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Abstract
Reward-based learning in neural systems is challenging because a large number of parameters that affect
network function must be optimized solely on the basis of a reward signal that indicates improved
performance. Searching the parameter space for an optimal solution is particularly difficult if the
network is large. We show that Hebbian forms of synaptic plasticity applied to synapses between a
supervisor circuit and the network it is controlling can effectively reduce the dimension of the space
of parameters being searched to support efficient reinforcement-based learning in large networks.
The critical element is that the connections between the supervisor units and the network must be
reciprocal. Once the appropriate connections have been set up by Hebbian plasticity, a reinforcement-
based learning procedure leads to rapid learning in a function approximation task. Hebbian plasticity
within the network being supervised ultimately allows the network to perform the task without input
from the supervisor.
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Introduction

Learning often takes place solely through the reinforcement of improved performance.
Reinforcement-based learning is challenging because no information is provided to indi-
cate how a task should be done or to suggest how performance can be improved. Instead,
strategies must be generated internally and evaluated solely on the basis of the reinforcement
they generate.

Faced with such a dearth of information, models of learning often rely on a random-search
approach in which reinforcement guides an otherwise random walk in the space of parameters
controlling task performance (Barto et al., 1983; Mazzoni et al., 1991; Jabri and Flower,
1992; Williams, 1992; Cauwnberghs, 1993; Doya and Sejnowski, 1995; O’Reilly, 1996;
Xie and Seung, 2003; Seung, 2003). In a neural network, such a scheme typically involves
randomly changing synaptic strengths or neuronal excitabilities and keeping or rejecting
those changes on the basis of reward. For example, in the scheme we use, which is based
on bacterial chemotaxis, changes are made by moving along a straight line in the space of
parameters as long as performance improves and reward is provided. If at some point reward
is denied, indicating worsening performance, the system starts moving in a new, randomly
chosen direction.
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Reward-based learning strategies of the type described in the previous paragraph typically
converge to a set of parameters that optimizes task performance if they are applied for a
sufficiently long time. Because the parameter search is random, this time can be very long,
and it typically scales badly (i.e. increases dramatically) as the size of the network performing
the task increases. In most cases, the space of network parameters is enormous, and the
system can easily get lost when the only guide is reinforcement.

Here we explore the idea that the convergence time for reinforcement-based, random-
walk learning schemes and its scaling with network size can be improved dramatically by
reducing the effective dimension of the parameter space. This is a rather obvious strategy,
and we use a standard dimensional reduction method, principal component analysis (PCA)
to implement it. The novelty is that we implement both the dimensional reduction scheme
and the mechanism by which neuronal excitabilities and synaptic strengths are modified
through well-known, local synaptic modification rules acting along biologically plausible
pathways.

Most reinforcement learning schemes are based on a form of synaptic plasticity that is mod-
ulated by the reward. Although synaptic plasticity can depend on activation of metabotropic
glutamate receptors, there is no convincing experimental evidence for such reward-based
modulation of synaptic plasticity. Therefore, we take a different approach in which learning
arises from the modulatory effects of reward on a network generating ionotropic synaptic in-
put rather than on synaptic plasticity. Our goal is not to outperform standard reinforcement-
based learning algorithms, but to introduce a scheme based on non-synaptic targets of reward
that we feel is more plausible in light of experimental data.

The task and the network

To explore the role of dimensional reduction in reinforcement learning, we chose a well-
defined task of obvious behavioral and cognitive relevance: function approximation (Poggio,
1990). In the network we consider, N input units respond to inputs that are tuned to the
value of a particular stimulus parameter (in our case, an angle θ), and they drive an output
unit so that its firing rate follows a specified function of the stimulus value. The network
can easily be extended to include more than one output unit, but we will not need to do
this for our purposes. The learning task consists of adjusting network parameters so that the
firing rate of the output unit matches the specified target function. Applying reinforcement
learning to this task allows us to illustrate clearly the features and limitations of the scheme
we are studying.

The architecture of the network is shown in figure 1. Each input unit is characterized by a
firing rate, ri , with i = 1, 2, . . . , N, that is given by a sigmoidal function of the total synaptic
current it recieves. The synaptic current is divided into two terms: a stimulus current Ii (θ)
that depends on the stimulus angle θ , and a bias current Ji that is independent of the stimulus
and represents synaptic currents arising from the supervisor circuit shown in figure 1. Thus,

ri = 1
1 + exp (−g(Ii (θ) + Ji − s ))

. (2.1)

The parameters s and g control the shape of the sigmoid. The shift parameter, s , which is set
to 0.9 for all the simulations shown, determines the location at which the firing rate reaches
its half-maximal value, and the gain parameter, g , set to 5 in all cases shown, specifies the
slope at that half-maximal point. The firing rate is normalized so that its maximum value
is 1.
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The stimulus current Ii (θ) that appears in equation 2.1 is constructed from Gaussian
functions of the difference between the stimulus variable θ and the preferred stimulus value
for unit i , θi ,

Ii (θ) = G(θ − θi ) + G(θ − θi − 2π) + G(θ − θi + 2π) , (2.2)

where

G(θ) = 1.5 exp
(

− θ2

2

)
− 0.5. (2.3)

The three terms appearing in equation 2.2 impose an approximate periodicity on the network
to match the fact that θ is an angle. This stimulus current makes the input units selective
for different values of θ , and we can write their firing rates as ri (θ). The preferred stimulus
values, θi for i = 1, 2, . . . , N, are uniformly distributed over the range from 0 to 2π (see
figure 1), so the input units collectively represent stimulus values over the entire range of
angles.

The output unit is driven by the input units through a set of modifiable synapses, so its
firing rate R is given by a weighted sum of their rates,

R(θ) =
N∑

i=0

wi ri (θ) . (2.4)

The weight wi represents the strength of the synapse from input unit i to the output unit.
The task for learning in this network is to make R(θ) match, as closely as possible, a specified

Figure 1. Network for function approximation. Input units (lower circles) are driven by input current that is a
Gaussian function of the difference between a stimulus angle θ and a preferred stimulus value for each unit (tuning
curves at bottom). The input units send projections to both the output unit (upper circle) and units within the
supervisory circuit. Supervisor units synapse onto each input unit. The supervisor receives limited information
about network performance in the form of reward which it uses to direct its influence on the input units.
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target function F(θ). In our case, this is done by presenting random values of θ to the network
on learning trials and providing feedback in the form of a reward or reinforcement signal
that indicates improved performance.

The task of making the output unit match the target function, i.e. setting R(θ) = F(θ), is
assigned to the supervisor circuit in figure 1. The standard way of doing this is to have the
supervisor adjust the synaptic weights between the input and output units of the network
using a delta learning rule (Widrow and Hoff, 1960; Widrow and Stearns, 1985). We do
not follow this procedure for two reasons. First, the delta rule requires that the supervisor
has knowledge of the target function and can determine the error that the network makes
on each trial. In reinforcement learning this information is not available. Second, delta-rule
learning assumes that the supervisor can control synaptic modification, but there is little
evidence for such control of synaptic plasticity in biological circuits. Instead, we assume that
the supervisor circuit interacts with the input units solely through conventional excitatory
and inhibitory synapses arising from the pathway from the supervisor to the input units
depicted in figure 1. The input from the supervisor circuit to input unit i is represented by
the bias current Ji . Thus, in our biologically realizable scheme, the supervisor modifies the
responses of the input units on the basis of a reward signal through ordinary excitatory and
inhibitory synapses.

We have previously studied this form of learning in a supervised rather than reward-based
scheme (Swinehart and Abbott, 2005). Two results from that study are relevant to the current
work:

• It is possible to get the firing rate of the output unit R(θ) to approximate the target
function F(θ) solely by having the supervisor adjust the bias currents of the input units
to appropriate values. This allows the network to perform the function approximation
task as long as inputs from the supervisor units are maintained at proper levels.

• If a Hebbian form of synaptic modification is implemented at the synapses between
the input and output units, the information about how to perform the function ap-
proximation task transfers spontaneously from the bias currents to the synapses. When
this transfer is complete, the network can perform the task without input from the
supervisor.

Thus, in this scheme, learning is a two-component process. The excitatory and inhibitory
input from the supervisor to the network adjusts the bias currents of the input units to
improve network performance. At the same time, the synapses from the input units to the
output unit are modified by Hebbian plasticity. This transfers the improvements induced
by supervisory input into permanent changes within the network that ultimately allow it to
perform the task successfully, even without supervisory input.

A challenge to this two-component scheme is that reinforcement-based supervision and
Hebbian plasticity occur together. If reinforcement learning is too slow or spends too long
in the wrong parts of parameter space, the Hebbian component will “lock in” modifications
that are detrimental to task performance, which can destroy convergence. Thus, it essential
for us to find an efficient reinforcement-based scheme that established the correct biases
in the input units rapidly enough to keep the unsupervised Hebbian plasticity mechanism
on track. For this reason, we begin our study of reinforcement learning by focusing solely
on reinforcement-based modification of input unit bias currents by the supervisor circuit,
leaving the analysis of the additional Hebbian component until the end.
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The reinforcement-based supervisor

The supervisor circuit shown in figure 1 is responsible for making adjustments to the network
on the basis of reward reinforcement to improve performance. To do this, the supervisor must
explore the space of network parameters by generating different patterns of excitation and
inhibition to the input units.

In a direct application of these ideas to the network of figure 1, the supervisor circuit would
consist of N units with activities vi , for i = 1, 2, . . . , N, one for each of the N input units (we
allow vi to be either positive or negative to represent excitatory or inhibitory inputs provided
by the supervisor even though the firing rates of the individual supervisory units would, of
course, be positive). All biases start out at zero, but during learning these are changed by an
amount #Ji = εvi , where ε is a learning-rate constant and vi is the i th component of a vector
describing the pattern of activity in the supervisor circuit. This pattern of activity is similar to
the sustained activity seen in models of short-term memory (Compte et al., 2000; Seung et al.,
2000), and it could easily be generated by such a model (although we will not do this here).

The direct reinforcement-based random walk strategy can now be specific in terms of
the effects of reward on the components vi that describe the supervisory activities and, in
turn, determine the bias currents for the input units. As long as reward is obtained, all
these components, vi for i = 1, 2, . . . , N remain fixed. This could be due to the effects of a
reward-induced modulator. If reward is not obtained, the vector describing the pattern of
supervisory activity is changed by choosing a new set of components vi randomly. This could
be realized by having a second modulator or noisy input temporarily disrupt the stability of
the self-sustained activity in the supervisory circuit. These two actions, and the rule for
changing biases, #Ji = εvi , completely describe the learning strategy we use. Thus far, we
have discussed it and its implementation within the context of a direct approach, not the
dimensionally reduced scheme we propose.

We have shown previously that the direct scheme can work if N is small enough, but it
is slow and gets slower as N increases (Swinehart and Abbott, 2005). The basic feature
we exploit to get around the limitations of the direct approach is the fact that the firing of
different input units is correlated. Two units with highly overlapping input tunings tend to
fire together at similar rates. If the function being approximated varies slowly on the scale of
the separation between preferred stimulus values (i.e. if F(θi ) ≈ F(θi+1), it does not make
sense to vary the two bias currents Ji and Ji+1 independently. The best strategy is to vary
those combinations of bias currents that have the biggest impact on network output. These
combinations can be determined by performing principal component analysis (PCA) on the
correlation matrix of the input units. The key result, present in the following section, is that
this can be accomplished by applying appropriate forms of synaptic plasticity to the synapses
between the input units and the units of the supervisor circuit.

Dimensional reduction

The learning strategy based on dimensional reduction is similar to the direct reward-guided
random-walk strategy discussed above, except that the dimensionality of the space being
searched is much smaller. In this case, on time steps when learning is applied, the modification
of the bias current is controlled by only n $ N supervisor units through the equation

#Ji = ε
n∑

a=1

wiava , (3.5)
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where va for a = 1, 2, . . . n are the activities of the n supervisor units, and wia represents
the strength of the synapse from supervisor unit a to input unit i . The implementation of
reinforcement learning in this dimensionally reduced scheme proceeds exactly as described
above for the direct approach. After rewarded trials all the components va for a = 1, 2, . . . , n
remain the same, and after non-rewarded trials they are reset to randomly chosen values.

The key to making the modifications described by equation 3.5 as effective as possible is
to make sure that the synaptic weight wia is proportional to the i th component of the ath
principal component of the input-unit correlation matrix. In other words, we want wia ∝
ξa

i , where ξa
i is the i th component of the eigenvector of the input-unit correlation matrix

with the ath largest eigenvalue. To achieve this, we exploit a virtually universal property
of neural circuits, the reciprocal nature of inter-connections. The supervisor can obtain
information about the correlations between the input units through the projections from
the input units to the supervisor depicted in figure 1. We refer to these projections as the
ascending pathway to the supervisor, and call the projections from the supervisor to the
input units the descending pathway. Methods exist for setting the ascending synaptic weights
proportional to the principal component eigenvectors of the input-unit correlation matrix
(Oja, 1989; Sanger, 1989), but this is the wrong set of synapses for our purposes. We need
to set the descending synaptic weights proportional to these eigenvectors. We now show that
this can be achieved by applying an additional ordinary Hebbian plasticity to the descending
synapses.

Initially, the supervisor units are driven by the input units. We denote the strength of the
ascending synapse from input unit i to supervisor unit a by w′

ai , so the firing rate of supervisor
unit a is given by

va =
N∑

i=1

w′
ai ri . (3.6)

The first step in setting the descending synaptic weights is to apply a Sanger rule (Sanger,
1989) to the ascending synapses. This is a form of synaptic plasticity that is essentially
Hebbian, but with the added wrinkle of subtracting out contributions already accounted for
by other supervisor units. The resulting modification amounts to the replacement

w′
ai → w′

ai + η′va

(
ri −

a∑

b=1

vbw
′
bi

)
(3.7)

on every time step of the simulation, where η′ sets the learning rate and is set to the value
0.25, and va and ri are the firing rates of supervisor unit a and input unit i , respectively. For
the a = 1 supervisor unit, this rule is identical to the standard Oja rule which sets w′

1i ∝ ξ1
i

(Oja, 1982; see below). For the other supervisor units, the summed term in equation 3.7
assures that w′

ai ∝ ξa
i for a = 2, 3, . . . n. The Sanger rule thus sets the connection strengths

in such a way that the weight vector from the input units to the a = 1 supervisor unit is
proportional to the eigenvector with the largest eigenvalue, the a = 2 unit to the eigenvector
with the next largest eigenvalue, and so on.

The second step in setting the descending synapses properly is to transfer the weights from
the ascending to the descending pathway. Surprisingly, this can be done by having ordinary,
multiplicatively constrained Hebbian plasticity act on the descending synapses. Specifically,
we apply the Oja plasticity rule (Oja, 1982) to the descending synapses,

wia → wia + ηri (va − riwia) , (3.8)
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on every time step of the simulation, where the parameter η controls the learning rate and
is set to 0.005. The weight decay term, riwia, in this rule ensures that the weight vector
converges toward unit length, preventing the runaway potentiation that would arise from a
purely Hebbian rule.

We now consider what happens if, after the ascending weights have been set to the principal
component eigenvectors by the Sanger rule (equation 3.7), the Oja rule (equation 3.8) acts
on the descending synapses while the supervisor units are driven by the input units according
to equation 3.6. The key result is that the descending synaptic weights are set to wia ∝ ξa

i
for i = 1, 2, . . . , N and a = 1, 2, . . . n. To see how this arises, we note that, when plasticity
comes to equilibrum, the Oja rule (equation 3.8) sets the synaptic weights proportional to
the pre-postsynaptic correlation matrix (if η is small enough),

wia = ca〈riva〉 , (3.9)

where the angle brackets denote an average over time and ca is a constant that may be different
for different values of a. Combing this result with equation 3.6, we find that

wia = ca

N∑

j=1

〈ri r j 〉w′
aj = caλaw

′
ai ∝ ξa

i . (3.10)

The second and third equalities follow from the fact that w′
ai is proportional to ξa

i and is thus
an eigenvector of the correlation matrix with eigenvalue λa,

N∑

j=1

〈ri r j 〉w′
aj = λaw

′
ai . (3.11)

The above derivation shows that, when the ascending synaptic weights are proportional to
eigenvectors of the input-unit correlation matrix, the Oja rule sets the descending weights
proportional to the ascending weights, and thus proportional to those same eigenvectors.
Thus, the mixture of a Sanger rule on the ascending synapses and a Oja rule on the descending
synapses accomplishes the goal of setting the descending weights equal to the values needed
for the dimensional reduction of reinforcement-based learning. The fact that we only required
that equation 3.9 be satisfied by the learning rule for the descending synapses indicates that
any correlation-based form of plasticity, not only the Oja rule, can be used for this purpose.

Figure 2 illustrates how the ascending and descending weights become proportional to the
principal eigenvectors through synaptic plasticity. In this example, the input units were driven
by randomly chosen angles activating the input currents of equation 2.2 while the Sanger
and Oja rules were applied to the ascending and descending synapses, respectively. Because
the tuning curves of the input units were placed uniformly over the range of stimulus angle
values, assuring translational invariance (θ → θ + constant is a symmetry), the eigenvectors
of the input correlation matrix are sine and cosine functions of the input unit preferred
angles θi and the principal components are ordered by wavelength. In other words, PCA
is equivalent in this case to Fourier analysis. This makes it easy to see that the appropriate
synaptic assignments have been made.

The development of the ascending synaptic weights from the input units onto seven su-
pervisor units on the basis of the Sanger rule can be seen in the left panels of figure 2 and
the progression of the corresponding descending weights according to the Oja rule is shown
in the right panels. From random initial values (top row), the weights to and from the a = 1
supervisor unit become equal to the constant Fourier component by 128 trials (the second
row of plots in figure 2). As the plasticity proceeds (rows 3–5 in figure 2 representing the
results after 256, 1472, and 23,552 trials, respectively), the additional weights to and from
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Figure 2. Development of ascending and descending synaptic weights. Each line represents the set of synaptic
weights, with N = 800, to and from one supervisor unit plotted against input unit number. The left column depicts
the ascending connections from the input units to the supervisor, with synapses modified over time, from top to
bottom, using the Sanger rule. The right column shows the same thing for descending synapses from the supervisor
to the input units, which are controlled by an Oja rule. In the top row, before the plasticity changes them, the
weights have random values. Over time (rows below the top show results after 256, 1472, and 23,552 trials),
the Sanger rule extracts the principal component eigenvectors from the input correlations and sets the ascending
weights proportional to them. Simultaneously, the descending weights are modified by the Oja rule and become
proportional to the eigenvectors as well.
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the a = 2, 3, . . . 7 supervisor units take sine and cosine forms. During this process, the de-
velopment of the descending synapses tends to lag behind that of the ascending synapses
because the Sanger rule pulls out the principle components while the Oja rule transfers these
components to the descending weights. By the lowest panels, when the system has equili-
brated, the weights of the synapses received by each supervisor unit are paired with weights
of the synapses they send to the input units, both being proportional to the same principle
component eigenvector. The amplitudes of the descending weights are not the same as their
ascending partners. These amplitudes are related to the corresponding eigenvalues. The un-
evenness of the amplitudes has no effect on the reinforcement learning strategy we study
next.

Dimensionally reduced reinforcement learning

The dimensional reduction process described in the previous section reduces the problem of
learning to setting appropriate supervisor firing rates va for a = 1, 2, . . . , n to introduce the
appropriate biases into the input units to generate the desired responses in the output unit.
This is a much simpler problem than trying to set the bias currents independently, and the
use of descending weights proportional to the principal component eigenvectors of the input-
unit correlation matrix assures that a small number (n = 7 in the all of our examples except
for figure 7) of supervisor units has the maximum impact on the activity of the output unit.
The price of lowering the dimensionality of the control process from N, which is typically
in the thousands in our examples, down to n = 7 will be addressed after we show how the
basic scheme works.

Recall that the dimensionally reduced reinforcement learning process for the supervi-
sor unit activities consists of keeping them constant if reward is given and changing them
randomly if reward is denied. When the network is in the optimal configuration for task
performance, any changes will result in an increased error. To address this type of end-stage
thrashing, the learning rate parameter ε is decreased as the overall size of the errors made by
the network goes down.

Before showing the results of dimensionally reduced reinforcement learning, we need to
discuss how reward is delivered to the supervisor to determine whether or not its pattern of
activity is changed.

The reward procedure

Reward criteria are determined by external factors not by neural circuits, but neural circuits
determine how reward is interpreted and what results follow from receiving reward. There
is no unique model of such a reward procedure. The reinforcement learning scheme we
propose will work with any reasonable reward scheme, where reasonable means that reward
is based on some cumulative assessment of improvement integrated over a long enough time
to assess whether or not a particular set of parameter changes is beneficial. We use a simple
scheme to demonstrate that reinforcement learning can work. Undoubtedly, performance
could be improved over what we show by using a more elaborate and clever reward schedule,
but our purpose is to study the actions of the supervisory circuit, not the reward system.

A trial in our learning scheme consists of the presentation of a randomly chosen stimulus
angle θ , which produces a network output R(θ) that is suppose to match a target function
F(θ). The reward procedure is based on whether the function approximation error, (R(θ) −
F(θ))2, shows an increasing or decreasing tendency. To assess this, we computed it over
a number of trials with different θ values. The reward after any trial is based on errors
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accumulated over the previous 140 trials. These 140 trials are divided into two blocks of 70.
The errors for the most recent block of 70 trials are summed, as are the errors for the next
most recent block of 70 trials (the 70 trials prior to the most recent block). If the summed
error for the most recent block of trials is less than the summed error for the next most
recent block, reward is given. If the summed error for the most recent block of trials is larger
than that of the next most recent block, reward is denied. This procedure is simply a way of
provided reward when trial-averaged performance has improved.

Demonstration of reinforcement learning

Dimensionally reduced reinforcement learning is illustrated in figure 3. The left column in
this figure shows the response of the output unit as a function of stimulus angle and the
target function that is to be matched. The right column shows the individual contributions
to the total bias current provided to each input unit by each of the 7 supervisory units.

In this simulation, all the biases start at zero (figure 3a right panel), which causes all input
units to respond identically to their preferred stimuli. This, combined with the fact that
synaptic weights between the input units and the output unit are set equal results in the
output unit response being independent of the stimulus (figure 3, top-left panel).

After 1600 trials, (second row of figure 3), the supervisor units have biased the input units,
resulting in modulation of the flatline response of the initial state. The right panel indicates
that this response arises primarily from a baseline shift and a single-cycle cosine modulated
bias current that is not well chosen for the target function. However, the components that
ultimately will be responsible for a successful function approximation also start to develop
at this point. After 5632 trials (third row of figure 3) a single-cycle sine has become the
dominant factor contributing to the approximation. After 11,008 trials (fourth row of figure
3) the general shape of the function has been captured by the uniform shift combined with this
sine wave, but higher frequency components need to be recruited to account for the detailed
shape of the target function. The final state of the bias currents in the bottom row shows
that two higher frequency sinusoids now contribute, resulting in a successful approximation.
Note that the supervisor units with the highest frequency components were not needed for
this particular target function.

Non-uniform input sampling

The connectivity patterns we have seen thus far are equivalent to Fourier modes, but the
scheme we propose is not limited to this translationally invariant case. To show this, we break
the translational invariance by making the distribution of preferred stimulus values for the
input units non-uniform. Two examples of this are shown in figure 4.

For the left column of figure 4, a bimodal distribution was used in which the peaks had a
sampling density triple that of the low-density regions. The ascending weights (middle panel
at left) that result when the synaptic weights have equilibrated are decidedly non-Fourier, and
are well adapted to the activity correlations among the input units that arise from the bimodal
distribution of preferred angles. Rather than being flat, the first component is bimodal with
troughs aligned with the centers of the regions where input coverage is less dense. The next
two components are also non-sinusoidal with dimpled peaks aligned with the central low-
density region. Nevertheless, there is a doubling of frequency between the second and third
components similar to what is seen in the Fourier case. Another frequency doubling can be
seen between the fourth and fifth components. The bottom left panel of figure 4 shows that
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Figure 3. Dimensionally reduced reinforcement learning. The left column shows the target function (solid line)
and the output of an N = 2000 network for different values of the stimulus angle (open circles). The right column
depicts the bias currents sent to the network by the supervisor as a function of the input unit number, with
each supervisor unit represented by a separate line. The total bias current received by each input unit can be
determined by summing theses curves. Rows show results after 0, 1600, 5632, 11,008, and 310,400 trials. As the
bias currents develop through the reinforcement-based random walk procedure, the initially poor approximation
(top row) changes into a fairly accurate approximation of the target function (bottom row).
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Figure 4. Ascending and descending weights for nonuniform distributions of preferred stimulus angles. a) The
two alternative distributions used. When the preferred stimulus angles of the input units are not uniform, the
components extracted for the ascending units by the Sanger rule (b) and transferred to the descending weights by
the Oja rule (c) are non-Fourier. The results are for N = 800, the left panels are after 10,304 trials, and the right
panels are after 20,672 trials.

the Oja rule sets the descending weights proportional to the ascending weights in this case
as well.

Similar results are seen in the right column of figure 4 for a unimodal distribution of
preferred stimulus angles, with the central region having a density twice that of the sur-
rounding region. Again the baseline shift of the first component is distorted, reflecting the
non-uniformity in the input population. The second and fourth components are centered
around the high-density peak and are frequency-doubled versions of each other, whereas the
third and fifth components are more sine-like but also show frequency-doubling.

Figure 5a shows the initial state for a network with the unimodal sampling distribution seen
in figure 4. Although the input units all respond to their preferred stimuli identically and the
synaptic weights from the input units to the output unit all take the same value as in figure 3,
the output unit response depends on the stimulus angle. The response is largest for stimuli
near the middle of the range because that is where the largest number of input units respond.
As a result of this, the initial approximation is significantly worse than it would be in the
uniform case, and the supervisor must overcome this to fit the target function. Nevertheless,
as can be seen in Figure 5b, once the reward-guided random walk sets the activities of the
superisor units properly, the network successfully approximates the target function. Thus,
the synaptic strength distributions extracted by the Sanger process and communicated to
the network through Oja plasticity provide a general solution for constructing an efficient
supervisor strategy regardless of the specific input population statistics.
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Figure 5. Function approximation with a non-uniform stimulus sampling. The solid line is the target function and
the open circles indicate the output unit response. N = 800. a) When the sampling density of the input units is not
constant, the initial response of the output unit depends on the stimulus angle; a higher density of input units near
θ = π causes a larger output response in that region. b) A reward-guided random walk procedure, dimensionally
reduced with the appropriate principal components, nevertheless produces a successful approximation of the target
function.

Effects of input population size

A critical advantage of the dimensional reduction implemented by the combination of Sanger
and Oja rules is that the number of supervisor units is independent of the number of input
units. This means that the poor scaling behavior of the direct reward-based random walk
approach as a function of network size is replaced by a scheme in which convergence time is
essentially independent of network size. This is shown in figure 6.

Figure 6. Scaling of dimensionally reduced and direct reward-based random walk learning strategies with network
size. The total function approximation error is plotted over the course of learning trials for small, medium, and large
networks (N = 2000, 4000 and 8000). The function being approximated here is the same as in figure 3. Dotted
lines show errors for the direct random walk strategy, which converges slowly for N = 2000 but fails to converge
over the time period shown for N = 4000 and 8000. Solid lines correspond to the dimensionally reduced scheme
and are fairly invariant with respect to population size.
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Error values after different numbers of trials for the direct learning process are plotted as
dotted lines in figure 6. The direct scheme performs acceptably for moderate input population
sizes (e.g. 2,000 units), but once there are 4,000 or more input units, the direct approach fails
to converge over the number of trials shown. Although the random walk algorithm ensures
that the supervisor will change any strategy that increases its error, a series of changes that
continue to be detrimental may result before a better strategy is found, causing a prolonged
increase in error magnitude as seen in figure 6 for the 4,000- and 8,000-unit cases.

The PCA approach, on the other hand, is effectively invariant with respect to the input
population size (solid lines in figure 6). In this scheme, the burden of dealing with more
input units is handled by the Sanger/Oja learning procedure on the connections between the
input and supervisor units prior to any function learning. Though there seems to be slightly
more noise in the early stages of learning when the population size is larger, overall the solid
traces in figure 6 are virtually overlapping. This is not surprising because the dimension
of the parameter space being searched is independent of network size in the dimensionally
reduced case, and the principal components have the same shape over the input distribu-
tion independent of its size. Thus the PCA supervisor is capable of scaling to much larger
population sizes than the direct supervisor, and it does so with no noticable performance
degredation during the learning phase. Efficient scaling with respect to system size has also
been achieved in standard reinforcement learning procedures (Arleo and Gerstner, 2000;
Foster et al., 2000; Doya, 2000, Stroesslin et al., 2005).

Number of components and diminishing returns

In the uniform case, supervision through PCA-based dimensional reduction is equivalent to
approximating a waveform by scaling its Fourier modes. Drawing on more Fourier modes
by increasing the number of supervisor units improves the potential accuracy of the final
function approximation. This effect can be seen in the results shown in figure 7, which
indicates the final error in approximating the same function as in figure 3 using different
numbers of supervisor units.

Figure 7. Function approximation errors for different numbers of supervisor units. The bars indicate the final error
reached for various numbers of supervisor units (values of n) when the simulation is allowed to run until improvement
stops. Adding additional principal components is an effective means for improving accuracy, but the improvement
saturates rather quickly. In this case it appears that using any more than five components is unnecessary, and using
more than this slows learning.
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Two noteworthy effects are revealed by this study. The first is that using a smaller number
of components leads to a faster convergence toward the optimal solution. For example, in
the single-component case, the supervisor finds its optimal (though still quite poor) approx-
imation in about 1000 trials, while the eight-component supervisor requires nearly 20 times
as many trials to reach its more globally optimal solution. Second, increasing the number
of components does in fact reduce the error in the ultimate approximation reached through
learning as can be seen by the steady decreases in the higher unit-count cases. However, this
effect tends to saturate. Clearly adding more supervisory units improves performance up to
a point, but in this case showing it is not necessary to use more than five components.

Of course, the number of components used depends on the target function being approx-
imated. Were it less complicated and more easily approximated by a pair of low-frequency
sinusoids, improvement would stop after the third component. If the target function varied
quickly with respect to the stimulus value, more than five components would be needed to
capture the higher-frequency structures.

Including Hebbian modification of network synapses

The most obvious benefit of reducing the dimensionality of the space that the supervisor
must search is that it allows a simple search algorithm to work. We now explore an additional
benefit, that it allows a reinforcement-based random walk strategy to bring the network to a
successful state sufficiently quickly to guide Hebbian synaptic plasticity within the network
itself. When Hebbian plasticity is applied to the synapses from the input units to the output
unit, the slower speed with which the direct supervisor guides learning does not just delay
success, it prevents the network from performing the task.

Up to now, the synaptic weights between the input units and the output unit were held
fixed throughout learning. We now allow them to be modified by an Oja plasticity rule during
the learning process,

wi → wi + η′′ R (ri − Rwi ) , (3.12)

with η′′, which was set to 0.0003, determining the learning rate. As we have demonstrated
previously (Swinehart and Abbott, 2005), applying Hebbian-type plasticity to these synapses
causes the learning originally applied by the supervisor through bias currents to transfer to
the synaptic weights. Ultimately, this process allows the network to perform the function
approximation task even when the supervisory bias currents are removed. Provided that
the supervisory biases are established quickly enough relative to the time scale of Hebbian
plasticity, these two processes can take place simultaneously.

An example of this process is seen in figure 8a. In both columns of figure 8, the output
response of the network in the presence of supervisory bias is plotted with filled dots, and
open dots show this response when the supervisory input is removed. By the middle panel of
figure 8a, Hebbian effects have begun to change the network, as evidenced by the inflections
in the curve of output firing rate versus stimulus angle in the absence of bias currents.
Ultimately, this leads to almost equal network performance with and without the supervisory
bias currents (bottom panel, figure 8a).

The situation is quite different for the direct supervisor (figure 8b). Because the direct
supervisor has difficulty with an input population of this size (N = 4000), Hebbian plasticity
locks in correlations that reflect incorrect network configurations and the network fails to
develop or attain the correct biases and synaptic weights to perform the task either with or
without supervisory input (middle and bottom panels of figure 8b).
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Figure 8. Learning with Hebbian plasticity. When the synapses between the input units and output unit are mod-
ulated by an Oja rule, the correlations imposed by the supervisor through the bias currents transfer to the network
weights. In all panels, the solid line denotes the target function, the solid dots show the responses of the output unit
in the presence of supervisory bias currents, and the open circles show the output unit responses when supervisory
activity is turned off and bias currents are zero. The top panels show the initial state of the network, and the middle
and lower panels show intermediate and convergent results, respectively. a) With dimensional reduction, the reward-
based random walk results in learning that is transferred to the synaptic weights by Hebbian plasticity. Ultimately
(bottom panel) the supervisory bias currents can be removed and the network still performs appropriately. b) In the
direct approach with no dimensional reduction, the supervisory biases establish too slowly, and Hebbian plasticity
locks in inaccuracies. The task cannot be performed either with or without supervisory bias currents.

Discussion

Neural circuits often represent stimulus variables through the activities of large populations
of neurons with overlapping tuning curves, providing an over-complete basis for sufficiently
smooth functions of those variables (Salinas and Abbott, 2000). We have exploited this
over-completeness to streamline reinforcement learning by performing a PCA dimensional
reduction of the space of parameters to be searched. By taking advantage of reciprocal con-
nections between the supervisory circuit and the network it is supervising, we showed that
this can be done by standard synaptic plasticity rules. The result is efficient reinforcement-
based learning that scales well with network size. Unsupervised Hebbian plasticity applied
simultaneously to network synapses ultimately allows the network to perform the task au-
tonomously, so the supervisor and reward system are only needed during training.

In our scheme, the supervisor introduces variability into the output of the network as it
explores the range of bias currents in an attempt to obtain a reward. A pair of recent papers
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provide evidence for this type of supervisor circuit in the birdsong system (Kao et al., 2005;
Ölveczky et al., 2005). Both studies examine the role of a basal ganglion-like nucleus called
LMAN that innervates the vocal motor pathway. When LMAN is silenced, the degree of
variability in the song produced by a bird is greatly reduced (Kao et al., 2005; Ölveczky et al.,
2005). In addition there is some evidence that the LMAN signal guides song production in
a specific way, because eliciting a particular pattern of LMAN activity is correlated with a
specific variation in the song (Kao et al., 2005). These results suggest that LMAN in birds,
and perhaps the basal ganglia in mammals, may be the site of the biological correlate of the
supervisor circuit we have been discussing.

Introducing variability is one essential feature of the supervisor we have been studying
because it corresponds to exploration of the space of network parameters. Another is mod-
ulation of that variability by reward. It will be interesting to see if LMAN is modulated by
reward signals, such as dopamine (Schultz et al., 1997), in a manner consistent with the
proposed scheme.
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