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         Gating Defi cits in Model Networks: A Path to 
Schizophrenia?    

in layer 2 of the feedforward pathway receive 
correlated excitatory inputs from layer 1. In con-
trast to traditional embedded feedforward net-
works (    �  �     Fig.   1a  ), the projections from layer 1 
target both excitatory neurons in layer 2 and also 
locally connected interneurons (    �  �     Fig.   1b  ). As a 
result, the excitatory neurons in layer 2 still 
receive approximately equal amounts of total 
excitation and inhibition. As a consequence of 
this local or what we call  “ detailed balance ” , acti-
vation of layer 1 produces little response in the 
(excitatory) majority of the target neurons in 
layer 2. However, the signal can be gated on, pro-
ducing layer 2 activity that mirrors that of layer 1, 
by a command signal that suppresses the inhibi-
tion and thus disrupts the detailed balance. 
 This model offers an interesting alternative to the 
more traditional model of gating in which it is 
necessary to fully inhibit neurons that are not 
supposed to receive or transmit the signal  [4,   17] . 
In such a system, the default state of the signal 
chain is to propagate signals, and a cognitive con-
troller needs to decide when to disrupt the signal 
fl ow. Our model has this inverted: the inattentive 
state is actively maintained, presumably in paral-
lel, in many modules responsible for different 
features of a stimulus. In the default state of the 
system, all these features are balanced out and 
thus not processed. If one feature of the stimulus 
is  “ interesting ” , a control mechanism can pull 
that feature out by unbalancing the respective 
module and propagate that signal further down-
stream. It may be easier for a relatively uncon-

 Gating defi cits, which involve diffi culty in fi lter-
ing external stimuli on the basis of their impor-
tance, and hallucinatory sensations, involving a 
failure to distinguish between real and imagined 
experiences, are debilitating aspects of schizo-
phrenia  [15] . Both of these can be categorized as 
problems of information propagation and man-
agement. Signal propagation has been studied 
extensively in network models  [1,   2,   7,   8,   12,   23,   25, 
26] , and these provide a useful platform for con-
sidering the mechanisms and underlying pathol-
ogies that cause such defi cits. 
 Theoretical arguments  [19,   22]  as well as experi-
mental fi ndings  [10,   20]  suggested that excitation 
and inhibition are globally balanced in cortical 
circuits. In a balanced network, each neuron 
receives approximately equal amounts of excita-
tory and inhibitory input that tend to cancel each 
other. Fluctuations in the balance of the total 
synaptic input produce the asynchronous and 
irregular patterns of spiking characteristic of cor-
tical activity  [3,   5,   24] . A leading idea among 
researchers working on schizophrenia is that at 
least some of its symptoms arise from an imbal-
ance between excitation and inhibition in spe-
cifi c circuits  [14,   28] , so studies of balanced 
network models seems highly relevant to schizo-
phrenia research. 
 The model we review here extends the concept 
of global balance to specifi c subcircuits  [27] . We 
embed a two-layered feedforward pathway into 
a network of about 20,000 integrate-and-fi re 
neurons with global and local connectivity. In 
addition to globally balanced inputs, the neurons 
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  Abstract 
  &  
 Gating defi cits and hallucinatory sensations are 
prominent symptoms of schizophrenia. Compar-
ing these abnormalities with the failure modes of 
network models is an interesting way to explore 

how they arise. We present a network model 
that can both propagate and gate signals. The 
model exhibits effects reminiscent of clinically 
observed pathologies when the balance between 
excitation and inhibition that it requires is not 
properly maintained.       
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scious system to keep track of what is interesting in a broad 
band signal stream, than to keep track of all the uninteresting 
things to suppress.  

 Detailed Balance in a Network Model 
  &  
 Our model network consists of about 20,000 excitatory and 
inhibitory leaky integrate-and-fi re neurons. The excitatory neu-
rons have a global random connectivity with a 2    %  connection 
probability between any two neurons. The same holds for 65    %  of 

              Fig. 2            Detailed Balance in a network: i ) Voltage 
trace of a randomly chosen excitatory layer 2 neuron. 
The red trace shows a single run, and the average 
membrane potential excluding refractory periods is in 
black.  ii ) Average fi ring rates over 5 trials, calculated 
in 5 ms bins, for excitatory-excitatory (orange) 
and excitatory-inhibitory (green) layer 1 neurons 
responding to a sinusoidally varying input.  iii ) Average 
fi ring rates for the inhibitory (dark blue trace) and 
excitatory (histogram in red) neurons in layer 2 
responding to their respective inputs.  iv ) Population 
fi ring rate of the entire network.  v ) Spike raster plot 
of 30 randomly selected excitatory layer 2 neurons. 
 a) No signal . All involved neurons fi re at background 
rates.  b) Balanced signal . All layer 1 neurons fi re in a 
correlated manner in response to the input signal and 
project the input pattern to their respective target 
neurons. The inhibitory layer 2 neurons reproduce 
the input pattern, preventing their excitatory 
neighbors from doing the same.  Unbalanced signal . 
By decreasing the responsiveness of either the 
excitatory layer 1 neurons projecting to inhibitory 
layer 2 neurons ( c ) or the inhibitory layer 2 neurons 
themselves ( d ), the signal balance in the excitatory 
layer 2 neurons shifts in favor of excitation, and the 
signal pattern is reproduced.  

    Fig. 1            Embedded Feedforward Networks: 
a ) Traditional all-to-all feedforward wiring scheme 
between groups of excitatory neurons.  b ) Balanced 
feedforward wiring: Some of the feedforward 
connections are made to inhibitory cells that, in 
turn, synapse onto their excitatory neighbors.  
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the inhibitory neurons, but the remaining 35    %  have only local 
connectivity, synapsing randomly onto approximately 200 of 
the 500 neurons in their immediate neighborhood. 
 The embedded pathway consists of two layers of neurons. Layer 
1 receives correlated input from a source external to the net-
work and mimics the temporal fi ring pattern of the external sig-
nal  [26] . Layer 1 excitatory neurons are divided into two groups, 
one that sends long-range projections to about 500 excitatory 
neurons in layer 2, and the other that projects to about 70 locally 
connecting interneurons within layer 2 which in turn contact 
their excitatory neighbors. Detailed balance is imposed by 
adjusting the strengths of the projections of these two groups of 
excitatory layer 1 neurons so that the effect of monosynaptic 
excitation within the excitatory layer 2 neurons is balanced by 
the disynaptic inhibition produced by the same signal through 
the local inhibitory neurons of layer 2.   

 Balance as a Default State 
  &  
 With appropriately adjusted parameters, this network displays 
irregular,  “ bursty ”  fi ring at low rates, with broad distributions of 
interspike intervals (ISIs) and coeffi cients of variation of ISIs 
slightly larger than 1, indicative of a globally balanced network 
state. 
 Because of the detailed balance condition we have imposed, 
input delivered from layer 1 is balanced within the excitatory 
neurons of layer 2. Therefore, the default state of the signal-car-
rying pathway is  “ gated off ”  (    �  �     Fig.   2b  ). Patterns in the fi ring 
rates of the sender neurons in layer 1 (green and orange traces in 
    �  �     Fig.   2b(ii)  ) are reproduced in the activity of the inhibitory 
neurons of layer 2 (dark blue trace in     �  �     Fig.   2b(iii)  ), but the exci-
tatory layer 2 neurons show only modest fi ring rate fl uctuations 
(red histogram in     �  �     Fig.   2b(iii)  ) and little evidence of the signal 
in their fi ring rasters (    �  �     Fig.   2b(iv)  ).   

 Gating Propagation On 
  &  
 Signals are  “ gated on ”  within this network by unbalancing the 
excitatory and inhibitory components of the signal to layer 2. 
This can be done, for example, by weakening the inhibitory com-
ponent of the signal transmitted to the excitatory neurons of 
layer 2, which can be accomplished either by either decreasing 
the responsiveness of the sender neurons projecting to the 
inhibitory neurons in layer 2 (    �  �     Fig.   2c  ), or by decreasing the 
responsiveness of the local inhibitory interneurons themselves 
(    �  �     Fig.   2d  ). Both of these forms of modulation produce robust 
fi ring in the excitatory neurons of layer 2 that is locked to the 
temporal pattern of the input signal (    �  �     Fig.   2c,   d(i,   iii,   iv)  ). In the 
fi rst case, the effect of decreasing the gain of the neurons in layer 
1 that project to inhibitory target neurons can be seen in the 
reduced amplitude of the fi ring rate variation of these neurons 
(green trace in     �  �     Fig.   2c(ii)  ). When, instead, the gain of the local 
inhibitory neurons in layer 2 is decreased, there is no effect on 
the fi ring in layer 1 (green trace in     �  �     Fig.   2c(iii)  ), but the tempo-
ral variations in the fi ring rate of the inhibitory neurons in layer 
2 are reduced in amplitude (dark blue trace in     �  �     Fig.   2d(iii)  ) just 
as they are when the sender neurons in layer 1 are modulated 
(    �  �     Fig.   2d(iii)  ). 
 In the example of     �  �     Fig.   2  , we modifi ed the responsiveness of 
particular neurons through gain modulation. Such modulation 
can be realized in two equivalent ways: either by reducing the 
strength of all the synapses onto the modulated neuron or by 
scaling its input-output transfer function so that the same syn-
aptic current generates a smaller response. No matter whether it 
was generated by reducing the responsiveness of excitatory 
sender or inhibitory target neurons, the modulation in this 
example was such that the response gain of local inhibitory neu-
rons in layer 2 was reduced to 15    %  of its control value. To control 
gating from layer 1, two distinct subgroups that target different 
types of neurons in layer 2 must exist (see     �  �     Fig.   1  ). Evidence for 
anatomical specifi city in the wiring to interneurons has been 

                Fig. 3            a) Network Pathologies:  Network 
response to various tuning defects for a given input 
( a ) and modulatory scheme ( b ). Conditions are as 
follows:  i ) No signal and no modulation;  ii)  no signal 
but  “ gated on ” ;  iii ) signal on,  “ gated on ”  and  iii ) the 
signal in the absence of modulation.  c ) Correctly 
tuned.  d ) Weakened local inhibition leads to gating 
defi cits.  e ) A hyperactive target region causes high 
fi ring rates even in the absence of a signal. The 
network defi cits of ( f ) and ( g ) can be combined ( h ), 
leading to a  “ schizophrenic ”  network state. Note 
that modulation affects solely the inhibitory cells 
of layer 2.  
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uncovered recently  [9] . For the sake of simplicity, we control 
gating from now on solely through gain modulation of the inhib-
itory neuron population in layer 2.   

 Network Pathologies 
  &  
 Even though fairly robust, signal gating and detailed balance 
require a well adjusted network. Neither the command modula-
tion that is used to unbalance pathways and turn on signal prop-
agation nor the signal itself can have an excessively destabilizing 
effect on the global excitatoryinhibitory balance of the network. 
Such tuning presents a challenge, and it may be nontrivial to 
maintain in real networks. Therefore, we might expect to see 
certain pathologies arising from failure to maintain proper 
tuning. 
 To test the network in various states of detuning, we impose the 
input shown in     �  �     Fig.   3a   with the modulatory scheme indicated 
in     �  �     Fig.   3b  . Panel i is the control condition with no signal or 
modulation imposed, panel ii has no signal but the signal-carry-
ing pathway is gain modulated, and panels iii and iv show the 
signal in the presence (iii) and absence (iv) of modulation. When 

correctly tuned, the excitatory neurons of the target subnetwork 
responds as in     �  �     Fig.   3c  , with a slight elevation in fi ring rate due 
to the activation of the gain modulation (panel ii), a strong 
response to the input signal in the presence of modulation (panel 
iii) and a weak response when the signal is present but modula-
tion is not (panel iv). 
 We consider two different examples of detuning. In one case, we 
reduce the synaptic strength of all the locally connected 
interneurons by 60    % . This has a number of effects (    �  �     Fig.   3d  ). 
Baseline rates in the control condition are somewhat elevated, 
even in the balanced state, by the reduced inhibitory activity 
(    �  �     Fig.   3d(i)  ). Little change is seen in the response to the gain 
modulation (    �  �     Fig.   3d(ii)  ), but     �  �     Fig.   3d(iii,   iv)   show that the 
gating mechanism no longer works properly. Due to the weak-
ened inhibition, excitatory inputs to the excitatory neurons of 
layer 2 cannot be fully balanced by local inhibition, and the sig-
nal cannot be gated off entirely (    �  �     Fig.   3d(iv)  ). If we associated 
the local inhibitory neurons in our model network with parval-
bumin postive (PV    +    ) inhibitory neurons in cortex, the failure of 
gating in this model with reduced inhibition could provide a 
functional basis for the hypothesis that reduced GABA produc-
tion in PV    +     interneurons may contribute to gating problems in 
schizophrenia  [13] . 
 Another way to detune the detailed balance in our network 
model is to increase the strengths of excitatory synapses within 
the target area, which we do by 60    % . Excitatory synapses onto 
excitatory and inhibitory neurons are both modulated in the 
same way, so a rough balance is still maintained within layer 2. 
Like reduced inhibition, this slightly elevates fi ring rates in the 
control condition (    �  �     Fig.   3e(i)  ). In response to gain modulation, 
reduction of inhibitory activity combined with the enhanced 
excitation in layer 2 causes high fi ring rates even in the absence 
of a signal (    �  �     Fig.   3e(ii)  ). We hypothesize that upstream areas 
would have diffi culty distinguishing the sharp rise in activity in 
response to the anticipatory modulatory gating signal from the 
actual response to the input signal itself (    �  �     Fig.   3e(iii)  ), which is 
hardly bigger in this case. Thus, in this state, the network might 
falsely transmit internally generated activity (the gating signal) 
as if it were an external signal. The inability to discriminate 
between external and internal activity could be related to the 
hallucinatory and delusional effects that have been hypothe-
sized to be due to pathological neuromodulation through defec-
tive dopaminergic regulation  [15,   18]  or NMDA hypofunction 
 [11,   13,   21,   29]  in schizophrenia. In the case of excess excitation, 
gating of the input signal still functions properly (    �  �     Fig.   3e(iv)  ), 
but the effects of insuffi cient local inhibition and excessive exci-
tation can be combined so that gating problems and false signal 
reporting occur in the same network (    �  �     Fig.   3f  ). 
 Schizophrenia is a complicated, multifaceted disorder, and sim-
ple models like the one described here unavoidably fail to encom-
pass it. Nevertheless, some parallels are intriguing.     �  �     Fig.   4   
shows a summary diagram of some of the hypothesized causes 
of schizophrenia at the cellular and synaptic levels (adapted 
from  [13] , see also  [6] ). Both of the pathologies seen in the wir-
ing scheme in     �  �     Fig.   4    —  defi cits in PV    +     interneurons and hyper-
excitability due to NMDA / dopamine malfunction  —  can be 
related to detuning scenarios we have proposed. The balancing 
problems we discussed could be found at either the dendritic 
level, manifesting themselves in dendritic computation and 
most likely controlled by basket cells, or within the integrating 
stages at the soma, where detailed balance could be coordinated 
by chandelier cells. Most likely, imbalance results from a mix-

   Fig. 4           Potential cellular and synaptic pathologies in schizophrenia 
(denoted by green arrows) that may be related to network detunings 
described in the text.  a)  GAD 67 down regulation is thought to decrease 
the functionality of PV    +     interneurons, similar to the case described 
in     �  �     Fig.   3d  . NMDA hypofunction is thought to have possible effects 
on the excitability of the same cell type as well as pyramids, and could 
lead to defi ciencies related to those shown in     �  �     Fig.   3e  . Figure adapted 
from  [13] .  
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ture of both of these, and perhaps they are independently con-
trolled by different downstream regions.     
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