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SUMMARY
Over the course of a lifetime, we process a continual stream of information. Extracted from this stream,mem-
ories must be efficiently encoded and stored in an addressable manner for retrieval. To explore potential
mechanisms, we consider a familiarity detection task in which a subject reports whether an image has
been previously encountered. We design a feedforward network endowedwith synaptic plasticity and an ad-
dressing matrix, meta-learned to optimize familiarity detection over long intervals. We find that anti-Hebbian
plasticity leads to better performance than Hebbian plasticity and replicates experimental results such as
repetition suppression. A combinatorial addressing function emerges, selecting a unique neuron as an index
into the synaptic memory matrix for storage or retrieval. Unlike previous models, this network operates
continuously and generalizes to intervals it has not been trained on. Our work suggests a biologically plau-
sible mechanism for continual learning and demonstrates an effective application of machine learning for
neuroscience discovery.
INTRODUCTION

Every day, a continual stream of sensory information and internal

cognitive processing causes lasting synaptic changes in our

brains that alter our responses to future stimuli. It remains amys-

tery how neural activity and local synaptic updates coordinate to

support distributed storage and readout of information and, in

particular, how ongoing synaptic changes due to either new

memories or homeostatic mechanisms do not interfere with pre-

viously stored information.

Familiarity detection—identifying whether a stimulus has been

previously encountered—is a simple and ubiquitous form of

memory that serves as a useful testbed for addressing these is-

sues. Classical studies have demonstrated that human recogni-

tion memory capacity for images is ‘‘almost limitless,’’ retention

following a power law as a function of the number of items

viewed (Standing, 1973). Theoretical work has shown that the

number of memories stored by a familiarity detection network

depends on the synaptic plasticity rule and can scale proportion-

ally to the number of synapses (Bogacz and Brown, 2003). More

recent behavioral work has further demonstrated an impressive

capacity in a continual setting, the error rate as a function of the

number of intervening items exhibiting a ‘‘power law of forget-

ting’’ (Brady et al., 2008) and theoretical studies showing that

this is achievable by synapses with metaplasticity (Fusi et al.,

2005; Ji-An et al., 2019). Neural signals of visual familiarity
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have been observed as reductions in responses to repeated pre-

sentations of a stimulus, a phenomenon known as repetition

suppression (Grill-Spector et al., 2006; Meyer and Rust, 2018;

Miller et al., 1991; Xiang and Brown, 1998). At the timescales

relevant for this task—one-shot memorization on the order of

seconds and long-term forgetting on the order of days—this is

plausibly caused by depression of excitatory synapses or poten-

tiation of inhibitory ones (Lim et al., 2015).

Previousmodeling work on recognition memory used a prede-

signed architecture and plasticity rule and both empirical and an-

alytic evaluation of performance (Androulidakis et al., 2008; Bo-

gacz and Brown, 2003; Norman and O’Reilly, 2003; Sohal and

Hasselmo, 2000). An emerging approach uses a machine

learning technique known as ‘‘meta-learning,’’ or ‘‘learning how

to learn’’ (Thrun and Pratt, 2012), that uses optimization tools

to rapidly search for mechanisms that artificial neural networks

can use to solve a learning/memory task (Confavreux et al.,

2020; Gu et al., 2019; Jordan et al., 2021; Lindsey and Litwin-Ku-

mar, 2020; Metz et al., 2019; Najarro and Risi, 2021). In contrast

to hand-designed models, meta-learning enables unbiased

exploration of a large family of architectures and plasticity rules.

Importantly, it is possible to impose constraints that ensure bio-

logical plausibility (Bengio et al., 1991).

In this work, we investigate not only ‘‘how’’ memories are

stored—the synaptic plasticity rule—but also ‘‘where’’—the

mechanism for addressing the storage and retrieval locations.
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Figure 1. Continual familiarity detection

task and HebbFF model

(A) The continual familiarity detection task. Given a

continual stream of stimuli xðtÞ, the desired output

is yðtÞ= 1 if the stimulus has appeared previously

and yðtÞ=0 otherwise. For a given dataset, repeat

stimuli always appear at an interval R after their

first presentation. Although the task is continual,

for the purposes of network training, we use a

finite-duration trial of length T[R.

(B) The HebbFF network architecture. A feedfor-

ward layer is endowed with ongoing Hebbian

plasticity, the parameters of which are optimized

using stochastic gradient descent. The hidden

units are linearly read out to produce the network’s

estimate of familiarity byðtÞ.
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Classical models of memory rely on ‘‘content-based address-

ing’’ (Hopfield, 1982), whereby a partial cue elicits recall of the

full memory through recurrent dynamics, but do not explicitly

select which synapses store the memory. On the other hand,

‘‘key-value’’ memory networks in machine learning (Graves

et al., 2014, 2016) store values in a memory matrix indexed

explicitly by keys, analogous to the addressing in a computer’s

random-accessmemory, although suchmodels lack a biological

interpretation (but see Tyulmankov et al., 2021). Our model in-

cludes both a synaptic plasticity rule and an explicit addressing

mechanism.

Positing that the answer to ‘‘when’’ plasticity should occur is

‘‘always,’’ we consider a simple version of ‘‘what’’ to remember:

familiarity. We construct a family of models that recognize previ-

ously experienced stimuli and, importantly, learn and operate

continuously without separate learning and testing phases,

avoiding catastrophic forgetting, a phenomenon in which a

network renders stored information unreadable (Beaulieu et al.,

2020; Parisi, 1986). The capacity of these networks remains con-

stant over time, so they can be continually fed new inputs with no

reduction in steady-state memory performance.

We use a feedforward network architecture with ongoing syn-

aptic plasticity, parameters of which are meta-learned using

gradient descent to optimize continual familiarity detection. Un-

like similar models (Ba et al., 2016; Miconi et al., 2019), to isolate

synaptic plasticity as the unique memory mechanism, we avoid

recurrent connectivity that could store memory through main-

tained neuronal activations. This architecture, unlike recurrent

networks, generalizes naturally over a range of repeat intervals

even if trained on a single interval. We show that an anti-Hebbian

plasticity rule (co-activated neurons cause synaptic depression)

enables repeat detection over longer intervals than a Hebbian

rule and leads to experimentally observed features such as repe-

tition suppression in the hidden-layer neurons. Furthermore, an

addressing function emerges through strong static feedforward

weights, selecting a unique neuron to index the synapses for

storage of a novel stimulus and detection of a familiar one.

RESULTS

Continual familiarity detection task
In our task, a continuous stream of stimuli is presented to the

network (Figure 1A). With probability 1� p, the stimulus at time
t is a randomly generated binary vector xðtÞ, where each compo-

nent is either + 1 or � 1.With probability p, the stimulus is a copy

of the stimulus presented R time steps ago. The output of the

network should be yðtÞ= 0 if xðtÞ is novel and yðtÞ= 1 if it is familiar

(i.e., has appeared previously). We begin by considering familiar-

ity detection for uncorrelated stimuli, but in later sections we

generalize to a task that requires simultaneous classification

and familiarity detection and to a dataset of images (see STAR

Methods).
HebbFF network architecture
To investigate the effectiveness of synaptic plasticity for solv-

ing this task, we use a feedforward neural network with a sin-

gle hidden layer and activity-dependent ongoing Hebbian

plasticity to implement the memory function (HebbFF) (Fig-

ure 1B). We do not include any recurrent connections, to

ensure that memory cannot be stored through persistent

neuronal activity, thus isolating synaptic plasticity as the only

memory mechanism.

In the HebbFF network, a group of hidden-layer neurons with

firing rates given by an N-dimensional vector hðtÞ, receives a

d-dimensional input xðtÞ at time t. The input to each hidden-layer

neuron is weighted by its corresponding synaptic strength and

then transformed into a firing rate through a nonlinear activation

function sð$Þ. The synaptic strength between the postsynaptic

neuron with rate hiðtÞ and the presynaptic neuron carrying the

input xjðtÞ is the ði; jÞ component of an N-by-d matrix that is the

sum of a static matrix W1 and a plastic matrix AðtÞ. Thus, the
firing rate of the hidden layer is given by

hðtÞ = sððW1 + AðtÞÞxðtÞ + b1Þ;

where s is the logistic function applied element-wise and b1 is a

vector representing baseline currents into the hidden layer. The

matrix W1 is fixed after training, and its unconstrained values

are set though optimization. Its structure serves an addressing

function by imposing a unique baseline activity pattern in the hid-

den layer for each input. The plastic matrix AðtÞ is updated at

every time step: its ði; jÞ component decays by a factor 0<l<1

and is incremented by a Hebbian product of the pre- and post-

synaptic activities, hiðtÞxjðtÞ. A plasticity rate parameter

--N<h<N controls the sign and magnitude of this increment. In

matrix form, the synaptic update rule is
Neuron 110, 544–557, February 2, 2022 545



Figure 2. RNN performance on continual familiarity detection

(A) Training an RNN (d = 100 input dimension, N= 100 recurrent units) on a single familiarity detection dataset (T =500 stimulus presentations, repeat interval R =

3). Although the loss (top) approaches 0 and accuracy (bottom) approaches 1 on training data (red), performance on a validation data (blue) with the same

parameters fails to generalize, even when tested in distribution with the same R.

(B) RNN trained with ‘‘infinite data,’’ R=3 (red) or R= 6 (blue). Accuracy (top) and true and false positive probabilities (bottom) shown as a function of the repeat

interval on validation data. RNNs perform well in distribution on datasets with the same repeat interval as used during training but fail to generalize out of dis-

tribution to other repeat intervals.

(C) RNN trained on ‘‘infinite data’’ with both intervals R= 3 and R= 6 interpolates between the intervals but fails to extrapolate.
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Aðt + 1Þ = lAðtÞ+hhðtÞxðtÞT:

Finally, the output of the network byðtÞ is a linear readout of the

hidden layer, and, because the target yðtÞ is binary, we bound

the readout with the logistic function,

byðtÞ = sðW2hðtÞ + b2Þ:

The response of the network is ‘‘familiar’’ if byðtÞ>1=2 and ‘‘novel’’

otherwise. Although in the general case W2 is unconstrained, to

simplify analysis we later consider a uniform readout in which all

entries of W2 are equal, with no appreciable change in

performance.

To construct the network, we use backpropagation through

time (BPTT) to meta-learn the parameters W1; b1; W2; b2; l;

h, which are fixed once training is completed (STAR Methods).

The continual familiarity detection task—the ‘‘learning’’ task—

is then performed by the ongoing synaptic dynamics of AðtÞ,
controlled by the fixed parameters. These dynamics are a bio-

logically plausible mechanism for solving the continual memory

task, but BPTT is simply used as an optimization tool to find suit-

able parameters of the network.
The HebbFF network generalizes both in and out of
distribution
As a benchmark for comparing HebbFF performance, we train a

long short-term memory (LSTM) network (Hochreiter and

Schmidhuber, 1997)—a recurrent neural network (RNN) archi-

tecture well suited for memory performance—on the continual

familiarity detection task. Unlike HebbFF, which stores its input
546 Neuron 110, 544–557, February 2, 2022
history in the plastic synaptic matrix AðtÞ, an RNN uses ongoing

neuronal activity.

If we train the RNN using a single dataset with T = 500 image

presentations (STAR Methods) and a repeat interval of R = 3, it

successfully learns the training set but fails to generalize to

new test sets with the same R (Figure 2A). To fix this, we use

an ‘‘infinite data’’ approach in which we generate a new dataset

for every iteration of BPTT, each with the same value of R = 3.

Trained in this way, the RNN now generalizes in distribution

across datasets with R= 3 (i.e., to datasets drawn from the

same distribution as the training data, which is parameterized

by R) but fails to generalize out of distribution to data with any

other value of R (i.e., to datasets from a different distribution)

(Figure 2B). The same result holds with R= 6 (Figure 2B). We

can further train the RNN with items spaced at intervals of both

R= 3 and R= 6 (the value of R is chosen randomly for each

familiar stimulus rather than being fixed). Although the network

can interpolate between the trained values, it does not extrapo-

late well to larger or smaller ones (Figure 2C). Although it is likely

possible to train the RNN to perform well for multiple values of R

with more complex training schedules, we believe that poor

out-of-distribution generalization is a bottleneck of the RNN

approach.

In contrast, the HebbFF network exhibits both in- and out-of-

distribution generalization. Evenwhen trained on a single dataset

with a fixed repeat intervalR, the network generalizes to new test

sets with the same R (Figure 3A) and even to those with different

R values. Critically, the training procedure is the same as for the

RNN above, but HebbFF successfully learns a qualitatively

different solution because of its inductive bias. Trained with ‘‘in-

finite data’’ (the scheme we use in general), HebbFF generalizes



Figure 3. Hebbian versus anti-Hebbian plasticity and continual operation

(A) Training the HebbFF network ðd = N = 100Þ, as in Figure 2A. Both training and validation loss decrease, indicating in-distribution generalization. Over many

iterations, overtraining occurs because of the use of a single dataset, increasing the final validation loss.

(B) HebbFF, trained as in Figure 2B, shows not only in-distribution generalization to datasets with the same R but also out-of-distribution generalization to data

with any smaller and slightly larger R.

(C) HebbFF with a different initialization converges to an anti-Hebbian learning rule (see also Figure S8) with generalization over a longer R values than Hebbian.

(D) Model from Bogacz and Brown (2003), evaluated on the continual familiarity detection task, varying the length T of the trial. Accuracy (top) is near perfect

regardless of the repeat interval R (blue versus red curve) until the model reaches its capacity (P�z100 for network size d = N = 100) because the model reliably

stores the first P� patterns. Accuracy rapidly drops below chance for T>P� as the model begins to report familiar stimuli as novel (see Figure S2B).

(E) HebbFF network operates continuously. Accuracy is consistent with the generalization curve from (C), with near perfect performance for Rtest = 5 and above

80% forRtest = 20 for any trial length. True and false probabilities (bottom) are better representations as accuracy is artificially higher for small T because of the low

proportion of familiar stimuli.
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to datasets with smaller and larger R (Figure 3B). Matching the

number of dynamic variables rather than the number of hidden

neurons, HebbFF still shows superior generalization compared

with the RNN (Figure S1). This qualitative difference in perfor-

mance suggests that Hebbian plasticity provides a more ‘‘natu-

ral’’ mechanism for familiarity detection.

The generalization performance of HebbFF is due to the fact

that the memory representation of an item does not change
over time, other than being scaled by a factor. A stimulus xðtÞ
is initially stored as the outer product of hðtÞ and xðtÞ, multiplied

by the plasticity rateh. The plastic component of the connectivity

matrix also contains terms arising from previously stored mem-

ories, which for the purposes of this particular stimulus act as ad-

ditive noise ε:

Aðt + 1Þ = hhðtÞxðtÞT + ε
Neuron 110, 544–557, February 2, 2022 547
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As subsequent stimuli are presented, the representation of xðtÞ
maintains the same form, so that k time steps later it is still stored

as the outer product of hðtÞ and xðtÞ, scaled by a factor lk :

Aðt + kÞ= lkhhðtÞxðtÞT + lkε+ ε
0

where further additive noise ε
0 arises from stimuli presented af-

ter xðtÞ.
Unlike HebbFF, RNNs are poor at generalizing across intervals

R because the dynamics of their units allow the memory repre-

sentation of a stimulus to change arbitrarily over time. The

RNN only generates the appropriate representation at the time

when a query is expected, namely, after a delay equal to the

value of R used during training. This makes it difficult to gener-

alize across intervals.

The ‘‘how’’ of synaptic plasticity: storage via an anti-
Hebbian rule
The plasticity rate h in HebbFF can be positive or negative, re-

sulting in either Hebbian or anti-Hebbian plasticity. For the Heb-

bian solution with h > 0, synapses are potentiated in response to

a stimulus. When it is repeated, the hidden-layer activity is higher

because of the increased strength of the synapses storing the

memory. For anti-Hebbian plasticity, h < 0, synapses are

depressed when a memory is stored. In this case, the hidden-

layer activity is lower for a familiar stimulus, consistent with

experimental results of repetition suppression (Grill-Spector

et al., 2006; Meyer and Rust, 2018; Xiang and Brown, 1998).

Furthermore, the meta-learning algorithm is more likely to

converge to the anti-Hebbian solution, especially when trained

with a relatively large repeat interval, even if the initial value of

h is positive, and almost always when the initial value is negative

(Figure S8).

Anti-Hebbian plasticity enables successful familiarity detec-

tion over considerably longer intervals than a Hebbian rule (Fig-

ure 3C). To understand this, note that thememory of a stimulus is

degraded in two ways: plasticity events obscure existing mem-

ories, and plastic weights decay over time. With an anti-Hebbian

plasticity rule, the hidden layer activation hðtÞ is close to zero for

a familiar stimulus. As a result, the plasticity update hðtÞxðtÞT
when the stimulus is repeated is negligible, as if a stimulus

were not presented at that time step. This effectively reduces

the number of plasticity events, and the disruption of existing

memories. As a secondary effect, the smaller number of plas-

ticity events allows a larger l (slower decay rate) to be used while

still controlling the amplitude of plastic weights (Figure S8),

further extending the lifetime of the memory. Because of their

superior performance and consistency with experimental re-

sults, we consider only anti-Hebbian solutions throughout the

following sections.

The ‘‘when’’ of synaptic plasticity: continual learning
without catastrophic forgetting
Previous modeling work using anti-Hebbian plasticity mecha-

nisms for familiarity detection (Bogacz and Brown, 2003)

focused on a paradigm used in classic studies of recognition

memory (Standing, 1973) in which subjects are serially pre-

sented an entire dataset and later asked to identify which
548 Neuron 110, 544–557, February 2, 2022
stimulus is familiar in a two-alternative forced-choice (2AFC)

test. Analogously, this previous modeling work used explicit

‘‘learning’’ and ‘‘testing’’ phases and demonstrated an impres-

sive capacity for recognition memory (Bogacz and Brown,

2003) (Figure S2A). When evaluated on the continual memory

task that we use, the Bogacz-Brownmodel has near perfect per-

formance if the number of stimuli T in the dataset is smaller than

the model’s capacity P�, independent of the value of the repeat

interval R (Figure 3D), as the model successfully stores all T<P�

stimuli. As the dataset size increases, however, the model per-

formance declines because of catastrophic interference (Figures

3D and S2B; STAR Methods). To store additional memories, the

old memories must be removed by resetting the synaptic

weights.

In real-world scenarios, an organism typically does not expe-

rience a dedicated ‘‘learning’’ phase. The answer to ‘‘when’’ syn-

aptic plasticity should occur is ‘‘always.’’ As such, the HebbFF

model operates continually rather than using separate learning

and evaluation phases. Its performance is independent of the

length of the dataset, and it can operate continuously without

any need to reset the synaptic weights. For example, a HebbFF

network trained with R= 5 operates at near perfect performance

irrespective of the duration of the trial T when tested with R= 5

(Figure 3E). Similarly, when tested with R = 20, it operates

continually at near 80% accuracy (Figure 3E), as expected

from the generalization curve in Figure 3C (note that for small T

the accuracy [Figure 3E, top, blue] is transiently elevated

because the fraction of novel stimuli is more than 2
3). In other

words, the model has a moving window in time within which it

can successfully detect a familiar stimulus and forgets old stimuli

gracefully without suffering from catastrophic interference.

The ‘‘where’’ of synaptic plasticity: addressing via
strong feedforward weights
In the HebbFF network, the hidden layer plays a dual role. On one

hand, it must produce a reliable familiarity signal for the readout

to decode. On the other, it must create a robust representation of

the input stimulus during the Hebbian plasticity update. The hid-

den activity is controlled by the fixed parameters W1 and b1, as

well as the plastic matrix AðtÞ. Here, we investigate how W1, b1,

and AðtÞ influence these two aspects of the familiarity detec-

tion task.

To simplify this analysis, we restrictW2 to be a scaled 1 -by-N

matrix of ones, W2 = a2½1; .; 1�, where a2 is a trained scalar.

Similarly, we restrict b1 = b1½1; .; 1�T. As the hidden units

now contribute equally to the readout, they are statistically iden-

tical (although not necessarily independent). Therefore, the rows

ofW1 and AðtÞ are statistically identical, allowing us to meaning-

fully plot histograms of the corresponding input currents. This

choice of output weights does not affect the performance or

memory mechanism (Figure S3).

Networks trained with larger R have sparser hidden unit activ-

ity (Figures 4A–4C): the sparser the activity, the less plasticity is

evoked and thus the longer memories can be retained without

overwriting. In the limiting case we might expect that exactly

one neuron is active for a novel stimulus, and none are active

for familiar stimuli. Associated with this increased sparsity in ac-

tivity, W1 is also sparser for larger R (Figures 4D–4F and S8).



Figure 4. Storage and readout mechanism

(A–C) Hidden-layer activity hðtÞ over 20 consecutive time steps for networks with input dimension d = 25 and N= 25 hidden units, trained on datasets with R=

1; 7; or 14, respectively. Familiar stimuli (black rectangles) cause silencing (i.e., repetition suppression of hidden-layer activity). Activity for novel stimuli becomes

sparser for networks trained with larger R.

(D–F) Static weight matrix W1 of the networks from (A)–(C). The weight matrix becomes sparser (Figure S8) and individual weight magnitudes increase for

networks trained with larger R, enabling sparser activity in the hidden layer for novel stimuli.

(G–I) Distributions of hidden-layer input current due to the static component of the synapses (W1, b1) for the networks from (A)–(C). For networks trained with

largerR, the distribution becomesmulti-modal, with the number of modes equal (approximately) to the number of high-magnitude values per row ofW1, plus one.

Because of the bias, only the rightmost mode has the potential to produce firing rates that are significantly above zero.

(J–L) Distributions of input current into the hidden layer due to the plastic component of the synapsesAðtÞ, for novel (red) and familiar (green) stimuli. We consider

only the trained network from (C), (F), and (I) and evaluate its behavior on test sets with R= 14; 40; or 100, corresponding to perfect, intermediate, and chance

accuracy. The large central mode occurs because of stored stimuli uncorrelated with the input stimulus xðtÞ. In the novel case, the input is uncorrelated with all the

stored stimuli by definition, and thus there is only one mode. Similarly, in the familiar case with a long delay interval R = 100, the stored stimulus has decayed

(legend continued on next page)
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To isolate the effect ofW1 on hidden unit activity, we compute

a histogram of the input current into the hidden layer due to the

non-plastic synapses,W1xðtÞ+b1, across units and across time

(Figures 4G–4I). As R increases, the distribution becomes multi-

modal as a result of the combinatorial structure of the rows inW1

(more evident in the idealized model; see below and STAR

Methods). In general, the number of peaks in this distribution de-

pends on the number of large-magnitude values of W1 per row.

Critically, because of the logistic function nonlinearity, only the

rightmost peak in Figure 4I is large enough to elicit appreciable

activity in the hidden layer. This peak drives the small number

of hidden units that are significantly activated by a novel stim-

ulus. In other words, theW1 matrix acts like an addressing func-

tion to select a small subset of hidden units to store the memory

of a given stimulus.

We next consider the effect of AðtÞ, focusing on the network

trained tomaximumcapacity (Figures 4C, 4F, and 4I) (see Curric-

ulum training and empirical capacity). For a novel stimulus, the

distribution of the input current due to the plastic synapses

AðtÞxðtÞ is unimodal and symmetric about zero (Figures 4J–4L).

For a familiar stimulus, however, there is an additional peak at

approximately lR�1hd. This peak is due to the dot product of

the input vector xðt�RÞ (stored in the matrix AðtÞ aslR�1hhðt �
RÞxðt � RÞT), and the familiar input vector xðtÞ = xðt �RÞ. Impor-

tantly, the neurons that exhibit this behavior are the same ones

active due to W1 when the stimulus was novel. Thus, again,

W1 provides addressing functionality (now indirectly through

its effect on AðtÞ), allowing the system to probe the same neu-

rons not only during storage but also during recall.

Finally, the total hidden-layer input current is the sum of

these two components, ðW1 +AðtÞÞxðtÞ + b1 (Figures 4M–4O).

Comparing Figures 4I and 4O, we see that the large central sym-

metric mode of the AðtÞxðtÞ distribution does not significantly

affect the total hidden-layer input current. Rather, the familiarity

signal arises because the smaller peak of theAðtÞxðtÞ distribution
pushes the rightmost peak of the W1xðtÞ+b1 distribution below

zero (Figure 4M). Anti-correlation between the two input currents

for familiar stimuli (Figures 4P–4R) indicates that this shift is

caused by the input current from the plastic component of the

synapse canceling the input current from the fixed component,

resulting in lower activation (i.e., repetition suppression).

Curriculum training and empirical capacity
A randomly initialized HebbFF network may fail to find a solution

if directly trained with a large value of R (Figure S8). Instead, we

use a curriculum training procedure to bootstrap the optimized

solution. First, the network is trained on data with R = 1,

using the ‘‘infinite data’’ regime. Once the accuracy is above

99%, R is incremented by 1, and training continues on data
sufficiently that its signal is lost. In the case of familiar stimuli presented at shorter

between the input xðtÞ and its copy xðt�RÞ previously stored in the plastic matr

(M–O) Distributions of the total input current into the hidden layer on test sets w

applying the logistic sigmoid nonlinearity. As all the input currents are low for fam

(P–R) Correlation between the input current into the hidden layer from static and

indicate output response errors. For sufficiently small R, the input currents are m

with the distributions of input currents, this indicates that the units receiving positiv

plastic synapses.
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with R = 2. This process continues until R becomes large

enough that the network cannot find a solution with accuracy

above 99% (i.e., if R is not incremented for at least 2 million iter-

ations) (Figure 5A). We thus define the memory capacity Rmax as

the largest value of R for which the familiarity detection accuracy

is above 99%.

We curriculum-train networks of different sizes and plot the

capacity Rmax for each one (Figure 5B). For consistency and

ease of training, we restrict the networks to the anti-Hebbian

solution and use the uniform readout as above. We find that

the capacity depends primarily on the number of synapses,

rather than on the number of pre- or postsynaptic neurons (Fig-

ures 5C and 5D), consistent with previous familiarity detection

results (Bogacz and Brown, 2003). To estimate the scaling,

we compute a linear least-squares fit of logðRmaxÞ as a function

of logðNdÞ. Empirically, we find that the capacity of the network

scales as

Rmaxz0:10ðNdÞ0:79

which is sublinear in the number of plastic input synapses to the

hidden layer, Nd.

In contrast, themodel of Bogacz and Brown (2003) for the non-

continual task has a capacity that is linear in the number of

synapses. To determine whether the difference between the

empirical performance of HebbFF and the Bogacz-Brownmodel

reflects a fundamental limitation in the feedforward architecture,

we developed an idealized version of the model (Figure 6A) that

we could study analytically (STAR Methods).

Idealized model and theoretical capacity
We noted above that the limiting behavior of the network at

maximum capacity appears to have W1 activate just a single

unit for memory storage. We build this limiting behavior into

the idealized model through a specific choice of W1 and b1,

set by design rather than through a training procedure. Specif-

ically, we use the first n � d components of xðtÞ as an identifier

by choosing the first n columns of W1 so that a unique hidden

unit is activated by each possible n -bit combination of these

components (STAR Methods) and set the remaining columns

of W1 to zero. To simplify the model, we do not allow plasticity

to operate on the inputs from these bits and set the first n col-

umns of AðtÞ to zero (Figure 6A). This isolates the addressing

function of the fixed matrix from the memory storage. Further-

more, instead of a sigmoid nonlinearity for the hidden units, we

use a Heaviside step function Qð $Þ. Thus, the hidden layer in

the idealized model is governed by

hðtÞ = QððW1 +AðtÞ ÞxðtÞ + b1 Þ
delay intervals, R= 14 or 40, there is an additional mode due to the correlation

ix AðtÞ.
ith R= 14; 40; or 100. Only the values above zero cause high firing rates after

iliar stimuli (green) for small values of R, there is repetition suppression.

plastic synapse components at each of 20 consecutive time points. Asterisks

ore anti-correlated for familiar stimuli (black circles) than for novel. Combined

e input current from the static synapses receive negative input current from the



Figure 5. Curriculum training and empirical capacity
(A) The value of R used over the course of curriculum training for four different network sizes.

(B) The final value of R after curriculum training (i.e., network capacity) as a function of the number of plastic synapses in the network, plotted on a log-log scale.

The color corresponds to the number of input units as in (D). The least-squares fit (slope k, bias c) indicates that the empirical network capacity scales sublinearly

with the number of synapses.

(C and D) Capacity plotted as a function of the input dimension d and hidden layer sizeN, respectively, holding the other one constant. It primarily depends only on

the number of synapses, rather than on the hidden or input layer sizes.
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For the nonzero entries of AðtÞ, plasticity is the same as in the

trained model, but because the Heaviside function does not

depend on the scale of the input, we can set the plasticity rate

to h= � 1 without loss of generality. The optimal synaptic decay

rate l is computed analytically. A stimulus is considered familiar

if all hidden unit activities are zero and novel otherwise (STAR

Methods).

This idealized model exhibits similar behavior to HebbFF. We

can fit the analytic functional form of the true and false positive

probabilities computed from the idealized model (Figure 6B) to

the corresponding probabilities of HebbFF (Figure 6C). Further-

more, the histograms of inputs to the hidden layer are qualita-

tively similar: W1xðtÞ+b1 has the same multi-modal distribution

with more prominent peaks in the middle (Figures 4I and 6D;

STAR Methods), a bimodal distribution of AðtÞxðtÞ with a large

symmetric central peak and a smaller one corresponding to

the familiarity signal (Figures 4J and 6E), and a similar distribution

of the total input current ðW1 +AðtÞÞxðtÞ +b1 (Figures 4O and
6F). From this, we conclude that the memory storage and

readout mechanisms are analogous in themeta-learned HebbFF

network and the idealized model.

Finally, the memory capacity of the idealized model can be

computed analytically (STARMethods). As in the Bogacz-Brown

model (2003), the capacity is proportional to the number of syn-

apses Nd. There are several possible reasons for the discrep-

ancy between the analytic capacity, as well as that of the

Bogacz-Brown model, relative to the empirical capacity for

HebbFF. First, the idealized HebbFF model uses a dedicated

set of synapses through the fixed W1 matrix, and the Bogacz-

Brownmodel selects the units that have the highest input current

implicitly through inhibitory competition. Both of these are dedi-

cated addressing functions for the hidden layer, but meta-

learned HebbFF must multiplex this functionality with memory

storage, leading to correlations between the hidden-layer input

currents from the plastic and fixed synapse components

(Figure S4A).
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Figure 6. Idealized model

(A) The idealized HebbFF network architecture. The input xðtÞ is effectively split into two sections of size n and D=d � n that serve as inputs into separate static

and plastic synaptic matricesW1 and AðtÞ, respectively (STARMethods). The hidden layer size isN= 2n and output is byðtÞ=1 whenever any of the hidden units is

active :

(B) The analytic calculation of network performance (solid line) matches simulation results for the idealized network (x’s), shown for two different network sizes

(red, blue).

(C) A least-squares fit of the analytic performance curve of the idealized network to a trained HebbFF network of the same size for two network sizes. The idealized

network has similar performance to the HebbFF model if its decay rate and bias are scaled appropriately: lz0:986; b1z� 4:771 (for all units) for d = 200; N =

32, and lz0:993; b1z� 4:771 for d = 200; N = 32.

(D–F) Same as Figures 4L, 4J, and 4M but for the idealized network (D = 400; N = 32; R = 300).
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In addition, replacing the logistic function with a Heaviside

function means that familiar stimuli truly generate no plasticity

in the idealized model, reducing overwriting at the cost of not re-

inforcing partially decayedmemories (Figures S4B and S4C). For

the same reason, in contrast to HebbFF, the idealized model

achieves maximal plasticity for any suprathreshold level of input

to a hidden layer unit.

Finally, training the HebbFF model may lead to specialized

solutions for small d and N that have better performance than

that predicted by the asymptotic analysis. Similarly, training

may not converge to the optimal solution for large d and N

because it requires the use of very long repeat intervals R.

This means the dataset size T must be very large to include

a sufficient number of familiar examples, which may lead to

practical issues such as vanishing gradients. Thus, the empir-

ical capacity may scale sublinearly with the number of synap-

ses because of over-performance at low R, under-performance

at high R, or both.
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HebbFF recapitulates neural data from inferotemporal
cortex
We next compare the optimized HebbFF model with experi-

mental results. Meyer and Rust (2018) recorded neurons from

the inferotemporal (IT) cortex of monkeys performing familiarity

detection and compared the quality of two decoders in predict-

ing behavior from neural data as a function of neural population

size. The authors considered a ‘‘spike count classifier’’ (SCC)

decoder, which amounts to comparing a simple average of

neuronal firing rates to a threshold, as well as a Fisher linear

discriminant (FLD), which instead considers a weighted average,

with weights computed from the data.

We perform a similar analysis. We first construct an FLD

decoder of the hidden unit firing rates and rank the units in

reverse order of their FLD readout weights (i.e., units with the

most negative weights are top ranked; STAR Methods). We

then consider decoders that use increasingly larger subsets of

hidden units, adding them according to their ranking. As in the



Figure 7. Comparison with IT cortex data

(A) Left: neurons from the IT cortex used to predict

the behavioral outputs of a monkey performing

continual familiarity detection, decoded using the

Fisher linear discriminant (FLD; blue) or spike

count classifier (SCC; red). Right: units from the

hidden layer of a trained HebbFF network (trained

with unconstrainedW2) used to decode familiarity

with SCC or FLD. In both cases, the number of

neurons/units available to the decoder was varied,

added in order of increasing FLDweight. While the

FLD decoder accuracy saturates, the SCC

decoder accuracy peaks and declines as more

neurons/units are included in the decoder.

(B) Distribution the FLD decoder output for IT

cortex neurons (left) and HebbFF hidden units

(right) for familiar stimuli at varying delay intervals.

In both cases, the distribution shifts toward lower

values as delay interval increases. For HebbFF,

the distribution gets narrower for shorter delay

intervals because of saturation in the hidden layer

units.

(C) Distribution of the FLD decoder weights for

decoding IT cortex data (left) or HebbFF hidden

unit activity (right). In both cases, the majority of

output weights are negative.

(D) Left: measured reaction time as a function of

delay interval for correct and error trials (red, blue

curves) in monkeys performing the continual fa-

miliarity detection task. Black lines indicate reac-

tion times predicted using strength theory anal-

ysis. Right: HebbFF predicted reaction times using

analogous strength theory analysis (STAR

Methods). Both result in a qualitatively similar x-

shaped pattern. Plots on the left side of (A)–(D)

adapted from Meyer and Rust (2018).
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experimental data, performance saturates for the FLD and de-

clines for the SCC readout beyond a certain number of decoded

units (Figure 7A), as some of the units do not provide a reliable
N

signal of familiarity. Including them hurts

performance of the SCC decoder, but

because the FLD readout weight for

these units is close to zero, they do not

alter its familiarity detection performance.

The unreliable units occur in HebbFF

because of suboptimal training. In the IT

cortex, they are possibly due to perform-

ing an unrelated task. We explicitly

consider the latter scenario by training

our network to perform binary classifica-

tion in parallel with familiarity detection,

reading out both signals from the same

set of hidden units (STAR Methods). As

a result, two sub-populations of hidden

units emerge: one for classification and

one for familiarity detection (Figure S5E),

the classification units degrading the

SCC readout as expected. All other re-

sults in this section remain unchanged

(Figures S5A–S5D).
Comparing the experimental and model distributions of

readout activity shows a qualitatively similar pattern for outputs

to novel and familiar stimuli (Figure 7B). Both distributions shift
euron 110, 544–557, February 2, 2022 553
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toward smaller values asR increases and familiar stimuli begin to

appear novel. The fact that the distribution of outputs becomes

narrower for HebbFF as R decreases, unlike in the data, may

be due to repetition suppression causing hidden units to have

near zero responses for highly familiar (low R) stimuli, thus

causing the readout distribution to cluster around its minimal

value. On the other hand, biological neurons that exhibit repeti-

tion suppression may never be fully silenced, for example, if it

takes multiple repetitions to achieve maximal familiarity or if neu-

rons are multiplexed with another task that requires a baseline

level of activity. Furthermore, as in the data, the distribution of

readout weights is biased toward negative values (Figure 7C).

Finally, using a similar ‘‘strength theory’’ analysis as in the

experimental results (Meyer and Rust, 2018; Murdock, 1985),

which suggests that reaction times are inversely proportional to

the distance of the readout from the threshold, we can qualita-

tively reproduce the x-shaped reaction time curves seen experi-

mentally. We used the same proportionality constant determined

experimentally to compute network ‘‘reaction times’’ (Figure 7D).

Familiarity detection of images
To validate the HebbFF model in a more realistic scenario, we

evaluate its performance on images. As a stand-in for the pro-

cessing done by the visual stream, we use a pre-trained convolu-

tional neural network and down-sample its output, either by sub-

sampling and binarizing (Figures 8A and 8B) or by introducing a

trainable intermediate layer (Figure S6A). These two down-sam-

pling approaches change the statistics of the inputs to HebbFF,

either by introducing correlations (Figure 8C) or by having them

be real-valued vectors (Figure S6B). Interestingly, in the latter

case, the network learns an uncorrelated representation auto-

matically (Figure S6C), which further supports storing uncorre-

lated stimuli.

These networks have similar features to those trained on un-

correlated binary vectors. For binarized inputs, the W1 matrix

has a similar structure (Figures 4F and 8D), the hidden-layer ac-

tivity is sparse (Figures 4C and 8E), and the hidden unit input cur-

rent distributions have similar shapes (Figures 4I, 4J, 4M, 7B, and

8F–8I), but there is a slight drop in performance due to correla-

tions (Figure 8J). For real-valued inputs, although its structure

is different, the W1 matrix still acts as a addressing function to

select a unique neuron in the hidden layer (Figure S6E) that is

then suppressed for a familiar stimulus through the AðtÞ matrix

(Figures S6G and S6H). The network maintains its generalization

performance (Figure S6J). See STAR Methods for details.

DISCUSSION

In answer to the question of ‘‘how’’ memories are stored, we find

that anti-Hebbian plasticity, in which neuronal co-activation

causes synaptic depression (this may be also interpreted as

potentiation of inhibitory synapses; Schulz et al., 2020), is a bet-

ter storage mechanism for familiarity detection than Hebbian. An

anti-Hebbian rule generalizes better, has a larger capacity, and is

discovered by meta-learning more frequently and reliably.

Although this result is consistent with previous work (Bogacz

and Brown, 2003), the underlying reasons are different. Bogacz

and Brown (2003) showed that in a non-continual version of
554 Neuron 110, 544–557, February 2, 2022
the familiarity detection task, an anti-Hebbian plasticity rule

leads to a larger storage capacity, although this advantage

held only in the case of correlated inputs. In their case, the

anti-Hebbian rule automatically suppresses common input fea-

tures, effectively storing only the uncorrelated components,

leading to an increased capacity. In contrast, anti-Hebbian

HebbFF shows an advantage even for uncorrelated inputs in

the continual task. This is due to an effective decrease in the

number of plasticity events; a synaptic update is weak for a

familiar stimulus because the postsynaptic activity is low, lead-

ing to smaller updates that are less disruptive to stored

memories.

Equally important is the question of ‘‘where’’ memories are

stored. HebbFF explicitly selects storage locations through an

addressing function implemented by strong feedforward

weights W1, independent of the previously stored memories

AðtÞ. By inducing hidden-layer activity (typically a single active

neuron), W1 selects only those afferents for storing a novel

memory. This is in contrast to implicit addressing through recur-

rent inhibition in a previous anti-Hebbian model (Bogacz and

Brown, 2003) which selects 50% of hidden-layer neurons.

Although much experimental and theoretical work has been

devoted to elucidating the plasticity rules used in memory stor-

age, our work highlights the equal importance of studying the ad-

dressing functions of neuronal circuits as well.

Critically, unlike classical models, these answers emerged

from meta-learning. The architectural features were not due

to decisions made by the modeler but rather discovered

through optimization. Although our particular meta-learning al-

gorithm, BPTT, does not easily map onto a biological mecha-

nism, we can nevertheless interpret it as a stand-in for struc-

tural changes over long timescales: an addressing function

developing in a newborn’s brain over the first years of her life

or a plasticity rule emerging within a species across genera-

tions. Evolutionary strategies for meta-learning (Confavreux

et al., 2020; Jordan et al., 2021; Najarro and Risi, 2021) imply

the latter interpretation. In contrast, the plasticity rule itself is

a biologically realistic mechanism for learning over short time-

scales: seconds or minutes to store a memory that may be

retrieved throughout a lifetime.

Thus, the HebbFF model predicts that there should be two

populations of synapses: a small set of slow-varying or fixed syn-

apses for addressing the memory neurons (the hidden layer of

HebbFF) and a larger set of highly plastic synapses for encoding

memories.

We also make a more quantitative experimental prediction.

Although it is obvious that the true positive rate should decrease

with longer delay intervals R, we also observe that the false pos-

itive rate slightly increases (Figure S7A). Neither the Hebbian

mechanism nor the RNN trained on a singleR show this behavior

(Figures S7B and S7C). If biological networks implement famil-

iarity detection through an anti-Hebbian plasticity mechanism,

we expect to see the same effect. Note, however, that anti-Heb-

bian plasticity is merely sufficient, not necessary, for this result,

so the converse may not be true (Figure S7D).

There are experimental results that the HebbFF model does

not capture. For example, data from human subjects show a

very slow decrease in performance as a function of R that begins



Figure 8. HebbFF performance on real-world images

(A) Network architecture for familiarity detection of real-world images. The activity of the penultimate layer of a convolutional neural network (ResNet18, pre-

trained on ImageNet) is down-sampled and passed to the HebbFF network (d = 50; N = 16) for familiarity detection. Only the HebbFF portion of this network is

trained, via curriculum training.

(B) Distribution of inputs xðtÞ to HebbFF. After down-sampling by extracting the first 50 units of the CNN, the activity is centered at zero and binarized.

(C) Histogram of the correlations between all pairs of input stimuli xðtÞ: On average (vertical dashed line) the correlation is slightly positive.

(D–H) Same as Figures 4F, 4C, 4I, 4J, and 4M, respectively (Rtrain = Rtest = 12).

(I) Distribution of network outputs ŷðtÞ: for novel (red) and familiar (green) stimuli

(J) Generalization performance, compared with a network of the same size trained on uncorrelated binary random vectors, is lower because of correlations in the

input images.
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at relatively small value (Brady et al., 2008). In contrast, HebbFF

has near perfect performance for all R<Rmax, and then perfor-

mance drops off quickly. However, it is likely that errors in the ex-

periments do not reflect limitations on recognition memory but

rather are due to factors such as fatigue and lack of attention

that were not included in the model.
Finally, along with other recent applications of this technique,

our work demonstrates the utility of meta-learning as a tool

for neuroscience discovery. We used meta-learning to optimize

a network architecture and plasticity rule that solves the

continual familiarity detection task, contrasted it with an alter-

native suboptimal solution, and subsequently used analytic
Neuron 110, 544–557, February 2, 2022 555
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methods to understand its mechanism. A similar approach can

be used for other networks, plasticity rules, datasets,

and tasks.
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METHOD DETAILS

Continual familiarity detection task
We consider a continual familiarity detection task (Figure 1A) in which a stream of stimuli is presented to a network. With probability

1� p, the stimulus at time t is chosen as a randomly generated d -dimensional binary vector xðtÞ, where each component is either + 1

or �1 (note that for sufficiently large d; spurious chance repeats are extremely unlikely). With probability p, the stimulus is a copy of

the stimulus presented R time steps ago, so that xðtÞ = xðt � RÞ. However, we ensure that a stimulus is repeated at most once so, if

xðt�RÞ is already a repeat, i.e., xðt �RÞ = xðt � 2RÞ, a new xðtÞ is generated. As a result, the fraction of novel stimuli, which we call f,

is not equal to 1� p, but rather f = ð1 =1 +pÞ. We use p = ð1 =2Þ, so f = ð2 =3Þ. The output of the network should be yðtÞ= 0 if xðtÞ is
novel and yðtÞ= 1 if it is familiar, i.e., has appeared previously.

The accuracy of the network (Pcorrect, the probability of correctly responding to a stimulus) depends on two factors: the true positive

rate (PTP, the probability of correctly reporting a repeated stimulus as ‘‘familiar’’), and the false positive rate (PFP, the probability of

incorrectly reporting a novel stimulus as ‘‘familiar’’). These two factors are weighted by the fraction of novel stimuli f, so that

Pcorrect = ð1 � fÞPTP + fð1 � PFPÞ. Through our choice of loss function (next section), we are effectively training the networks to maxi-

mize accuracy, so the ‘‘chance’’ level performance is f (for f>ð1 =2Þ), which a network can achieve by reporting all stimuli as novel

(PTP = PFP = 0Þ.
In our paradigm, a given dataset has a single repeat intervalR, which differs slightly from previously studied experimental paradigms

(Brady et al., 2008;Meyer andRust, 2018). However,we evaluate performance onmultiple datasetswith various values ofR. For testing,

this isanalogous toevaluatingasingledatasetwithmultiple repeat intervals andcomputingaccuracy for each interval separately.Weuse

this approach because it allows us to test generalization by training on one value ofR and testing on others. It also allows us to train the

network to its maximal capacity by gradually increasing R during ‘‘curriculum training,’’ and simplifies analytic calculations.

HebbFF and RNN training
To set the fixed HebbFF parameters W1; b1; W2; b2; l;h, as well as the RNN weight and bias matrices, we use the PyTorch imple-

mentation of the Adamoptimizer with the suggested default hyperparameters (Kingma andBa, 2017). For a single trial, we use a data-

set containing T stimuli, with familiar ones appearing at a repeat interval R. We present stimuli to the network sequentially, and

compute the binary cross-entropy loss

L=
1

T

XT
t =1

yðtÞlogbyðtÞ+ ð1� yðtÞÞlogð1� byðtÞÞ
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Since this is a dynamic task (the state of the network at time t + 1 depends on the state at time t, either through recurrent activity in

the RNN or through ongoing plasticity in HebbFF), backpropagation through time is used to compute the gradient of the loss with

respect to the parameters.

For each trial, we either use the same pre-generated length- T dataset, or we generate a new length-T dataset using the same

repeat interval R. We refer to the latter case as the ‘‘infinite data’’ training regime since the sample space is much larger than the

network would explore during training. Note that in the infinite data regime, we do not consider a validation dataset, since the training

set is new every time and the training accuracy is therefore the same as the validation accuracy. In both cases, one trial corresponds

to one step of gradient descent. To train the HebbFF network, the plastic matrix AðtÞ is reset to a matrix of zeros at the start of each

trial. Similarly, when training the RNN, hidden unit activity is reset to zero. In practice, the plastic matrix of HebbFF reaches its steady

state distribution quickly and the transient does not contribute significantly to the gradient, so any reasonable initialization can

be used.

Bogacz-Brown (Bogacz and Brown, 2003) model implementation
To validate it on the (non-continual) two-alternative-forced-choice (2AFC) familiarity detection task, we implement the anti-Hebbian

model as described by Bogacz and Brown (Bogacz and Brown, 2003), with the exception that the distribution of weights in the plastic

weight matrix must be normalized such that its variance is equal to ð1 =NÞ, rather than unit variance as stated in the paper. In the

encoding phase, the network is presented a sequence of P random patterns. In the testing phase, it is shown the original P patterns,

as well as P novel ones. Critically, there are no plastic updates in the testing phase. A stimulus is reported as ‘‘familiar’’ if the output

unit activity is below the mean across all 2P test patterns and ‘‘novel’’ otherwise. We see that this model performs well on the 2AFC

task with a range of plasticity rates h (Figure S2A), so we arbitrarily choose h= 0:7 to test its performance on the continual task.

The continual task, unlike the 2AFC task, does not have an equal proportion of novel and familiar stimuli since we ensure that a

stimulus is repeated at most once. So, we set the readout threshold such that an item is considered novel if it is in the f th quantile

of output unit activity for that trial, where f is the fraction of novel stimuli in the trial. This ensures that the fraction of stimuli reported

as ‘‘novel’’ is equal to the true fraction of novel stimuli. In the case of equal proportions of novel and familiar stimuli, this reduces to the

threshold being equal to the mean of the output unit activity for that trial.

Finally, note that unlike in the 2AFC task (Figure S2A), the performance of this model does not go to chance levels for large dataset

sizes T in the continual task (Figure 3D). Rather, the true positive rate goes to zero and the false positive rate isz0:5, so accuracy isz
0:33. The reason for this difference is that the second presentation of a stimulus in the continual task causes an additional plasticity

event, unlike the 2AFC taskwhere the test phase is offline. As a result, for datasetsmuch larger than the network capacity T[P�, the
output unit activity for familiar stimuli becomes larger than the activity for novel stimuli (Figure S2B).

Training FLD and SCC decoders
To construct the Fisher linear discriminant (FLD) and spike count classifier (SCC) decoders, we first generate a dataset of length

T = 1000. To better match the experimental dataset (Meyer and Rust, 2018), we use multiple values of R in this single stream. For

each familiar stimulus, the value of R is drawn uniformly at random from 34 unique values, log-spaced from 1 to 100 (in practice,

the results are qualitatively the same regardless of the number of items, the range, or whether the spacing is linear or logarithmic).

We evaluate the trained network on this dataset and use the firing rates of the hidden layer to perform analyses analogous to those

reported in (Meyer and Rust, 2018).

We compute the readout weight and bias terms for the FLD decoder as

WFLD
2 = S�1ðhnov �hfamÞ; bFLD

2 = �WFLD
2 $

1

2
ðhnov + hfamÞ

where hnov and hfam are the average firing rates of the hidden layer for novel and familiar stimuli, respectively, and the mean covari-

ance matrix is calculated as

S =
Sfam +Snov

2

where Sfam and Snov are the covariance matrices of the firing rates of the hidden layer for familiar and novel stimuli, respectively. The

SCC decoder is a simple weighted average

WSCC
2 =

1

N
ðhnov �hfamÞ; bSCC

2 = �WSCC
2 $

1

2
ðhnov + hfamÞ

To get the ranking of the units for both decoders, we sort their readout weights and consider themost negative weights as the highest

ranked. Note that for both decoders, the sign of the weights is flipped compared to (Meyer and Rust, 2018), and high-ranked units

have themost negative weights rather than positive. This is due to the fact that we ask the network to label familiar stimuli as yðtÞ = 1,

whereas (Meyer and Rust, 2018) readout a familiar stimulus as yðtÞ = 0. The two cases are symmetric and this does not change the

results.
Neuron 110, 544–557.e1–e8, February 2, 2022 e2
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Simultaneous classification and familiarity detection
IT cortex encodes object identity as well as familiarity (Lehky and Tanaka, 2016; Lueschow et al., 1994). To match this dual function-

ality, we augment familiarity detection with object classification. We first create a large pool of random vectors and randomly assign a

binary label to each one. We then generate a familiarity detection dataset as before, except that each novel input is drawn from this

pool (without replacement) rather than being generated anew. In addition to the scalar readout of familiarity, the network must now

report the class of the stimulus through a second binary output. Critically, both outputs are read out from the same hidden layer

activity.

To train the HebbFF network on the augmented familiarity detection/object classification task, we simply sum the cross-entropy

losses from the classifier and familiarity output units:

L =
1

2T

XT
t = 1

X2
a= 1

yaðtÞlogbyaðtÞ+ ð1� yaðtÞÞlogð1� byaðtÞÞ

For every trial, we draw a new dataset from the pre-generated pool of stimuli. The class of each stimulus remains the same across

datasets, but the ordering and repeats are chosen randomly each time. Although the network will have seen all of the stimuli during

training in order to learn their classes, we can test generalization performance on the familiarity subtask by varying R and generating

previously unseen permutations of the stimuli.

The augmented task could be solved by having all the neurons multiplexed to encode both familiarity and object identity (Meyer

and Rust, 2018). Alternatively, the neurons could split into two subpopulations, one of which detects familiarity and the other clas-

sifies objects (Rutishauser et al., 2015). We find that the HebbFF model converges to this second solution, an even split between

familiarity and classifier units, as evident from inspecting the W1 matrix (Figure 7E). Consistent with this, the capacity of the classi-

fier-augmented HebbFF with 50 hidden units (Rmaxz13) is approximately the same as the original network with 25 units (Rmaxz 14).

In accord with this split, SCC decoder performance peaks in the split-task network when half of the top-ranked units are included

(Figure S5D) because including units responsible for object identity but not familiarity degrades the familiarity readout. The other sim-

ilarities to experimental results discussed in the previous section also hold for the task-augmented network (Figure S5).

Idealized model analytic capacity derivation
For notational simplicity, we only consider the nonzero submatrices ofW1 andAðtÞ, each of which acts on its corresponding subset of

the input vector xðtÞ: Thus, equivalently, input layer of the idealized network is a d -dimensional vector split into two parts xðtÞ =

½xWðtÞ; xAðtÞ�, of dimension n and D respectively (d = n+D). The firing rate of the hidden layer is given by

hðtÞ = QðW1xWðtÞ + AðtÞxAðtÞ + b1Þ
for an N3n matrix W1, an N3D matrix AðtÞ, and an N31 vector b1. In other words, the firing rate of the ith hidden unit is

hiðtÞ = Q

 Xn
j = 1

WijxjðtÞ +
XD
k = 1

AikðtÞxn+ kðtÞ + b

!
(Equation 1)

for i = 1; .; N, whereQð $Þ is the Heaviside step function, i.e.,QðzÞ= 0 for z<0 and 1 for zR0. We fix the value of b to be the same for

all i. As before, the elements of xðtÞ are + 1 or �1 with equal probability. We would like to specify the network parameters such that

exactly one hidden neuron is active for a novel stimulus and none for familiar, which will serve as the familiarity readout mechanism.

The N3nmatrixW1 is designed such that the vectorW1xWðtÞ has exactly one maximal entry given any such xðtÞ. Importantly, this

matrix must act like a hash function such that different values of xWðtÞ result in different entries of W1xWðtÞ attaining the maximum

value. One such W1 is one whose rows enumerate all of the binary length- n strings consisting of entries + 1 and � 1. This sets the

number of rows N to be equal to the total number of such strings, N = 2n. To set the overall scale of the input current (the term inside

the nonlinearity), we scale this matrix by a factor K, to be determined later. For example, if n = 3,

W1 = K

266666666664

+ 1 + 1 + 1
+ 1 + 1 �1
+ 1 �1 + 1
+ 1 �1 �1
�1 + 1 + 1
�1 + 1 �1
�1 �1 + 1
�1 �1 �1

377777777775
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Thus, we have
Pn
j =1

WijxjðtÞ=Kn for exactly one value of i, specifically the row whereWij = xjðtÞ for all j. This is the unique maximal value

and will correspond to a different row for each instance of xWðtÞ. Subsequently, Pn
j = 1

WijxjðtÞ=Kðn�2Þ for n values of i, specifically

those where WijsxjðtÞ for exactly one j, and so on. This structure explains the multi-modal distribution of W1xWðtÞ+b1 in Figure 6D

and by extension that of W1xðtÞ+b1 in Figures 4G–4I.

Assuming that the vector AðtÞxAðtÞ is zero-mean with sufficiently small variance (this will be made rigorous shortly), we can now

choose the scalar offset b such that exactly one element of hðtÞ is equal to 1 and all others are zero.

The N3Dmatrix AðtÞ is updated at every timestep by Aðt + 1Þ = lAðtÞ� hhðtÞxAðtÞT, where the plasticity rate h is now restricted to

be positive, corresponding to an anti-Hebbian learning rule. Considering one entry in this matrix and unrolling this recurrence, we

find that

Aikðt + 1Þ= lAikðtÞ � hhiðtÞxn+ kðtÞ

= lt + 1Aikð0Þ � h
Xt

t0 = 0

lt�t0hiðt0Þxn+ kðt0Þ

z� h
Xt

t0 = 0

lt�t0hiðt0Þxn+ kðt0Þ

where the last equality holds if we assume that the network is in steady-state, so t is large, i.e., t/N, and therefore lt + 1Aikð0Þ/ 0.

We can now consider themiddle term of Equation 1, which we denote by εiðtÞ. We consider it as a random variable and compute its

mean and variance. By definition, we have

εiðtÞ =
XD
k = 1

AikðtÞxn+ kðtÞ =
XD
k = 1

 
� h

Xt�1

t0 = 0

lt�1�t0hiðt0Þxn+ kðt0Þ
!
xn+ kðtÞ
= � h
Xt�1

t0 = 0

lt�1�t0hiðt0Þ
XD
k = 1

xn+ kðt0Þxn+ kðtÞ (Equation 2)

In the case where xðtÞ is novel, xn+ kðt0Þ and xn+ kðtÞ are independent Bernoulli random variables that take on values ± 1 with prob-

ability 1=2. Thus, Xkðt0Þ= xn+ kðt0Þxn+ kðtÞ is also a Bernoulli random variable with the same distribution, zero mean and unit variance, so

εiðtÞ = � h
Xt�1

t0 =0

lt�1�t0hiðt0Þ
XD
k = 1

Xkðt0Þ

Since the entries of xðtÞ are independent by definition, the Xkðt0Þ are also independent across k, so summing over these indices, the

variances add. Therefore, Xðt0Þ= PD
k = 1

Xkðt0Þ is a random variable with mean 0 and variance D, and

εiðtÞ = � h
Xt�1

t0 = 0

lt�1�t0hiðt0ÞXðt0Þ

Next, we need the statistics of the term hiðt0Þ. Since it is a function of the random variable xðtÞ, we also consider it as a random var-

iable. Let feff denote the fraction of stimuli reported as ‘‘novel’’ by the network. Note that there are two ways for a network to report a

stimulus as ‘‘novel’’ – by correctly identifying a novel stimulus (‘‘true negative’’), or incorrectly identifying a familiar one (‘‘false nega-

tive’’) – so if we let f denote the true fraction of novel input stimuli, we have

feff = PTNf + PFNð1� fÞ= ð1�PFPÞf + ð1�PTPÞð1� fÞ
where PTN; PFN;PTP and PFP are the true negative, false negative, true positive, and false positive rates, respectively. Since by design

there is exactly one hidden unit active for a novel stimulus, we have hiðt0Þ= 1 with probability feff
N , and hiðt0Þ= 0 with probability 1�

ðfeff =NÞ. So, hiðt0Þ is a Bernoulli random variable with mean ðfeff =NÞ and variance ðfeff =NÞð1 � ðfeff =NÞÞ. Now, we let Hiðt0Þ =
hiðt0ÞXðt0Þ, so

εiðtÞ = � h
Xt�1

t0 = 0

lt�1�t0Hiðt0Þ

Although hiðt0Þ is, in principle, a function of xðt0Þ, we assume they are independent. Since Xðt0Þ is zero-mean, the mean of Hiðt0Þ is also
zero. Using the identity varðXYÞ = varðXÞvarðYÞ+ varðXÞE2½Y �+ varðYÞE2½X�, which holds for independent random variables X and Y ,
Neuron 110, 544–557.e1–e8, February 2, 2022 e4



ll
Article
we have that the variance of Hiðt0Þ is feffD
N . Finally, for convenience we can rewrite this as

εiðtÞ = � h

ffiffiffiffiffiffiffiffiffi
feffD

N

r Xt�1

t0 = 0

lt�1�t0xiðt0Þ

where xiðt0Þ is a zero-mean, unit-variance random variable. Furthermore, we now see that by the Central Limit Theorem εiðtÞ is a

Gaussian random variable since we are considering the steady-state performance at large t, so we can take t/N.

We can now compute the mean and variance of εiðtÞ. First, since xn+ kðtÞ is zero-mean and independent of AikðtÞ,

E½εiðtÞ� = E

"XD
k = 1

AikðtÞxn+ kðtÞ
#
= 0

To compute the variance,

varðεiðtÞÞ= E
�
ε
2
i ðtÞ
�� E2½εiðtÞ�= E

�
ε
2
i ðtÞ
�

= E

" 
� h

ffiffiffiffiffiffiffiffiffi
feffD

N

r Xt�1

t0 = 0

lt�1�t0xiðt0Þ
!2#

= E

" 
� h

ffiffiffiffiffiffiffiffiffi
feffD

N

r Xt�1

t0 = 0

lt�1�t0xiðt0Þ
! 

� h

ffiffiffiffiffiffiffiffiffi
feffD

N

r Xt�1

t00 = 0

lt�1�t00xiðt00Þ
!#

= h2feffD

N

Xt�1

t0 = 0

Xt�1

t00 =0

lt�1�t0lt�1�t00E½xiðt0Þxiðt00Þ�

In general, we have E½xiðt0Þxiðt00Þ�= 1 for t0 = t00 since xiðt0Þ is a zero-mean, unit-variance random variable. For t0st00, we again make a

simplifying independence assumption. In principle, xiðt0 0Þ is not independent of xiðt0Þ since hiðt00Þ depends on hiðt0Þ for t00> t0 through the
memory stored in the AðtÞmatrix. This dependence, however, is sufficiently weak, so we let E½xiðt0Þxiðt00Þ�= 0 for t0st00: As a result, the

double-sum collapses and we have

varðεiðtÞÞ = h2feffD

N

Xt�1

t0 =0

l2ðt�1�t0 Þ = h2feffD

N

1� l2t

1� l2

where the second equality comes from the standard geometric series. As before, since we are considering the steady-state with t/

N, we have g2t/0, so

varðεiðtÞÞ = h2feffD

N

1

1� l2

Thus, for a novel input xðtÞ we can write

εiðtÞ = xih

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
feffD

Nð1� l2Þ

s
(Equation 3)

for all i, where xi is a zero-mean, unit-variance Gaussian random variable, since εiðtÞ is Gaussian.

For a familiar stimulus, where xðtÞ = xðt � RÞ, clearly xn+ kðt0Þ and xn+ kðtÞ are no longer independent for t0 = t� R. Thus, we

consider this term separately, rewriting the sum in Equation 2 as

εiðtÞ= � hlt�1�ðt�RÞhiðt � RÞ
XD
k = 1

xn+ kðt � RÞxn+ kðtÞ � h

X
t0 = 0

t�1

t0st�R

lt�1�t0hiðt0Þ
XD
k = 1

xn+ kðt0Þxn+ kðtÞ

Assuming no errors, by design, hiðt�RÞ= 1 for exactly one neuron i, since the stimulus at time t � R was guaranteed to be novel (we

enforce that a stimulus is repeated at most once in this task). We consider the statistics of εiðtÞ for this particular neuron. In the first

term, the sum
PD
k =1

xn+ kðt�RÞxn+ kðtÞ=D since by assumption xn+ kðtÞ= xn+ kðt�RÞ for all k. The second term has the same distribution

as the one for a novel input since we have only removed one term from the sum and t is large. Thus, for a familiar stimulus we canwrite

εiðtÞ = � hlR�1D+ xih

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
feffD

Nð1� l2Þ

s

for exactly one value of i, where xi is a zero-mean, unit-variance random variable as before. For all other values of i, Equation 3 holds.
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Having established the statistics of the hidden layer input currents for a novel and a familiar stimulus, we can now write down the

conditions for the model to work, use them to find the optimal values of the parameters and calculate the true positive and false pos-

itive probabilities, and compute the capacity – the largest value of R for which the error is below a predetermined threshold. First, to

ensure that exactly one unit is active for a novel stimulus (true negative), since we are using a step function nonlinearity, wemust have

the largest input current take on a positive value (since xi is an identically distributed standard normal random variable for every

neuron, for simplicity we suppress the index i),

Kn + xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
feffD

Nð1� l2Þ

s
+b>0

and second-largest to be below zero,

Kðn� 2Þ + xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
feffD

Nð1� l2Þ

s
+b<0

Second, to ensure there are no units active for a familiar stimulus (true positive),

Kn� hlR�1D+ xh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
feffD

Nð1� l2Þ

s
+b<0

For sufficiently large R, i.e., if hlR�1D<2K, the third of these conditions implies the second. Since we are interested in maximizing R,

we only consider the first and third conditions. Furthermore, note that these conditions are overparameterized. If we divide all three

equations by h (e.g., let k = K
h
; B = b

h
), we can eliminate this free parameter. In other words, for any value of h we can scale K and b

proportionally to satisfy the conditions, so for simplicity we choose h = 1. Similarly, the term Kn+b can be replaced by a single

parameter since for any choice of K we can rescale b to keep this sum constant. To ensure that the condition hlR�1D<2K holds

for all R, we can choose K = D. For convenience, we also let b= bD and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfeffD=Nð1� l2ÞÞ

q
= alD, the subscript indicating explicit

dependence on l. Dividing both inequalities by D, the conditions simplify to

n+alx+ b>0
n+ b+alx� lR�1<0

The accuracy, i.e., probability of a correct response, is given by Pcorrect = ð1 � fÞPTP + fPTN. For convenience, we compute the false

positive instead of the true negative rate, noting that PTN = 1� PFP. The false positive and true positive rates are given by

PFP =P

�
x<� n+ b

al

�

PTP =P

�
x<� n+ b� lR�1

al

�
Since x is a standard Normal random variable, P½x<z� = ð1 =2Þerfcð� z =

ffiffiffi
2

p Þ, so

PFP =
1

2
erfc

�
n+ b

al

ffiffiffi
2

p
�

PTP =
1

2
erfc

�
n+ b� lR�1

al

ffiffiffi
2

p
�

We would now like to set the optimal values of l and b which maximize R, given a desired true positive and false positive probability

P�
FP; P

�
TP. Note that fixing these probabilities also fixes feff = f� = ð1 � P�

FPÞf + ð1 � P�
TPÞð1 � fÞ. Rearranging the previous equations,

we get

n+ b

al

=
ffiffiffi
2

p
erfc�1

	
2P�

FP



n+ b� lR�1

al

=
ffiffiffi
2

p
erfc�1

	
2P�

TP



The first equality sets the value for b. To determine l, we substitute b into the second equality to getffiffiffi

2
p

erfc�1
	
2P�

FP


� lR�1

al

=
ffiffiffi
2

p
erfc�1

	
2P�

TP
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For notational convenience, let E =
ffiffiffi
2

p ½erfc�1ð2P�
FPÞ � erfc�1ð2P�

TPÞ�. Using the definition of al and feff = f�, we have l =ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðf�=a2

lNDÞ
q

. Rearranging, we have �
1� f�

a2
lND

�R�1
2

= alE

AssumingN andD are large (so l is close to 1), we can use the first-order Taylor expansion expð�zÞz1� z for the term in parentheses

(this will be necessary to get a closed-form expression for the optimal l ) and solve for R

exp

�
� f�

a2
lND

$
R� 1

2

�
= alE 0 R= 1+

2NDa2
l

f�
ln

�
1

alE

�
Setting ðdR =dlÞ= 0 and solving for l gives the optimum

l=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 	eE2f�

�
ND

q

Thus, the capacity of the optimized network is

Rmax = 1+
ND

eE2f�

where f� and E are constants that depend on P�
FP and P�

TP (f� also depends on the true fraction of novel stimuli f ). For instance, if we

impose that P�
FP = 0:01 and P�

TP = 0:99, with our value of f = ð2 =3Þ, we get

Rmax = 1+
ND

e$2$
�
erfc�1

	
2P�

FP


� erfc�1
	
2P�

TP


�2
$
�	
1� P�

FP



f +

	
1� P�

TP


ð1� fÞ�
= 1+

ND

2e½1:645� ð�1:645Þ�2½0:98f + 0:01�

= 1+
0:017ND

0:98f + 0:01
= 1+ 0:026ND

It is clear that that the capacity scales in proportion to the number of plastic synapses in the network. Furthermore, since d = n+ D,

i.e., D = d� log 2ðNÞ, the capacity scales in proportion to the total number of synapses d, as long as D[n.

Rmax = OðNDÞ = OðNðd� nÞÞ = OðNd�NlogNÞÞ = OðNdÞ
Finally, note that the equations for PFP and PTP are a function of feff due to the al parameter, and therefore recursively depend on PFP

and PTP. We cannot compute the closed-form solution for these, but we can approximate the values with arbitrary accuracy by iter-

ating through this recurrence until convergence to the fixed point. As the initial value for the recurrence, we usePFP andPTP computed

using feff = f, i.e., assuming no errors.

CNN preprocessing for familiarity detection of images
We consider the dataset used by Brady et al. (2008) to study familiarity detection in humans. As a stand-in for the processing done by

the visual stream before the inferotemporal or perirhinal cortices, we use a pre-trained convolutional neural network (CNN), and

extract the activity in its penultimate layer (before the final classification step). We use the ResNet18 network (He et al., 2015),

although any CNN could, in principle, be used (see also Kazanovich and Borisyuk, 2021). This activity is a 512 -dimensional vector,

which, if used as the HebbFF input dimension d, would lead to the capacity Rmax being prohibitively large for training purposes. To

keep the performance in a reasonable range, we downsample to d = 50, either by partial sampling (Figure 8A) or by introducing an

intermediate layer (Figure S6A). We use the uniform readoutW2 for simplicity of training and analysis, although the results are similar

for the unconstrained readout.

As the first method of downsampling, we truncate the output of the CNN (Figure 8A). To keep the same input datatype as in pre-

vious sections, we also shift the inputs to zero mean and binarize them by taking the sign of each input component (Figure 8B). Unlike

in previous sections, however, the inputs to HebbFF now have correlations that tend to be positive (Figure 8C). Nevertheless, this

network has qualitatively similar features as the networks trained on uncorrelated vectors. TheW1 matrix has a similar structure (Fig-

ures 4F and 8D), the hidden layer activity is sparse (Figures 4C and 8E), and the hidden unit input current distributions have similar

shapes (Figures 4I, 4J, 4M, 7B, and 8F–8I). Due to the added correlations, however, there is a decline in performance compared to a

network of the same size trained and evaluated on uncorrelated binary random vectors (Figure 8J).

As another way to downsample, we add a trainable linear layer that transforms the CNN output to a 50 -dimensional real-valued

vector (Figure S6A). After training, the resulting inputs to HebbFF are no longer binary, but they are zero-mean (Figure S6B) and have

zero-mean correlations Figure S6C). Interestingly, the network learns to generate this representation automatically to optimize
e7 Neuron 110, 544–557.e1–e8, February 2, 2022
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familiarity detection over long intervals, which further supports storing uncorrelated stimuli. Although theW1 matrix (Figure S6D) and

the distribution of input currents from the fixed component of the synapses (Figure S6F) have a different structure compared to the

original network, the operating principle remains the same: theW1 matrix acts as a addressing function to select a unique neuron in

the hidden layer (Figure S6E) that is then suppressed for a familiar stimulus through the AðtÞ matrix (Figures S6G and S6H). The

networkmaintains its generalization performance across repeat intervalsR, and across permutations of the sequence of images (Fig-

ure S6J). However, it does not generalize well to images it has not been trained on. It is possible that this difficulty is due to the rela-

tively small number of images used during training and may be addressed by using a much larger dataset such as ImageNet (Deng

et al., 2009).
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