

the RLS process into two stages, one when M < a/la in which

the major role of weight modification is to control the output

(set it close to f) and another when M > a/la in which the goal is

learning, that is, finding a static weight that accomplishes the

task. Components of w with large eigenvalues quickly enter the

learning phase, whereas those with small eigenvalues spend

more time in the control phase (Figure 3D). Controlling compo-

nents with small eigenvalues allows weight projections in dimen-

sions with large eigenvalues to be learned.

The learning rate for all components during the control phase

is 1/a. During the learning phase, the rate for PC component a is

proportional to 1/la . The average rate of change (as opposed to

just the learning rate) of the projection of the output weight vector

onto principal component a is proportional to
ffiffiffiffiffi
la

p
=ðMla + aÞ

because the factor of r in Equation 4 introduces a term propor-

tional to
ffiffiffiffiffi
la

p
, so the full rate of change for large M goes as

1=
ffiffiffiffiffi
la

p
. This is exactly what it should be, because in the expres-

sion for z, this change is multiplied by the projection of r onto PC

vector a, which again has an amplitude proportional to
ffiffiffiffiffi
la

p
.

Thus, RLS, by having rates of change of w proportional to

1=
ffiffiffiffiffi
la

p
in the PC basis, allows all the projections to, potentially,

contribute equally to the output of the network.

Comparison of Echo-State and FORCE Feedback
In echo-state learning (Jaeger and Haas, 2004), the feedback

signal during training was set equal to the target function f(t). In

FORCE learning, the feedback signal is z(t) during training. To

compare these two methods, we introduce a mixed feedback

signal, setting the feedback equal to gf(t) + (1�g)z(t) during
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training. Thus, g = 0 corresponds to FORCE learning and g = 1

to echo-state learning, with intermediate values interpolating

between these two approaches.

Training to produce the output of Figure 3A, we find the

network is only stable on the majority of trials when g < 0.15, in

other words close to the FORCE limit (Figure 4A). Furthermore,

in this g range, the error in the output after training increases

as a function of g, meaning g = 0 performs best (Figure 4B).

For a typical instability of pure echo-state learning, the output

matches the target briefly after learning is terminated, but then

it deviates away (Figure 4C). Because this stability problem

arises from the failure of the network to sample feedback fluctu-

ations, it can be alleviated somewhat by introducing noise into

the feedback loop during training (Jaeger and Haas, 2004, intro-

duced noise into the network, which is less effective). Doing this,

we find that pure echo-state learning converges on about 50% of

the trials, but the error on these is significantly larger than for pure

FORCE learning.

Advantages of Chaotic Spontaneous Activity
To study the effect of spontaneous chaotic activity on network

performance, we introduce a factor g that scales the strengths

of the recurrent connections within the network. Networks with

g < 1 are inactive prior to training, whereas networks with g > 1

exhibit chaotic spontaneous activity (Sompolinsky et al., 1988)

that gets more irregular and fluctuates more rapidly as g is

increased beyond 1 (we typically use g = 1.5).

The number of cycles required to train a network to generate

the periodic target function shown in Figure 3A drops dramati-

cally as a function of g, continuing to fall as g gets larger than 1

(Figure 5A). The average root-mean-square (rms) error, indicating
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Figure 4. Comparison of Different Mixtures of FORCE (g = 0) and

Echo-State (g = 1) Feedback

(A) Percent of trials resulting in stable generation of the target function.

(B) Mean absolute error (MAE) between the output and target function after

learning over the g range where learning converged. Error bars represent stan-

dard deviation.

(C) Example run with output (red) and target function (green) for g = 1. The

trajectory is unstable.
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Figure 5. Chaos Improves Training Perfor-

mance

Networks with different g values (Experimental

Procedures) were trained to produce the output

of Figure 3A. Results are plotted against g in the

range 0.75 < g < 1.56, where learning converged.

(A) Number of cycles of the periodic target function

required for training.

(B) The RMS error of the network output after

training.

(C) The length of the readout weight vector jwj
after training.
the difference between the target function and the output of

the network after FORCE learning, also decreases with g

(Figure 5B). Another measure of training success is the magni-

tude of the readout weight vector jwj (Figure 5C). Large values

of jwj indicate that the solution found by a learning process

involves cancellations between large positive and negative

contributions. Such solutions tend to be unstable and sensitive

to noise. The magnitude of the weight vector falls as a function

of g and takes its smallest values in the region g > 1 characterized

by chaotic spontaneous activity.

These results indicate that networks that are initially in

a chaotic state are quicker to train and produce more accurate

and robust outputs than nonchaotic networks. Learning works

best when g > 1 and, in fact, fails in this example for networks

with g < 0.75. This might suggest that the larger the g value the

better, but there is an upper limit. Recall that FORCE learning

does not work if the feedback from the readout unit to the

network fails to suppress the chaos in the network. For any given

target function and set of feedback synaptic strengths, there is

an upper limit for g beyond which chaos cannot be suppressed

by FORCE learning. Indeed, the range of g values in Figure 5

terminates at g = 1.56 because learning did not converge for

higher g values due to this problem. Thus, the best value of g

for a particular target function is at the ‘‘edge of chaos’’ (Bert-

schinger and Natschläger, 2004), that is the g value just below

the point where FORCE learning fails to suppress chaotic activity

during training.

Distorted and Delayed Feedback
The linear readout unit was introduced into the network model as

a stand-in for a more complex, unmodeled peripheral system, in

order to define the output of the network. The critical information

provided by the readout unit is the error signal needed to guide

weight modification, so its biological interpretation should be

as a system that computes or estimates the deviation between

an action generated by a network and the desired action.

However, in the network configuration presented to this point

(Figure 1A), the readout unit, in addition to generating the error

signal that guides learning, is also the source of feedback. Given

that the output in a biological system is actually the result of

a large amount of nonlinear processing and that feedback,

whether proprioceptive or a motor efference copy, may have

to travel a significant distance before returning to the network,

we begin this section by examining the effect of introducing

delays and nonlinear distortions along the feedback pathway

from the readout unit to the network neurons.
The FORCE learning scheme is remarkably robust to distor-

tions introduced along the feedback pathway (Figure 6A).

Nonlinear distortions of the feedback signal can be introduced

as long as they do not diminish the temporal fluctuations of

the output to the point where chaos cannot be suppressed.

We have also introduced low-pass filtering into the feedback

pathway, which can be quite extreme before the network fails

to learn. Delays can be more problematic if they are too long.

The critical point is that FORCE learning works as long as the

feedback is of an appropriate form to suppress the initial chaos

in the network. This means that the feedback really only has to

match the period or the duration of the target function and

roughly have the same frequency content.

FORCE Learning with Other Network Architectures
Even allowing for distortion and delay, the feedback pathway,

originating as it does from the linear readout unit, is a nonbiolog-

ical element of the network architecture of Figure 1A. To address

this problem, we consider two ways of separating the feedback

pathway from the linear readout of the network and modeling

it more realistically. The first is to provide feedback to the

network through a second neural network (Figure 1B) rather

than via the readout unit. To distinguish the two networks, we

call the original network, present in Figure 1A, the generator

network and this new network the feedback network. The feed-

back network has nonlinear, dynamic neurons identical to those

of the generator network, and is recurrently connected. Each unit

of the feedback network produces a distinct output that is fed

back to a subset of neurons in the generator network, so the

task of carrying feedback is shared across multiple neurons.

This repairs two biologically implausible aspects of the architec-

ture of Figure 1A: the strong feedback synapses mentioned

above and the fact that every neuron in the network receives

the same feedback signal.

When we include a feedback network (Figure 1B), FORCE

learning takes place both on the weights connecting the gener-

ator network to the readout unit (as in the architecture of Fig-

ure 1A) and on the synapses connecting the generator network

to the feedback network (red connections in Figure 1B). Sepa-

rating feedback from output introduces a credit-assignment

problem because changes to the synapses connecting the

generator network to the feedback network do not have a direct

effect on the output. To solve this problem within the FORCE

learning scheme, we treat every neuron subject to synaptic modi-

fication as if it were the readout unit, even when it is not. In other

words, we apply Equations 4 and 5 to every synapse connecting
Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc. 551
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the generator network to the feedback network (Supplemental

Data), and we also apply them to the weights driving the readout

unit. When we modify synapses onto a particular neuron of the

feedback network, the vector r in these equations is composed

of the firing rates of generator network neurons presynaptic to

that feedback neuron, and the weight vector w is replaced by

the strengths of the synapses it receives from these presynaptic

neurons. However, the same error term that originates from the

readout (Equation 2) is used in these equations whether they

are applied to the weights of the readout unit or synapses onto

neurons of the feedback network (Methods). The form of FORCE

learning we are using is cell autonomous, so no communication of

learning-related information between neurons is required to

implement these modifications, except that they all use a global

error signal.

FORCE learning with a feedback network and independent

readout unit can generate complex outputs similar to those in

Figure 4, although parameters such as a (Equation 6) may require

more careful adjustment. After training, when the output of these

networks matches the target function, the activities of neurons in

the feedback network do not, despite the fact that their synapses

are modified by the same algorithm as the readout weights

(Figure 6B). This difference is due to the fact that the feedback

network neurons receive input from each other as well as from

the generator network, and these other inputs are not modified

by the FORCE procedure. Differences between the activity of

feedback network neurons and the output of the readout unit

can also arise from different values of the synapses and the

readout weights prior to learning.

With a separate feedback network, the feedback to an indi-

vidual neuron of the generator network is a random combination

of the activities of a subset of feedback neurons, summed

1.2sec

1.2sec

1.2sec

A C

B

Figure 6. Feedback Variants

(A) Network trained to produce a periodic output

(red trace) when its feedback (cyan trace) is

1.3tanh (sin(pz(t�100 ms)), a delayed and dis-

torted function of the output z(t) (gray oval in circuit

diagram).

(B) FORCE learning with a separate feedback

network (circuit diagram). Output is the red trace,

and blue traces show activity traces from 5

neurons within the feedback network.

(C) A network (circuit diagram) in which the internal

synapses are trained to produce the output

(red). Activities of five representative network

neurons are in blue. The thick cyan traces are

overlays of the component of the input to each of

these five neurons induced by FORCE learning,P
iðJijðtÞ � Jijð0ÞÞrjðtÞ for i = 1.. <1..5> 5.

through random synaptic weights. While

these sums bear a certain resemblance

to the target function, they are not iden-

tical to it nor are they identical for different

neurons of the generator network. Never-

theless, FORCE learning works. This

extends the result of Figure 6A, showing

not only that the feedback does not have

to be identical to the network output but that it does not even

have to be identical for each neuron of the generator network.

Why does this form of learning, in which every neuron with

synapses being modified is treated as if it were producing the

output, work? In the example of Figure 6B, the connections

from the generator network to the readout unit and to the feed-

back network are sparse and random (Experimental Proce-

dures), so that neurons in the feedback network do not receive

the same inputs from the generator network as the readout

unit. However, suppose for a moment that each neuron of the

feedback network, as well as the readout unit, received

synapses from all of the neurons of the generator network. In

this case, the changes to the synapses onto the feedback

neurons would be identical to the changes of the weights onto

the readout unit and therefore would induce a signal identical

to the output into each neuron of the feedback network. This

occurs, even though there is no direct connection between these

two circuit elements, because the same learning rule with the

same global error is being applied in both cases.

The explanation of why FORCE learning works in the feedback

network when the connections from the generator network are

sparse rather than all-to-all (as in Figure 6B) relies on the accu-

racy of randomly sampling a large system (Sussillo, 2009). With

sparse connectivity, each neuron samples a subset of the activ-

ities within the full generator network, but if this sample is large

enough, it can provide an accurate representation of the leading

principal components of the activity of the generator network

that drive learning. This is enough information to allow learning

to proceed. For Figure 6B, we used an extremely sparse connec-

tivity (Experimental Procedures) to illustrate that FORCE learning

can work even when the connections of the units being modified

are highly nonoverlapping.
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The original generator network we used (Figure 1A) is recurrent

and can produce its own feedback. This means that we should

be able to apply FORCE learning to the synapses of the gener-

ator network itself, in the arrangement shown in Figure 1C. To

implement FORCE learning within the generator network

(Supplemental Data), we modify every synapse in that network

using Equations 4 and 5. To apply these equations, the vector

w is replaced by the set of synapses onto a particular neuron

being modified, and r is replaced by the vector formed from

the firing rates of all the neurons presynaptic to that network

neuron. As in the example of learning in the feedback network,

FORCE learning is also applied to the readout weights, and the

same error, given by Equation 2, is used for every synapse or

weight being modified.

FORCE learning within the network can produce a complex

target output (Figure 6C). An argument similar to that given for

learning within the feedback network can be applied to FORCE

learning for synapses within the generator network. To illustrate

how FORCE learning works, we express the total current into

each neuron of the generator network as the sum of two

terms. One is the current produced by the original synaptic

strengths prior to learning,
P

j Jijð0ÞrjðtÞ for neuron i. The other

is the extra current generated by the learning-induced changes

A

B

DC

1.2sec

1sec

pattern 1 pattern 2

Figure 7. Multiple Pattern Generation and

4-bit Memory through Learning in the

Generator Network

(A) Network with control inputs used to produce

multiple output patterns (synapses and readout

weights that are modifiable in red).

(B) Five outputs (one cycle of each periodic func-

tion made from three sinusoids is shown) gener-

ated by a single network and selected by static

control inputs.

(C) A network with four outputs and eight inputs

used to produce a 4-bit memory (modifiable

synapses and readout weights in red).

(D) Red traces are the four outputs, with green

traces showing their target values. Purple traces

show the eight inputs, divided into ON and OFF

pairs associated with the output trace above

them. The upper input in each pair turns the corre-

sponding output on (sets it to +1). The lower input

of each pair turns the output off (sets it to�1). After

learning, the network has implemented a 4-bit

memory, with each output responding only to its

two inputs while ignoring the other inputs.

in these synapses,
P

jðJijðtÞ � Jijð0ÞÞrjðtÞ.
The first expression, as well as the total

current, is different for each neuron of

the generator network because of the

random initial values of the synaptic

strengths. The second, learning-induced

current, however, is virtually identical to

the target function for each neuron of

the network (Figure 6C, cyan). Thus,

FORCE learning induces a signal repre-

senting the target function into the

network, just as it does for the architec-

ture of Figure 1A, but in a subtler and more biologically realistic

manner.

Output patterns like those in Figure 2 can be reproduced by

FORCE learning applied within the generator or feedback

networks. In the following sections, we illustrate the capacity of

these forms of FORCE learning while, at the same time, intro-

ducing new tasks. All of the examples shown can be reproduced

using all three of the architectures in Figure 1, but for compact-

ness we show results from learning in the generator network in

Figure 7 and learning in the feedback network in Figure 8. For

the interested reader, Matlab files that implement FORCE

learning in the different architectures are included with the

Supplemental Data.

Switching between Multiple Outputs and Input-Output
Mapping with Memory
The examples to this point have involved a single target function.

We can train networks with the architecture of Figure 1C in both

sparse and fully connected configurations (we illustrate the

sparse case) to produce multiple functions, with a set of inputs

controlling which is generated at any particular time. We do

this by introducing static control inputs to the network neurons

(Figure 7A) and pairing each desired output function with
Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc. 553
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...

...

running walking

running walking

Figure 8. Networks that Generate Both Running and Walking Human Motions

(A) Either of these two network architectures can be used to generate the running and walking motions (modifiable readout weights shown in red), but the upper

network is shown. Constant inputs differentiate between running and walking (purple). Each of 95 joint angles is generated through time by one of the 95 readout

units (curved arrows).

(B) The running motion generated after training. Cyan frames show early and magenta frames late movement phases.

(C) Ten sample network neuron activities during the walking motion.

(D) The walking motion, with colors as in (B).
a particular input pattern (Experimental Procedures). The

constant values of the control inputs are chosen randomly.

When a particular target function is being either trained or gener-

ated, the control inputs to the network are set to the correspond-

ing static pattern and held constant until a different output is

desired. The control inputs do not supply any temporal informa-

tion to the network, they act solely as a switching signal to select

a particular output function. The result is a single network that

can produce a number of different outputs depending on the

values of the control inputs (Figure 7B).

Up to now, we have treated the network we are studying as

a source of what are analogous to motor output patterns.

Networks can also generate complex input/output maps when

inputs are present. Figure 7C shows a particularly complex

example of a network that functions as a 4-bit memory that is

robust to input noise. This network has 8 inputs that randomly

connect to neurons in the network and are functionally divided

into pairs (Experimental Procedures). The input values are held

at zero except for short pulses to positive values that act as ON

and OFF commands for the four readout units. Starting from

the top, input 1 is the ON command for output 1 and input 2 is
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its OFF command. Similarly, inputs 3 and 4 are the ON and OFF

commands for output 2, and so on. Turning on an output means

inducing a transition to a state with a fixed positive value of 1, and

turning it off means switching it to�1. After FORCE learning, the

inputs correctly turn the appropriate outputs on and off with little

crosstalk between inputs and inappropriate outputs (Figure 7C).

This occurs despite the random connectivity of the network,

which means that the inputs do not segregate into different chan-

nels. This example requires the network to have, after learning, 16

different fixed point attractors, one for each of the 42 possible

combinations of the four outputs, and the correct transitions

between these attractors induced by pulsing the eight inputs.

A Motion Capture Example
Finally, we consider an example of running and walking based on

data obtained from human subjects performing these actions

while wearing a suit that allows variables such as joint angles

to be measured (also studied by Taylor et al., 2006, using a

different type of network and learning procedure). These data,

from the CMU Motion Capture Library, consist of 95 joint angles

measured over hundreds of time steps.
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We implemented this example using all the architectures in

Figure 1 in both sparse and fully connected configurations with

similar results (we show a sparse example using the architecture

of Figure 1B). Producing all 95 joint angle sequences in the data

sets requires that these networks have 95 readout units. For

internal learning, subsets of neurons subjected to learning

were assigned to each readout unit and trained using the error

generated by that unit (Experimental Procedures). Although

running and walking might appear to be periodic motions, in

fact the joint angles in the real data are nonperiodic. For this

reason, we introduced static control inputs to initialize the

network prior to starting the running or walking motion. Because

we wanted a single network to generate both motions, we also

used the control inputs to switch between them, as in Fig-

ure 7A. The successfully trained networks produced both

motions (Figure 8; for an animated demo showing all the archi-

tectures of Figure 1 see the Supplemental Movies) demon-

strating that a single chaotic recurrent network can generate

multiple, high-dimensional, nonperiodic patterns that resemble

complex human motions.

DISCUSSION

In the Introduction, we mentioned that FORCE learning could

be viewed either as a model for learning-induced modification

of biological networks or, more simply, as a method for con-

structing models of these networks. Our results should be eval-

uated in light of both of these interpretations.

FORCE learning solves some, but certainly not all, of the prob-

lems associated with applying ideas about learning from mathe-

matical neural networks to biological systems. Biological

networks exhibit complex and irregular spontaneous activity

that probably has both chaotic and stochastic sources. FORCE

learning provides an approach to network training that can be

applied under these conditions (see, in particular, Figure 2F).

Furthermore, training does not require any reconfiguration of

the network or changes in its dynamics other than the introduc-

tion of synaptic modification. Finally, the networks constructed

by FORCE learning are more stable than in previous approaches.

FORCE learning relies on an error signal that, in our examples,

is based on a readout unit that is not intended to be a realistic

circuit element. It is not clear how the error is computed in biolog-

ical systems. This is a problem for all models of supervised

learning. In motor learning, we imagine that the target function

is generated by an internal model of a desired movement and

that circuitry exists for comparing this internal model with the

motor signal generated by the network and for producing a

modulatory signal that guides synaptic plasticity. The cerebellum

has been proposed as a possible locus for such internal

modeling (Miall et al., 1993). Examples like that of Figure 8, which

involve multiple outputs, require multiple error signals. For

Figure 8, we subdivided the network being trained into different

regions in which plasticity was controlled by a different error

signal. If the error is carried by a neuromodulator, this would

require multiple pathways (though not necessarily multiple

modulators) with at least some spatial targeting. If the error

signal is transmitted as in the case of the climbing fibers of the

cerebellum, multiple error signals are more straightforward to
handle. Examples with a single output only require a single global

error signal.

It is also not known how the error signal, once generated,

controls synaptic plasticity. Again, this is a problem associated

with all models of error- or reward-based learning. FORCE

learning adds the condition that this modification act rather

quickly compared to the timescale of the action being learned,

at least during the initial phases of learning. Both because it is

under the control of an error signal and because it acts rapidly,

the plasticity required does not match that of typical long-term

potentiation experiments, and it is a challenge raised by this

work to uncover how such rapid plasticity can be realized

biologically, or if it is realized at all. Whatever the plasticity

mechanism, a key component of FORCE learning is producing

the roughly correct output even during the initial stages of

training. Analogously, people cannot learn fine manual skills

by randomly flailing their arms about and having their movement

errors slowly diminish over time, which would be analogous to

more conventional network learning schemes. FORCE learning

reminds us that motor learning works best when the desired

motor action is duplicated as accurately as possible during

training.

The RLS algorithm we have used is neuron-specific but not

synapse-specific. By this we mean that the algorithm uses infor-

mation about all the inputs to a given neuron to guide modifica-

tion of its individual synapses. The algorithm requires some fairly

involved calculations, although not matrix inversion. It is possible

to use a simpler, synapse-specific weight modification proce-

dure in which the matrix P is replaced by a single learning rate

(Supplemental Data). Provided that this scalar rate is adapted

over time, FORCE learning can work with such a simpler plas-

ticity mechanism. Nevertheless, RLS is clearly a more powerful

algorithm because it adapts the learning rate to the magnitude

of different principal components of the network activity. It is

possible that a scheme that is simpler and more biologically

plausible than RLS can be devised that retains this desirable

feature.

The architectures of Figures 1B and 1C, where learning occurs

within feedback or generator networks, match biological circuits

better than that of Figure 1A, where feedback comes directly

from the readout unit. A key feature of learning in these cases

is that network plasticity is accompanied by plasticity along

the output or error-computing pathway. Plasticity in multiple

areas (at least two, in these examples) coupled by a common

error signal is a basic prediction of the model. It is a curious

feature that performance is comparable for all three architec-

tures in Figure 1, despite that fact that the case of Figure 1C

involves changing many more synaptic strengths. We do not

currently know whether changing synapses within a network

offers advantages for the function-generation task. It may, but

the modification algorithms developed thus far are not powerful

enough to exploit these advantages.

We now come to an analysis of FORCE learning as a model-

building scheme. We have studied how spontaneously active

neural networks can be modified to generate desired outputs

and how control inputs can be used to initiate and select among

those outputs. Although this has most direct application to

motor systems, it can be generalized to a broader picture of
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cognitive processing (Yuste et al., 2005; Buonomano and

Maass, 2009), as our example of a 4-bit, input-controlled

memory suggests.

Ganguli et al. (2008) have discussed the advantages of using

an effective delay-line architecture in applications of networks

to memory retention. Provided that a feedback loop from the

output, as in Figure 1A, is in place, a delay line structure within

the generator network should be quite effective for function

generation as well. However, because we were interested in

networks that generate spontaneous activity even in the

absence of the output feedback loop, we did not consider

such an arrangement in any detail.

The two-step process by which we induced a chaotic network

to produce a nonperiodic sequence (Figures 2J and 8) may have

an analog in motor and premotor cortex. The brief fixed point that

we introduced to terminate chaotic activity results in a sharp

drop in the fluctuations of network neurons just before the

learned sequence is generated. Churchland et al. (2006) and

Churchland and Shenoy (2007a) have reported just such

a drop in variability in their recordings from motor and premotor

areas in monkeys immediately before they performed a reaching

movement. Except in the simplest of examples, the activity of

the generator neurons bears little relationship to the output of

the network. Trying to link single-neuron responses to motor

actions may thus be misguided. Instead, results from our

network models suggest that it may be more instructive to study

network-wide modes or patterns of activity extracted by prin-

cipal components analysis of multiunit recordings (Fetz, 1992;

Robinson, 1992; Churchland and Shenoy, 2007b).

There are some interesting and perhaps unsettling aspects of

the networks we have studied. First, the connectivity of the

generator network in the architectures of Figures 1A and 1B is

completely random, even after the network has been trained to

perform a specific task. It would be extremely difficult to under-

stand how the generator network ‘‘works’’ by analyzing its

synaptic connectivity. Even when the synapses of the generator

network are modified (as in Figure 1C), there is no obvious rela-

tionship between the task being performed and the connectivity,

which is in any case not unique. The lesson here is that the

activity, response properties and function of locally connected

neurons can be drastically modified by feedback loops passing

through distal networks. Circuits may need to be studied with

an eye toward how they modulate each other, rather than how

they function in isolation.

The architecture of Figure 1B, involving a separate feedback

network (basal ganglia or cerebellum), may be a way to keep

plasticity from disrupting the generator network (motor cortex),

a disruption that would be disastrous for all motor output, not

merely the current task being learned. Modification of synapses

in a second network (as in Figure 1B) may dominate when

a motor task is first learned, whereas changes within motor

cortex (analogous to learning within the network of Figure 1C)

may be reserved for ‘‘virtuoso’’ highly trained motor actions.

Our examples show the power of adding feedback loops as

a way of modifying network activity. Nervous systems often

seem to be composed of loops within loops within loops.

Because adding a feedback loop leaves the original circuit

unchanged, this is a nondestructive yet highly flexible way of
556 Neuron 63, 544–557, August 27, 2009 ª2009 Elsevier Inc.
increasing a behavioral repertoire through learning, as well as

during development and evolution.

EXPERIMENTAL PROCEDURES

All the networks we use are based on firing-rate descriptions of neural activity.

To encompass all the models, we write the network equations for the generator

network as (note that, in the Results, we called the parameter labeled here as

gGG simply g)

t
dxi

dt
= � xi + gGG

XNG

j = 1

JGG
ij rj + gGz J

Gz
i z + gGF

XNF

a = 1

JGF
ia sa +

XNI

m = 1

JGI
im Im

for i = 1,2,.. <1,2,..>,NG with firing rates ri = tanh(xi). For the feedback network,

t
dya

dt
= � ya + gFF

XNF

b = 1

JFF
ab sb + gFG

XNG

i = 1

JFG
ai ri +

XNI

m = 1

JFI
amIm

for a = 1,2,.. <1,2,..>,NF with firing rates sa = tanh(ya). Equation 1 determines z

and t = 10 ms. Sometimes we assign a sparseness pz to the readout unit,

meaning that a random fraction 1�pz of the components of w are set and

held to zero. The connection matrices are also assigned sparseness parame-

ters, p, meaning that each element is set and held to 0 with probability 1�p.

Nonzero elements of JGG, JGF, JFG, JFF are drawn independently from

Gaussian distributions with zero means and variances equal to the inverses

of pGGNG, pGFNF, pFGNG and pFFNF, respectively. Rows of JGI and JFI have

a single nonzero element drawn from a Gaussian distribution with zero mean

and unit variance. Elements of JGz are drawn from a uniform distribution

between �1 and 1. Nonzero elements of w are set initially either to zero

or to values generated by a Gaussian distribution with zero mean and vari-

ance 1/(pzN).

For Figures 2–5 and 6A

NG = 1000, pGG = 0.1, pz = 1, gGz = 1, gGF = 0, a = 1.0, and NI = 0. For Figure 5, gGG

was varied, otherwise gGG = 1.5. For Figure 2H, the standard Lorenz attractor

model (see Strogatz and Herbert, 1994) was used with s = 10, b = 8/3, and

r = 28. The target function was what is conventionally labeled as x divided

by 10, to fit it roughly into the range of �1 to 1. For Figure 2J, the two readouts

and feedback loops are similar except for different random choices for the

strengths of the feedback synapses onto the network neurons. The addi-

tional readout unit takes two possible states, one called active in which its

output is determined by Equation 1, and another called inactive in which its

output is 0. For further discussion of training in this case, see the Supplemental

Data.

For Figure 6B

NG = 20,000, NF = 95, pGG = 0.1, pGF = 0.25, pFG = 0.025, pFF = 0.25, pz = 0.025,

gGG = 1.5, gGF = 1, gFG = 1, gFF = 1.2, a = 1.0, and NI = 0. RLS modification was

applied to w and JFG.

For Figure 6C

NG = 750, pGG = 0.5, pz = 0.5, gGG = 1.5, gGF = 0, a = 1.0, and NI = 0. RLS modi-

fication was applied to w and JGG.

For Figure 7B

NG = 1200, pGG = 0.8, pz = 0.8, gGG = 1.5, gGF = 0, a = 80, and NI = 100. The

inputs Im where chosen randomly and uniformly over the range �2 to 2 for

inputs generating initialization fixed points, and �0.5 to 0.5 for inputs control

the choice of output function. RLS modification was applied to w and JGG,

but of the 1200 network neurons, 800 were subject to synaptic modification

of their incoming synapses (due to memory considerations).

For Figure 7D

NG = 1200, pGG = 0.8, pz = 1, gGG = 1, gGF = 0, a = 40, and NI = 8. The elements

of the control input vector Im had OFF values of 0.0 and ON values of 0.375. RLS

modification was applied to w and JGG, with 800 of the network neurons

subject to synaptic modification of their incoming synapses.
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For Figure 8

Although all network variants in Figure 1 were implemented successfully, the

following parameters are for the generator-feedback architecture: NG =

5000, NF = 285, pGG = 0.05, pGF = 0.5, pFG = 0.185, pFF = 0.5, pz = 0.185,

gGG = 1.5, gGF = 2.0, gFG = 1.0, gFF = 1.5, a = 2.0, and NI = 50. RLS modification

was applied to w and JFG.

Motion capture data were downloaded from the Carnegie Mellon University

Motion Capture Library (MOCAP) (http://mocap.cs.cmu.edu/). Data set

09_02.amc was used for the running example and data set 08_01.amc for

the walking case. The data were preprocessed by a simple moving average

filter to remove discontinuities and then interpolated to fill in to 10 times

density, which works better for our continuous time models. The resulting joint

angles were transformed into exponential form (see Taylor et al., 2006) and the

means were removed. Movement through space was ignored, so we modeled

a runner or walker on a treadmill. Four sets of control inputs were used, one

each for running and walking and two for initial-value fixed points for these

motions. Fixed-point inputs were chosen randomly and uniformly over the

range �2 to 2 and control inputs over �0.25 to 0.25.

SUPPLEMENTAL DATA

Supplemental Data include two figures, supplemental text, example Matlab

routines, and two movies and can be found with this article online at http://

www.cell.com/neuron/supplemental/S0896-6273(09)00547-9.
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