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Abstract. Excitatory and inhibitory synaptic coupling can have counter-intuitive effects on the synchroniza- 
tion of neuronal firing. While it might appear that excitatory coupling would lead to synchronization, we show 
that frequently inhibition rather than excitation synchronizes firing. We study two identical neurons described 
by integrate-and-fire models, general phase-coupled models or the Hodgkin-Huxley model with mutual, non- 
instantaneous excitatory or inhibitory synapses between them. We find that if the rise time of the synapse is longer 
than the duration of an action potential, inhibition not excitation leads to synchronized firing. 

Introduction 

It is commonly assumed that excitatory synaptic cou- 
pling tends to synchronize neural firing while inhibitory 
coupling pushes neurons toward anti-synchrony. Such 
behavior has been seen in models of neuronal cir- 
cuits (Winfree, 1967; Peskin, 1975; Kuramoto, 1984 & 
1991; Ermentrout and Kopell, 1984; Ermentrout, 1985; 
Mirollo and Strogatz, 1988; Abbott, 1990). However, 
in some studies (Sorti and Rand, 1986; Lytton and 
Sejnowski, 1991; Sherman and Rinzel, 1992; Wang 
and Rinzel, 1992 & 1993; Kopell and Sommers, 1994) 
just the opposite effect has been observed. In the retic- 
ular nucleus of the thalamus, synchronized oscillations 
occur through purely inhibitory synapses (Wang and 
Rinzel, 1992; Steriade, McCormick and Sejnowski, 
1993; Golomb, Wang and Rinzel, 1994). In the cases 
we discuss here, we will show that such 'reversed' be- 
havior is the rule rather than the exception. The key 
feature that determines whether excitation or inhibition 
synchronizes spiking is the rise time of the synaptic re- 
sponse. In models with instantaneous (zero rise times) 
or extremely rapid synaptic responses, excitatory cou- 
pling leads to synchronization. However, if synaptic 
rise times are slower than the width of an action poten- 
tial, we find that inhibition rather than excitation pro- 
duces synchrony. We first consider a simple circuit of 
two identical integrate-and-fire neurons mutually cou- 
pled by identical, excitatory or inhibitory synapses. We 

then extend our results to any model that can be de- 
scribed by averaging as a phase-coupled model. Using 
both the phase description and computer simulation, we 
show how inhibition and not excitation synchronizes 
two Hodgkin-Huxley model neurons. In all the mod- 
els we consider, perfectly synchronized firing cannot 
be produced by excitatory synaptic coupling unless the 
synaptic rise time is extremely rapid. Instead, a stable 
synchronous state can only occur when the neurons are 
coupled through inhibitory synapses. In many cases, 
excitatory synapses produce anti-synchronous firing. 

Integrate and Fire Models 

To illustrate the basic phenomenon, we begin by con- 
sidering two integrate-and-fire neurons with mutual ex- 
citatory or inhibitory coupling. The neurons are de- 
scribed by activation variables xi with i = 1, 2 satisfy- 
ing the equations 

dxi 
- -  = X - x i + E i ( t )  (2.1) 
dt 

in the range0 < xi < 1. Whenxi  = 1, neuroni  
fires and is reset to xi = O. Ei is the synaptic input to 
neuron i. If cell j 7~ i fires at time tj, the function Ei 
gets augmented by 

El(t) -+ Ei(t) + Es(t - t i) (2.2) 
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Fig. 1. Equilibrium phase differences between two identical 
integrate-and-fire neurons with mutual excitatory coupling through 
alpha functions. The phase difference ~b is plotted as a function of 
the synaptic rate constant c< Solid lines correspond to stable states 
and dashed lines to unstable states. Parameter values were X = t .3 
and g = 0.4. Note that this figure starts at e~ = 4.0. Below this value 
the behavior remains unchanged. 

where E,. is the contribution coming from one spike. 
For this particular example,  we take E., to be an alpha 
function 

E,.(t)  = ge~2te -~t (2.3) 

where g and et are parameters determining the strength 
and speed of  the synapse respectively and the factor of 
c~ 2 in (2.3) normalizes the integral of Es over time to 
the value g. The discussion and proofs are not limited 
to this particular form. We take the constant X > 1 so 
both neurons fire spikes spontaneously in the absence 

of coupling. We consider cases where the two neurons 
continue firing periodically when they are coupled to- 
gether. Suppose that neuron 1 fires at times t = n T  
where T is the period and n is an integer, while neuron 2 
fires at t = (n - qS)T. Thus, both neurons are firing 
at the same frequency but are separated by a phase qS. 
We wish to determine possible values of the phase dif- 
ference ~b and conditions under which they arise. 

In Fig. 1, we plot the asymptotic values of the phase 
difference q5 obtained in this model with excitatory cou- 
pling (g > 0) for different values of the synaptic rate 
constant ~. Small  c~ corresponds to a slow synapse 
and in this case there are two possible states exhibit- 
ing either complete synchrony (q5 = 0 or equivalently 
~b = 1) or complete anti-synchrony (q~ = 1/2). Only 
the anti-synchronous state is stable. As ~ increases, 
representing progressively faster synapses, there is a 
pitchfork bifurcation at a critical value of ~ (Abbott  and 
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Fig,. 2. Equilibrium phase differences between two identical 
integrate-and-fire neurons with mutual inhibitory coupling through 
alpha functions. The phase difference q5 is plotted as a function of 
the synaptic rate constant ce. Solid lines correspond to stable states 
and dashed lines to unstable states. Parameter values were X = 1.3 
and g = -0.4. 

van Vreeswijk, 1993) and two additional equilibrium 
states arise. At  this point, the anti-synchronous state 
becomes unstable and the synchronous state remains 
unstable. The two new states are stable and are nei- 
ther synchronous nor anti-synchronous. Instead, the 
phase difference is variable lying between 0 and 1/2 
(or equivalently between 1/2 and 1). As ~ --+ ec, 
the phase difference between the two oscillators ap- 
proaches 0 (or 1) but for no value ofee does the system 

achieve a stable synchronous state. 
The situation for excitatory synapses should be con- 

trasted with that for inhibitory synapses (g < 0) shown 
in Fig. 2. Here, the synchronous state (~b = 0 or ~b = 1) 
is always stable. For slow synapses (small ~), this is the 
only stable state, the anti-synchronous state is unsta- 
ble. At  the pitchfork bifurcation, the anti-synchronous 
state becomes stable and, again, two additional vari- 
able phase states arise but these are unstable. For 
fast synapses (large ~), both the synchronous and anti- 
synchronous states are stable. As ~ increases, the do- 
main of attraction of the synchronous state decreases 
while the domain of  attraction of the anti-synchronous 
state increases. From Figs. 1 and 2 we see that exact 
synchronization with non-instantaneous synapses can 
be achieved in this model  using inhibitory coupling but 

not excitatory coupling. 
To analyze what is happening in this circuit, we note 

that with neuron 1 firing at times t = n T ,  the input to 
n e u r o n 2 a t t = 0 T w i t h 0 < 0  < l i s  

E2(OT) = Er (O)  (2.4) 
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Fig. 3. G plotted as a function of the phase q5 for excitatory alpha- 
function coupling. Three different c~ values are shown. Stable equi- 
libium states correspond to zero crossings with positive slopes and 
unstable equilibrium states to zero crossings with negative slopes. 
Note that the synchronous state ~b = 0 or 1 is never stable and that 
the stability of the anti-synchronous state switches when two new 
stable states arise. 

where 

o 

E r ( 0 ) =  ~ E s ( ( 0 - n ) T )  
/ 2 ~ - - O O  

(2.5) 

When E.,. is an oe-function as in equation (2.3), we find 
by summing the appropriate geometric series 

got2Te-~Or(o(1 - e-~r)  + e - a t )  
E r (0 )  = (2.6) 

(1 - e -~r )  2 

Outside the range 0 < 0 < 1, E r  is defined by making 
it a periodic function. With neuron 2 firing at t = 
(n - 40T, the synaptic input to neuron 1 is 

EI((O + n ) T )  = Er(O + 4)) (2.7) 

Since neuron 1 fires at t = 0, we have x(0 +) = 0 and 

by integrating equation (2.1) we find 

f0 x l ( r )  = X(1 - e - r )  + Te - r  dOe~ + 4)) 

= 1 ( 2 . 8 )  

The last equality follows from the fact the neuron 1 fires 
again at time T. Similarly, neuron 2 fires at t = -4 )T  
and again at t = (1 - q~) T so, after shifting the integral, 

x2((1 - ~b)T) = X(1 - e - r )  § Te - r  

f0 x dOe~ - 4)) =: 1 

(2.9) 

These two equations determine both the period T and 
the phase difference qS. Subtracting (2.8) from (2.9) 
and dividing by T gives the condition 

fo 1 G(O) = e - T  d O e ~  0 q- 4 )  --  E T ( O  -" qS)] 

= 0 (2.10) 

An obvious solution is q~ = 0. Also, since Er(O + 
1/2) = ET (0 -- 1/2) by the periodicity of  E r ,  ~b = 1/2 
is also a solution. These two solutions correspond to 
synchronous and anti-synchronous firing. 

The stability of these and any other solution is de- 
termined by 

G'(~b) > 0 (2.t 1) 

where the prime signifies differentiation with respect 
to qS. To see why this is the case, we combine the 
second equality of equation (2.8) and the first equality 
of  (2.9) and use (2.10) to note that 

x2((1  - -  ~b)T) = 1 - -  T G ( d p )  (2 .12)  

Suppose q~ is slightly larger than a stable equilibrium 
value. Then, neuron 2 should fire later to restore the 
correct value of  4~. This requires that x2((1 - -  ~ ) T )  

given by the above formula should be smaller than 1, 
or equivalently, that G should be an increasing function 
of q~ near the equilibrium value. 

The function G (qS) is plotted in Fig. 3 for' different 
values of  ol for the case of excitatory coupling. When 

= 5.6, there are solutions at q~ = 0, 1/2, and 1 
but only the anti-synchronous solution at q~ = 1/2 is 
stable. At the critical value oe = 6.13, this solution 
becomes unstable and two additional stable solutions 
arise from the point ~b = 1/2. This value corresponds 
to the bifurcation pointin Fig. 1. As o~ increases fiJrther, 
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Fig. 4. G plotted as a function of the phase q~ for inhibitory alpha- 
function coupling. Three different a values are shown. Stable equi- 
libium states correspond to zero crossings with positive slopes and 
unstable equilibrium states to zero crossings with negative slopes. 
Note that the synchronous state ~b = 0 or 1 is always stable and 
the stability of the anti-synchronous state switches when two new 

unstable states arise. 

these points move outward toward 0 and 1. In Fig. 4, the 
same series is shown for the case of  inhibitory coupling. 
Since the slope of the curve with inhibitory coupling is 
generally opposite to that for excitatory coupling, the 
same set of  solutions exist but their stability is reversed. 
New zero crossings appear in Fig. 4 at the value of c~ 
that produces the bifurcation in Fig. 2. 

We can use the above results to prove that the solu- 
tion q5 = 0 (or equivalently 4) = 1) is always unstable 
for excitatory synapses with any reasonable synaptic 
response function E,.  From equation (2.10) after inte- 
gration by parts, 

G'(O) = 2e - r  ( ( e  r - 1 )Er(0)  
N 

The only condition we need to impose is that for 

excitatory coupling with finite rise time ET(O) > 
ET (0) for 0 < 0 < I so that 

G'(O) <2e-T ((eT --1)ET(O) -- T/IldOe~ ET(O)) 

= 0 (2.14) 

The last equality follows from doing the integral. Thus, 
the synchronous state is always unstable. If  instead, 
ET(O) < ET(O) ( for0  < 0 < 1) we have 

G'(O)> 2e-T ((eT--1)ET(O)-- T foldOe~ ET(O)) 

= 0 (2.15) 

and the synchronous state is always stable. This is the 
reason that inhibitory rather than excitatory coupling 
produces a stable synchronous state. For example, the 
function E r  given by equation (2.6) satisfies Er (0) > 
ET(O) f o r g  > 0and  Er(O) < ET(O) f o r g  < 0. 

Phase-Coupled Models 

Since we are primarily interested in the relative phases 
of the model neurons we are studying, it is convenient 
to describe the state of each neuron directly in terms of 
a phase variable. This allows us to make our discussion 
more general and provides a more intuitive understand- 
ing of the synchronous and anti-synchronous states we 
find. To introduce and derive such a phase description, 
we consider a more general integrate-and-fire model of 
the form 

dxi 
- -  = fl (xi) + f2(xi)Ei (t) (3.1) 
dt 

for two model neurons, i = 1,2. Equation (3.1) applies 
in the range 0 < xi < 1 and when xi = 1 neuron i fires. 
We assume that the coupling is weak (If2Ei[ << f l )  
and make a change of variables to a phase description 
by defining 

fo xi dx t 
~bi = co f l  (x') cot (3.2) 

with 

~01 dxt 1 T (3.3) 
co A(x') 

The phase variables satisfy 

dcpi = F(cot + dpi)Ei(t ) (3.4) 
dt 
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where 

f z ( x i )  
F(oJt + 4i)  = ( D - -  (3.5) 

f l  (xi) 

with the right side re-expressed as a function of ~ot + 4i. 
F is defined to be a periodic function with period 1. 
Neuron i fires when wt + 4i = n for integer n, or 
equivalently, when t = (n - 4 i ) T .  Thus, as in equa- 
tions (2.4) and (2.7) 

and 

E l ( t )  = Er(cot  + (/)2) (3.6) 

E2(t) ----- Er(cOt + (/)1) (3.7) 

with ET given by equation (2.5). The phase variable 
equations of the model are then 

d4~ 
- -  = F(cot + 41)ET(Wt  + 42) (3.8) 
dt  

and 

d42 
= F(cot + 42)Er(~ot + 41) (3.9) 

dt  

In these equations, the function F is the phase response 
function of the model. To see this, note that if ET were 
a 8 function then, by integrating the above equations, 
we find that F would give the resulting change in phase. 

We now assume that the term ~ot varies much more 
quickly than either of the 4i. This will be true, for ex- 
ample, if the coupling is weak enough. In this case, we 
can average the right sides of the above two equations 
over one period T to obtain 

d4j 
= H(42 -- (/)1) (3.10) 

dt  

and 

d42 
-- H(4a - 42) (3.11) 

dt  

with 

T 

H ( 4 )  = -~ d tF(cot  - 4 ) E r ( w t )  (3.12) 

The fact that H can be written as a function of the 
phase difference follows from the periodicity of F and 
Er .  We can change the expression for H to an integral 
involving E, instead of E r  by using the periodicity of 
F and the definition (2.5), 

fo H ( 4 )  = dOF(O - 4)E, . (OT)  (3.13) 

Finally, if we define the phase difference between the 
two oscillators as 4 = 4 1  - (/)2, it is determined by the 
equation 

d4 
- -  = - G ( 4 )  ( 3 . 1 4 )  
dt  

where 

G(4) = H(4)  - H ( - 4 )  (3.15) 

Equation (3.13), has a simple interpretation. If the 
coupling between the two oscillators was instantaneous 
with unit strength so that Es was a delta function at 
0 = 0, then the instantaneous phase-coupling interac- 
tion function would be 

H~(4 )  = F ( - 4 )  (3.16) 

However with non-instantaneous coupling, the in- 
teraction function is a convolution, obtained from 
equation (3.13), 

H ( 4 )  -- d O g ~ ( 4  - O)E , (OT)  (3.17) 

Thus, if we know the interaction function for an instan- 
taneous synapse, we can determine the dynamic inter- 
action function simply by performing the appropriate 
convolution integral. This convolution has profound 
effects on the stability and the number of phase-locked 
states of the model. 

Equations (3.14), (3.15) and (3.17) are extremely 
general. Any pair of oscillators coupled with arbitrary 
synaptic dynamics can be reduced to a pair of phase 
equations as above if the interactions are sufficiently 
weak (Ermentrout and Kopell, 1984). In particular, 
the phase interaction function H can be written as a 
convolution of the instantaneous interaction function 
H a  with the synaptic response function as in (3.17). 
If the two oscillators are identical and symmetrically 
coupled, we can determine the phase lags between them 
by looking at the zeros of G defined in (3.15) as the odd 
part of the interaction function. These are stable if G'  
is positive. Since H is periodic with period 1, G must 
have zeros at 4 = 0, 1/2 and l. We need only look at 
the slopes of G at these zeros to determine the stability 
of the synchronous and anti-synchronous states. 

We will consider a particularly simple case, 

H~(4 )  = sin(2zr4) (3.18) 

For this interaction function, the instantaneous model 
has a stable synchronous solution and an unstable anti- 
synchronous solution for excitatory coupling. For 
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inhibitory coupling the stability is reversed between 
these two states. To reveal the role of  the finite synaptic 
rise time, we will treat two types of synaptic interaction 
functions, a simple exponential 

Es (t) = got exp(-o~t)  (3.19) 

and the alpha function of (2.3). For the exponential 
synapse, we find from equations (3.15) and (3.17) and 
by doing the exponential integrals that 

2go~2T 2 
G(q~) = sin(27r~b) (3.20) 

(a2T2 + 4Jr 2) 

Thus, for an exponential synaptic response function the 
stability is the same as it is for the instantaneous case 
for all values of  oe. The synchronous state is stable for 
excitatory coupling (g > 0) and the anti-synchronous 
state is stable for inhibitory coupling (g < 0). This is 
because the exponential response has an instantaneous 
rise time. I f  instead we use the alpha-function synaptic 
response, we find 

2g~176 - 47r2) sin(27rqS) (3.21) 
G(~b) = (ot2T2 q- 47r2)2 

From this we see that for excitatory coupling (g > 0) 
the synchronous state ~b = 0 is stable and the asyn- 
chronous state ~b = 1/2 is unstable if ce > 2Jr/T. 
If ~ < 2zr /T  however, excitatory coupling leads to 
a stable asynchronous state. For inhibitory coupling 
(g < 0) the reverse is true. 

In general we can express H ~  as a Fourier series 

H~(O) = Z Cn exp(27rinqS) (3.22) 
/ l  

We find that, in general, the presence of higher Fourier 
components smoothes the transition from synchronous 
to asynchronous behavior so that the system no longer 
makes a sudden jump from one to the other at a critical 
value of c~ as it does for the pure sine case. Includ- 
ing terms other than the sine term of (3.18) can also 
induce bifurcations for the case of exponential synap- 
tic coupling. 

The Hodgkin-Huxley Model 

To see if the results we obtained in the previous sec- 
tions carry over to more complete and accurate neu- 
ron models, we have simulated two Hodgkin-Huxley 
model neurons and also analyzed this circuit using 
the phase-coupling description. For the simulation we 

used two identical two-compartment neurons with ac- 
tive soma compartments and passive dendritic compart- 
ments. The active compartments contained the usual 
Hodgkin-Huxley sodium and potassium conductances. 
For the phase-coupling analysis, the interaction func- 
tions were computed for the Hodgkin-Huxley model 
numerically (see also Hansel, Mato and Meunier, 1993) 
and then decomposed into their first few Fourier com- 
ponents. The first three to four terms in the Fourier 
expansion (3.22) provided a sufficiently accurate de- 
scription for our purposes. Then the odd part of the 
interaction function was computed for various types of 
synaptic dynamics. Both approaches produced similar 
results so we will focus on the results provided by the 
phase analysis. We consider two types of  synaptic re- 
sponse functions E,., either a pure exponential (3.19) 
or the alpha function (2.3). 

Figure 5 shows the equilibrium values of  the phase- 
difference q~ for excitatory exponential coupling. For 
very large ~, there are two stable states, the syn- 
chronous and anti-synchronous states. As oe de- 
creases the anti-synchronous state loses stability at 
f i '  2 ~,~ 14/ms. For smaller ~, a pair of new sta- 
ble asynchronous states bifurcates from synchrony at 
e~ = ~1 ~ 0.3/ms and these remain stable for all 
smaller values of  or. 

In Fig. 6, we show the bifurcation diagram for exci- 
tatory alpha-function synapses. As in the case of ex- 
ponential synapses, both the anti-synchronous and the 
synchronous states are stable for very fast synapses. At 
oe = oe3 ~ 28/ms the anti-synchronous state loses sta- 
bility and only the synchronous state remains stable. 
For oe < ee2 ~ 0.82/ms, the synchronous state loses 
stability to a pair of asynchronous solutions. Unlike 
the exponential synapses, these states then merge with 
the anti-synchronous state at eq ~ 0.4 ms and the anti- 
synchronous state remains stable for all smaller values 
ofoe. Note that Fig. 6 is similar to Fig. 1 except that the 
asynchronous states merge with the synchronous state 
at finite oe and there is a second bifurcation for very 
large ce. 

Figures 7 and 8 show exponential and alpha-function 
coupling respectively for inhibitory synapses. The be- 
havior is similar to that of excitatory coupling except 
that the stability is reversed. The detailed points of bi- 
furcation are also different. Figure 8 is similar to Fig. 2 
except that the synchronous state destabilizes at finite 
o~ = O~ 2 and there is a second bifurcation at ee = c~3. 

The overall conclusion from this analysis is that the 
results of both integrate-and-fire models and phase- 
coupled models apply to more accurate models pro- 
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Fig. 5. Equilibrium phase differences between two identical Hodgkin-Huxley neurons with mutual excitatory coupling through exponential 
functions. The phase difference q~ is plotted as a function of the synaptic decay constant ~. Solid lines correspond to stable states and dashed 
lines to unstable states. The synaptic current was given by 0.05 max(tanh(V - 25), 0)(E - V) with E set 100 mV above the resting potential. 
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Fig. 6. Equilibrium phase differences between two identical Hodgkin-Huxley neurons with mutual excitatory coupling through alpha functions. 
The phase difference ~b is plotted as a function of the synaptic rate constant a. Solid lines correspond to stable states and dashed lines to ur~stable 
states. The synaptic current was given by 0.05 max(tanh(V - 25), 0)(E - V) with E set 100 mV above the resting potential. 

vided that the synapt ic  rise t ime is slower than the width 
of the action potential .  

Discussion 

Our results indicate that non- ins tan taneous  synapses 
have a profound effect on synchronous  states of  cou- 
pled oscillators and often reverse our intuit ive impres-  

sions about  the effects of  excitatory and inhibi tory cou- 

pling. The results from phase-coupled models  al low us 

to develop an intuit ive picture of  why this is happening.  
From equations (3.15) and (3.17) we find that for the 
synchronous  state, ~b = 0 

G'(O) = 2.]~ d O H ~ ( - O ) E s ( O T )  

f5 = - 2  dOF'(O)E,.(OT) (5.1) 
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Fig. 7. Equilibrium phase differences between two identical Hodgkin-Huxley neurons with mutual inhibitory coupling through exponential 
functions. The phase difference ~b is plotted as a function of the synaptic decay constant c~. Solid lines correspond to stable states and dashed 
lines to unstable states. The synaptic current was given by 0.05 max(tanh(V - 25), 0)(E - V) with E set 12 mV below the resting potential. 
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Fig. 8. Equilibrium phase differences between two identical Hodgkin-Huxley neurons with mutual inhibitory coupling through alpha functions. 
The phase difference ~b is plotted as a function of the synaptic rate constant or. Solid lines correspond to stable and dashed lines to unstable 
states. The synaptic current was given by 0.05 max(tanh(V - 25), 0)(E - V) with E set 12 mV below the resting potential. 

A key feature o f  the phase  response curve for neurons 
with  rapid wel l -separated spikes is that F'(O) < 0 for a 
narrow region around 0 = 0 w h i l e  F'(O) > 0 through 
most  o f  the range o f  0 values.  This  is because  excitation 
during an action potential  delays  the next spike wh i l e  

excitation during the interspike interval phase  advances 
it. The range where F~(O) < 0 corresponds roughly  to 
the phase  width o f  the action potential.  

I f  the synaptic  response is very rapid, the integral in 
equation (5.1) is dominated  by the region near 0 = 0. 
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In this region F'(O) < 0 so the integrand will be neg- 

ative, G~(0) will  be posit ive and the synchronous  state 
will be stable. This  agrees with our intuit ive picture 
of the effect of  excitatory coupling.  However,  as we 
slow down the rise of the synaptic  response,  the re- 

gion where  U(O) > 0 will start to contribute more  

to the integral in (5.1). W h e n  this contr ibut ion domi-  
nates over that coming  from the narrow region where 
F'(O) < 0, the synchronous  state will become unsta- 

ble. For  inhibi tory coupling,  the synaptic  response has 
the same shape but  the opposite sign. The entire argu- 
men t  goes through identical ly except that all the signs 
change.  Thus,  inhibi t ion and not  excitation will gener- 

ically lead to a stable synchronous  state unless  the t ime 

scale for the synapt ic  rise is very short or the action 
potential  is broad. 
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