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SUMMARY
The convergent evolution of the fly and mouse olfactory system led us to ask whether the anatomic connec-
tivity and functional logic of olfactory circuits would evolve in artificial neural networks trained to perform olfac-
tory tasks. Artificial networks trained to classify odor identity recapitulate the connectivity inherent in the
olfactory system. Input units are driven by a single receptor type, and units driven by the same receptor
converge to form a glomerulus. Glomeruli exhibit sparse, unstructured connectivity onto a larger expansion
layer of Kenyon cells. When trained to both classify odor identity and to impart innate valence onto odors,
the network develops independent pathways for identity and valence classification. Thus, the defining features
of fly andmouse olfactory systems also evolved in artificial neural networks trained to perform olfactory tasks.
This implies that convergent evolution reflects an underlying logic rather than shared developmental principles.
INTRODUCTION

The anatomic organization and functional logic of the olfactory

systems of flies and mice are remarkably similar, despite the

500million years of evolution separating the two organisms. Flies

and mice have evolved odorant receptors from different gene

families and employ distinct developmental pathways to

construct a similar neural architecture for olfaction, suggesting

that the similarity between the two olfactory systems emerged

by convergent evolution. The sensory neurons in each organism

express only one of multiple odor receptors. This singularity is

maintained with the convergence of like neurons to form

glomeruli so that mixing of olfactory information occurs only later

in the processing pathway. Convergent evolution of the olfactory

system may reflect the independent acquisition of an efficient

solution to the problems of olfactory perception. We asked

whether networks constructed by machine learning to perform

olfactory tasks share the organizational principles of biological

olfactory systems.

Artificial neural networks (ANNs) (LeCun et al., 2015) capable

of performing complex tasks provide a novel approach to

modeling neural circuits (Mante et al., 2013; Yamins and DiCarlo,

2016). Neural activity patterns from higher visual areas of mon-

keys viewing natural images resemble activity patterns from neu-

ral networks trained to classify many visual images (Yamins and

DiCarlo, 2016). These results reveal a correspondence between
Neu
the artificial and biological visually driven responses. However, it

has been difficult to determine to what extent the connectivity of

ANNs recapitulates the connectivity of the visual brain. Multiple

circuit architectures can be constructed by machine-learning

methods to achieve similar task performance, and details of con-

nectivity that might resolve this ambiguity remain unknown for

most mammalian neural circuits. In contrast, the precise knowl-

edge of the connectivity of the fly olfactory circuit affords a

unique opportunity to determine whether ANNs and biological

circuits converge with the same neural architecture for solving

olfactory tasks. In essence, we have used machine learning to

‘‘replay’’ evolution, to explore the rationale for the evolutionary

convergence of biological olfactory circuits.

In fruit flies, olfactory perception is initiated by the binding of

odorants to olfactory receptors on the surface of sensory neu-

rons on the antennae (Figure 1A). Individual olfactory receptor

neurons (ORNs) express one of 50 different olfactory receptors

(ORs), and all receptor neurons that express the same receptor

converge onto an anatomically invariant locus, a glomerulus

within the antennal lobe of the fly brain (Vosshall et al., 1999,

2000). Most projection neurons (PNs) innervate a single glomer-

ulus and send axons to neurons in the lateral horn (LHNs) of the

protocerebrum and to Kenyon cells (KCs) in the mushroom body

(MB) (Jefferis et al., 2007; Marin et al., 2002; Wong et al., 2002).

The invariant circuitry of the lateral horn mediates innate behav-

iors (Datta et al., 2008; Jefferis et al., 2007; Tanaka et al., 2004),
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mailto:yanggr@mit.edu
https://doi.org/10.1016/j.neuron.2021.09.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2021.09.010&domain=pdf


0 5 15 25 50
PN inputs per KC

0.00

0.25

Fr
ac

tio
n 

of
 K

C
s

K = 6.4 (2.7)

0 20 40 60
PN to KC Synapse Count

0.00

0.15

Fr
ac

. N
on

ze
ro

 C
on

n.

0.0 0.5
PN to KC Weight

0

1.2K

N
um

be
r o

f C
on

n. 112K

0 5 15 25 50
PN inputs per KC

0.00

0.25

Fr
ac

tio
n 

of
 K

C
s K = 5.0 (2.1)

1 50From ORs

1

50

To
 P

N
s

OR-PN effective connectivity

0.0

4.6

W
ei

gh
t

1 50From PNs

1

20

To
 K

C
s

PN-KC connectivity

0.0

0.3

W
ei

gh
t

1 50From ORs

1

500

To
 O

R
N

s

OR-ORN connectivity

0

1

W
ei

gh
t

1 500From ORNs

1

50

To
 P

N
s

ORN-PN connectivity

0.0

0.4

W
ei

gh
t

Projection
Neurons

Kenyon
Cells

Olfactory
Receptor
Neurons

Glomerulus

100 Class
Readout

2,500 KCs

50 PNs

50 ORs

500 ORNs

WORN-PN

WPN-KC

WOUT

WOR-ORN

0 1OR 1 Activity
0

1

O
R

 2
 A

ct
iv

ity

Class A

Class B

Class C

Class D

Class C

Class B

0 25 50 75
Epoch

0.0

0.5

1.0

C
os

in
e 

Si
m

ila
rit

y

Trained
Shuffled

0.0

0.5

1.0

Ac
cu

ra
cy 0.75 0.75 0.74 0.76 0.76 0.75

0.0

0.5

1.0
G

lo
Sc

or
e 0.89 0.79 0.75 0.84 0.85 0.75

0.0 0.2 0.4 0.6 0.8 1.0
KC rec. inh. strength

1
5

10
15
20

K 6.7 7.1 7.9 9.2 9.9WPN-KC

WOUT1 APL

WORN-PN

Connectome Connectome

A

D

H

J K M

I L N

E F G

B C

Figure 1. Artificial neural network evolves with the connectivity of the fly olfactory system

(A) The fly olfactory system.

(B) Illustration of the task. Every odor (a million in total; 100 shown) is a point in the space of ORN activity (50 dimensions; two dimensions shown) and is classified

based on the closest prototype odor (triangles, 100 in total; four shown). Each class is defined by two prototype odors.

(C) Architecture of the artificial neural network. The expression profile of ORs in every ORN, as well as all other connection weights, is trained.

(D) OR-ORN expression profile after training. ORNs are sorted by the strongest projecting OR.

(E) ORN-PN mapping after training. Each PN type is sorted by the strongest projecting ORN.

(F) Effective connectivity from OR to PN type, produced by multiplying the matrices in (D) and (E).

(G) PN-KC connectivity after training, showing only 20 KCs (2,500 total).

(H) Distribution of PN-KC connection weights after training shows the split into strong and weak groups. Connections weaker than a set threshold (dotted gray

line) are pruned to zero (left peak).

(I) Distribution of KC input degree after training. Text near the peak shows the mean and SD. K is the average number of PN inputs per KC.

(J) Distribution of PN-KC-synapse counts from the fly hemibrain connectome (Li et al., 2020).

(K) Distribution of KC input degree from the connectome data. Left peak corresponds to connections with one synapse.

(L) Average cosine similarity between the weights of all pairs of KCs during training. At every epoch, the cosine similarity was also computed after shuffling the

PN-KC connectivity matrix. This shuffling preserves the number of connections each KC receives but eliminates any potential structured PN inputs onto

individual KCs.

(legend continued on next page)
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whereas the MB translates olfactory sensory information into

associative memories and learned behaviors (de Belle and Hei-

senberg, 1994; Dubnau et al., 2001; Heisenberg et al., 1985;

McGuire et al., 2001).

Individual KCs, the intrinsic neurons of theMB, receive unstruc-

tured input from �4–10 PNs (Caron et al., 2013; Li et al., 2020;

Zheng et al., 2018) and densely innervate MBONs, the extrinsic

output neurons of the mushroom body (Aso et al., 2014a; Caron

et al., 2013; Chia and Scott, 2020; Hattori et al., 2017; Li et al.,

2020; Tanaka et al., 2004; Zheng et al., 2018). Synaptic plasticity

at the KC-MBON synapse results in olfactory conditioning and

mediates learned behaviors (Cohn et al., 2015; Felsenberg et al.,

2018; Handler et al., 2019; Hige et al., 2015).

The anatomic organization and functional logic of the mouse

olfactory system is remarkably similar to that of the fly olfactory

circuit. Sensory neurons in the mouse express only 1 of �1,000

odorant receptors (Buck and Axel, 1991; Godfrey et al., 2004;

Zhang and Firestein, 2002). Neurons expressing a given receptor

converge onto topographically fixed glomeruli in the olfactory

bulb, the vertebrate equivalent of the antennal lobe (Mombaerts

et al., 1996; Ressler et al., 1993, 1994; Vassar et al., 1994). The

mouse PNs, mitral and tufted cells, project to the primary olfac-

tory cortex where they synapse onto �1 million piriform neurons

(Price and Powell, 1970). Piriform neurons receive roughly 30–

100 inputs from an apparently random collection of glomeruli

(Davison and Ehlers, 2011; Miyamichi et al., 2011). The hemi-

brain connectome of the fly brain (Scheffer et al., 2020) are re-

ported to have numerous axonal-axonal synapses between

KCs in the MB, but they are not believed to be functional (Li

et al., 2020). In contrast, pyramidal cells of the piriform cortex

make functional, recurrent connections with other excitatory

neurons (Franks et al., 2011). These recurrent connections are

important for concentration-invariant odor coding (Bolding and

Franks, 2018; Stern et al., 2018) and may shape odor tuning dur-

ing passive odor experience and learning (Pashkovski et al.,

2020; Schoonover et al., 2021).

The convergent evolution of the fly and mouse olfactory sys-

tems led us to ask whether the anatomic connectivity and func-

tional logic of olfactory circuits would evolve in artificial neural

networks constructed to perform olfactory tasks. We used sto-

chastic gradient descent (Bottou, 2010; KingmaandBa, 2014; Le-

Cun et al., 2015; Rumelhart et al., 1986) to construct ANNs that

classify odors. In trained networks, we found singularity of recep-

tor expression, convergence to form glomeruli, and divergence to

generate sparse, unstructured connectivity that recapitulates the

circuit organization in flies and mice. We found that a three-layer,

input-convergence-expansion structure is both necessary and

sufficient for the odor classification tasks we considered. We

also trained neural networks to classify both odor class and

odor valence. After training, an initially homogeneous population

of neurons segregated into two populations with distinct input

and output connections, resembling learned and innate path-
(M and N) Investigation of the effect of a recurrent inhibitory neuron in the KC laye

models the anterior paired lateral (APL) neuron. The recurrent inhibitory neuron

uniformly in return. (N) Top to bottom: accuracy, GloScore, and KC input degree

recurrent inhibition moderately increases KC input degree and has no clear effec

which the degree of the KC input cannot be reliably inferred (Method details).
ways. These studies provide a logic for the functional connectivity

of the olfactory systems in evolutionarily distant organisms.

RESULTS

ANNs converge with biological structures
We designed a family of odor classification tasks that mimic the

ability of animals to distinguish between odor classes and to

generalize within classes. In themodel, each odor elicits a unique

pattern of activation across the ORs. Odors are assigned to 100

classes that are defined by odor prototypes. Specifically, each

odor belongs to the class of its nearest prototype, measured

by the Euclidean distance between receptor activations (Fig-

ure 1B). Using only a single prototype to define each class results

in a relatively simple olfactory task that can be solved without us-

ing the layers of olfactory processing that we wish to explore

(Figures S2A–S2D). Thus, we consider classes that are defined

by multiple prototypes, predominantly using two prototypes

per class. This means that an odor class corresponds to an as-

sociation involving multiple different types of odors. We used a

training set of a million randomly sampled odors to construct

the networks and assessed generalization performance with a

test set of 8,192 = 213 additional odors.

We first modeled the olfactory pathway as a feedforward

network with layers representing 50 ORs, 500 ORNs, 50 PN

types, and 2,500 KCs (Figure 1C; method details). In the

following sections, we will consider more realistic network archi-

tectures with local interneurons. Themodel also included a set of

100 output units that allow us to read out the class assigned by

the model to a given odor (instead of directly modeling MBONs).

The strengths of model connections between the OR and ORN

layers represent the levels of expression of the 50 different re-

ceptor types in each ORN. ORN-to-PN and PN-to-KC connec-

tions represent excitatory synapses between those cell types

and are, therefore, constrained to be non-negative. We chose

to represent the �150 PNs in the antennal lobe as 50 PN types

because the �3 homotypical ‘‘sibling’’ PNs that converge onto

the same glomerulus show almost identical activity patterns (Ka-

zama and Wilson, 2009; Masuda-Nakagawa et al., 2005). We,

hereafter, refer to PN types as PNs. Initially, all connections

were all-to-all and random (Figure 1C), meaning that every

ORN expressed every OR at some level and connected to every

PN. Similarly, each PN initially connected to all the KCs. Neural

responses were rectified, linear functions of the total synaptic

input, and batch normalization, a process resembling neuronal

response adaptation, was applied to PN activity (method de-

tails). The network was trained by altering its connection weights

and bias currents with the goal of minimizing classification loss.

This occurs when there is high activity only in the readout unit

representing the correct class associated with each odor. This

process can be thought of as evolving a circuit architecture in

silico.
r. (M) Schematics of a network with a recurrent inhibitory neuron at the KC layer

receives uniform excitation from all KC neurons and inhibits all KC neurons

(K) for networks with different strengths of KC recurrent inhibition. Stronger KC

t on the accuracy and GloScore. The K value is not shown for the network in

Neuron 109, 3879–3892, December 1, 2021 3881
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Following training of the network, classification was�75% ac-

curate (chance is�1%). The initial random, all-to-all connectivity

changed dramatically during the training process. After training,

all but one of the OR-to-ORN coupling strengths for each OR

were close to zero (Figure 1D). This corresponds to the expres-

sion of a single OR in each ORN. Similarly, all but �10 of the

ORN connections to each PN approach zero (Figure 1E) and,

for each PN, all of those connections arose from ORNs express-

ing the same OR type (Figure 1E). This recapitulates the conver-

gence of like ORNs onto a single glomerulus and the innervation

of single glomerulus by individual PNs (Mombaerts et al., 1996;

Vosshall et al., 2000). The extent that PNs receive input from a

single OR type was quantified by GloScore, which, for each

PN, is the difference in magnitude between the strongest two

connections it receives from the OR types, divided by their

sum (method details). A GloScore of 1 indicates that each PN re-

ceives all its inputs from a single OR type, recapitulating fruit fly

connectivity. During training of the network, the GloScore of

ORN-PN connectivity started near 0 and quickly approached

values close to 1 (Figure S1B). Thus, the model recapitulates

both the singularity of OR expression in the ORNs and the exis-

tence of glomeruli in which ORNs expressing the same OR

converge and connect to a glomerulus innervated by a single

PN type.

The model also recapitulated distinctive features of PN-to-KC

connectivity. Each KC initially received connections from all 50

PNs but, during training, connections from PNs to KCs became

sparser (Figures 1G and S1B). To quantify the number of PN

inputs that each KC received, weak PN-to-KC connections

were pruned to zero during training (Figures 1H, S1D, and

S1E). Results are insensitive to the precise value of the pruning

threshold, and pruning did not reduce classification performance

(Figure S1D). Furthermore, we found that the average number of

PNs per KCs, K plateaued during training, with a sparse K � 3–7

PN inputs for each KC (Figures 1Ii and S1B). This closely

matches the value (K � 6), derived from the hemibrain connec-

tome of the adult fruit fly (Figures 1J and 1K; Li et al., 2020).

Importantly, this sparse connectivity can also be obtained

without pruning (Figure S1D; method details). In some cases,

no distinct gap separated weak from strong synapses, making

an estimate of connection sparsity ambiguous; we identified

those instances when they occurred and excluded them from

further analyses (Figure S1C).

The sparsity and lack of structure in the PN-to-KC connections

of themodel recapitulated the properties of those connections in

the fly (Caron et al., 2013; Li et al., 2020; Zheng et al., 2018). The

sparse KC input had no discernable structure (Figures 1L and

S3); the average correlation between the input connections of

all pairs of KCs is similar to the correlations obtained by randomly

shuffled connectivity at every training epoch (Figure 1L). Thus,

from ORs to KCs, the ANNs we have trained to classify odors

exhibit connectivity that mirrors the layered circuitry of the fly

olfactory system, with individual ORs expressing only 1 of 50

receptors, similar ORNs converging onto a single glomerulus, in-

dividual PNs receiving input from only a single glomerulus, and

KCs receiving sparse and unstructured connections from PNs

(Video S1). These results were invariant to model hyper-param-

eters, such as training rate and input noise (Figure S1). Moreover,
3882 Neuron 109, 3879–3892, December 1, 2021
they were also independent of non-zero activity correlations

among different ORs (Figures S4A and S4B). Uniglomerular

PNs and sparse, random PN-to-KC connectivity are necessary

for high accuracy (Figure S4C). Forcing each PN to receive in-

puts from multiple ORs (Figure S4D) or introducing stereotypy

in PN-to-KC connections (Figure S4E) both substantially reduce

accuracy. In all subsequent modeling experiments, we did not

include the OR-to-ORN connectivity; instead, every ORN was

constructed to express a single OR.

KCs in the fly are inhibited largely through feedback from a

non-spiking interneuron, the anterior paired lateral (APL) neuron

(Aso et al., 2014a; Lin et al., 2014; Tanaka et al., 2008). We

modeled the APL assuming that it receives excitatory input

from all KCs and iteratively provides subtractive feedback inhibi-

tion onto every KC (Figure 1M). Feedback inhibition did not

strongly influence the number of PN inputs per KC, the formation

of glomeruli, or task performance (Figure 1N).

Dependence of results on model features
We next investigated how our results depend on key biological

features in the models. The most critical element for the results

we have reported is the restriction to non-negative OR-ORN,

ORN-to-PN, and PN-to-KC connections. Convergence of

ORNs expressing the same OR onto PNs does not occur if con-

nections are not sign constrained. Gloscores drop if ORN-PN

connections are not sign constrained, although classification ac-

curacy is maintained (Figure 2A). In this case, PNs received a

dense array of inhibitory and excitatory connections from ORN

inputs, with the ORN connection patterns received by PNs

largely uncorrelated (Figures S5A–S5D).

To explore the effect of varying cell numbers, we first trained

networkswith different numbers of KCs,withORNsandPNsfixed

at 500and50, respectively. As thenumberofKCswasdecreased,

PNs were sampled from multiple ORs, decreasing the GloScore

and classification performance (Figures 2B, S5F, S6G, and

S6H). Thus, a large expansion layer of KCs is necessary for high

classification performance but, with the reduced numbers of

KCs, some compensatory mixing occurs at the PN level.

We also varied the number of PNs while keeping the numbers

of ORNs and KCs fixed at 500 and 2,500, respectively. When the

number of PNs is less than the number of unique OR types (50),

the PN layer acts as bottleneck and mixing occurs to ensure that

all ORs are represented (Figures 2C, S5E, and S6A), but perfor-

mance suffers. When the number of PNs is greater than 50, we

observed some PN mixing of ORN input, although that did not

improve classification accuracy, which saturates at 50 PNs (Fig-

ures 2C, S5E, and S6B). A closer examination revealed that PNs

segregate into two distinct populations, a population of uni-

glomerular PNs receiving a single type of OR and multi-glomer-

ular PNs receiving multiple types of ORs (Figures S6C–S6F).

Moreover, the connection strengths from uni-glomerular PNs

to KCs were strong and crucial for classification performance.

In contrast, connection strengths from multi-glomerular PNs to

KCs were weak, and silencing them minimally impaired classifi-

cation performance (Figures S6D–S6E).

Why does a PN layer exist if glomerular connectivity simply

copies ORN activity forward to the PNs? Experimental work

has shown that the PN layer normalizes odor-evoked responses
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Figure 2. Dependence of results on biological features

(A) Top to bottom: accuracy, GloScore, and KC input degree as a function of training for networks with and without the non-negativity constraint for ORN-PN

connections.

(B and C) Summary of accuracy, GloScore, and KC input degree for trained networks with varying numbers of KCs (B) and varying numbers of PNs (C). When the

number of PNs is high, the KC input degree cannot be reliably inferred.

(D) Schematics of two concentration-invariant tasks. The odor prototypes (triangles) lie on the unit sphere, making classification boundaries radiate outward from

the origin. The class that each odor belongs to therefore depends on its normalized activity and not on its concentration (i.e., magnitude of OR activity), unlike in

the standard task (Figure 1B). (Left) A dataset in which each OR activity is uniformly distributed across odors. (Right) A dataset in whichweak and strong odors are

more common. The proportion of odors with extreme concentration values is proportional to the ‘‘spread,’’ a parameter between 0 and 1 (see method details).

(E) Biological implementations of activity normalization (divisive normalization) rescues classification performance in a concentration-invariant classification task

when odor concentration is highly variable. In contrast, a normalization method widely used in machine learning, batch normalization (Ioffe and Szegedy, 2015),

does not improve performance.
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(Olsen et al., 2010), which is likely to be important for classifica-

tion of odors across a range of concentrations. We trained a

feedforward network (Figure 1C) to perform concentration-

invariant classification with and without PN normalization and

systematically varied the range of odor concentrations in the

task dataset (Figure 2D; method details). We normalized PN ac-

tivity using a divisive normalization model inspired by the exper-

imental studies (Luo et al., 2010; Olsen et al., 2010). As the range

of odor concentrations increased, divisive normalization allowed
the network to perform concentration-invariant classification

(Figure 2E). K remains sparse when divisive normalization is

introduced (Figures S6I and S6J), regardless of the range of

odor concentrations.

Recurrent neural networks converge to biological
structures
By varying the numbers of PNs and KCs, we found that perfor-

mance plateaus when the number of PNs (50) matches the
Neuron 109, 3879–3892, December 1, 2021 3883
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number of ORs, and marginal performance gains were observed

when the number of KCs was increased past 2,500. However, in

the models we have considered thus far, the number of neurons

in each layer and the number of layers were fixed. We next asked

what structure emerges from a neural network that is not only

capable of modifying connection strengths but also capable of

allocating the number of neurons per layer.

To remove a priori constraints on the numbers of neurons at

each layer, we constructed a recurrent neural network model

(RNN) in which ‘‘layers’’ are represented by network processing

steps (Figure 3A). The RNN receives odor inputs at the first time

step and produces classification outputs after several steps of

processing. The training algorithm determines how many neu-

rons are active at each processing step, allowing us to infer a

particular layered network architecture. This unconventional

use of an RNN allowed us to study how finite resources—neu-

rons and their connections—should be distributed across layers,

while training only a single network.

We first considered an RNN in which odor classes were read

out after three processing steps (Figure 3A). The RNN model

contained 2,500 neurons and was initialized with random, all-

to-all, non-negative connectivity between all neurons. At the first

processing step, 500 of the 2,500 recurrently connected neurons

were provided with OR inputs, and the remainder of the neurons

were silent. Thus, this first step of processing represents the

ORN layer. After training, this RNN reaches 67% accuracy,

slightly lower than that of the feedforward network.

To test whether the RNN self-organized into a compression-

expansion structure like the feedforward network, we quantified

how many neurons were active at each processing step.

Because we did not regularize for activity in the RNN units, a sig-

nificant number of neurons have non-zero, but weak, activations

to odors (Figure S7A). Those levels of activity were bimodally

separate from units possessing high levels of activity and were

counted as inactive (Figure S7A; method details). Although the

RNN could have used all 2,500 neurons at each processing

step, odor-evoked activity from the 500 neurons initialized with

ORN activations propagated strongly to only �50 neurons after

the second processing step (Figure 3D). This resulted from the

convergence of ORNs onto these PN-like neurons (Figure 3B).

In contrast, nearly all neurons of the RNN at the third processing

step had average activities (across odors) above the threshold

(Figure 3C). These neurons were driven by sparse, unstructured

connections from �5–10 PN-like neurons to the remaining

�2,500 RNN neurons (Figures 3C, S7B, and S7D). Thus, the

RNN recapitulated known features of the olfactory circuitry

even when the numbers of neurons available at each level was

unconstrained.

We next examined the consequence of allowing the RNN to

perform four processing steps, which is equivalent to forcing

an additional feedforward layer before classification of odors

(Figure 3E). Interestingly, that network did not use the extra layer

to perform additional computations. Rather, it simply copied the

activity of the 50–55 PN-like neurons at the second processing

step to another similar set of �100 neurons at the third process-

ing step, activating only the bulk of the 2,500 neurons at the

fourth processing step (Figures 3F–3I and S7E–S7H). This result

shows that the three-layer olfactory system architecture (input,
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compression, expansion) is sufficient for the olfactory tasks we

considered.

Network models with ongoing plasticity
Thus far, we have shown that biological connectivity emerges

from both feedforward and recurrent network models when

trained on an odor classification task with fixed odor-class map-

pings. However, the fly olfactory circuit must accommodate the

learning of novel odor associations for the fly to adapt success-

fully to new environments. Evidence strongly suggests that plas-

ticity in synaptic connections from KCs to MBONs underlies ol-

factory learning (Cohn et al., 2015; Felsenberg et al., 2018;

Handler et al., 2019; Hige et al., 2015), whereas the PN-KC

connection strengths are thought to be fixed (Gruntman and

Turner, 2013; Wilson, 2013). We, therefore, introduced Hebbian

plasticity between KCs and class neurons and sought to under-

stand how the KC representation can support ongoing learning.

To focus on the PN-KC representation, we eliminated the ORN

layer in these studies (Figure 4A).

Up to this point, networks were trained to assign odors to a

fixed set of classes. Now, we constructed networks that, after

training, could continue to learn new odor classes. That was

possible because the networks were expanded to include

ongoing plasticity at the synapses between the KCs and output

units (method details). On each episode, we randomly selected

16 odors from each of two odor classes drawn from the dataset

described previously (Figure 1B). During each episode, the feed-

forward network (Figure 4A) uses synaptic plasticity to learn a

new odor-class mapping (Figure 4B) (Finn et al., 2017). After

training, the KC-output synapses have undergone plastic up-

dates whereas the remaining network weights were fixed

(method details).

After the update of the plastic synapses, performance for each

training episode was assessed by a set of new odors drawn from

each one of the two odor classes used on that episode, and the

non-plastic network weights were adjusted by backpropagation

to minimize errors. This encourages the network to generalize to

new odors based on a limited set of sampled odors (16-shot

learning). At the start of each episode, non-plastic network

weights were retained but plastic weights were reset. We asked

what connectivity evolved between PNs and KCs to support

rapid, flexible learning at the output synapses.

We found that, after training, networks with KC-output

plasticity were capable of learning new odor categories.

Those networks reached up to 80% accuracy in the 16-shot

learning task (Figure S8A). Sparse, unstructured connectivity

emerged in plastic network models, with an average of �5

PNs per KC (Figures 4D and 4E). Those results did not

depend strongly on hyper-parameters, such as the addition

of trainable ORN-PN weights, the number of classes per

episode, or the number of training odors per class (Figures

S8A–S8C). We conclude that PN-KC connectivity supporting

rapid, flexible learning is similar to that observed in the orig-

inal odor classification task.

Predicting connection sparsity for different species
The anatomic organization and functional logic of the fly olfactory

system is shared with the mouse despite the large evolutionary
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Figure 3. Recurrent neural networks converge with biolog-
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(A) Schematic of a recurrent neural network using recurrent connec-

tions (WREC) (left) and the equivalent ‘‘unrolled’’ network diagram

(right).

(B and C) Network connectivity between neurons whose activity,

when averaged across all odors, exceeds a threshold at different

steps. (B) Connectivity from neurons active at step 1 to neurons active

at step 2. Connections are sorted. (C) Connectivity from neurons

active at step 2 to neurons active at step 3, showing only the first 20

active neurons at step 3.

(D) Number of active neurons at each step of computation. At step 1,

only the first 500 units in the recurrent network are activated by odors.

Classification performance is assessed after step 3.

(E–I) Similar to (A)–(D), but for networks unrolled for four steps, instead

of 3. Classification readout occurs at step 4. Effective step 2–4 con-

nectivity is the matrix product of step 2–3 (G) and step 3–4 connec-

tivity (not shown).
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(D) Distribution of PN-KC connection weights after training.

(E) Distribution of the KC input degree after training.
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distance separating the twospecies. In bothmouse andfly,ORNs

converge onto a glomerular compression layer, which then pro-

jects sparsely to an expansion layer (KCs in the fly, piriform cortex

neurons in the mouse). Unlike in the fly, the input degree to the

expansion layer in mouse (or any other species) can only been in-

ferred from existing data as K � 40–100 (Davison and Ehlers,

2011; Miyamichi et al., 2011; Figure 5; method details).

We hypothesize that this input degree depends on a variety of

parameters but most heavily on the number of OR types (�1,000

in the mouse compared with �50 in fly). Therefore, in our neural

network, we asked how the expansion layer input degree (K)

scales with the number of ORs (N), termed K � N scaling. We

have presented networks trained to perform two related yet

different tasks, one with a fixed set of odor classes using super-

vised training and non-plastic synapses (Figure 1), and the other

with changing odor classes using meta-training and plastic syn-

apses (Figure 4). Both of these led to similarly sparse PN-KC

connectivity in fly-sized networks, K � 5–7 for N = 50 (Figures

1I and 4E). We now quantify the K � N scaling for each of them.

We constructed feedforward network models with different

numbers of ORs to examine how their connectivity scales with

OR number (Figure S9). Over the range we considered, K always

increased as a power law function of N. However, the K � N

scaling was substantially different across the two tasks. We

found that Kz 0.37N0.82 for networks trained with fixed classes

(Figure 5, blue line), whereas K z 2.84N0.12 for networks with

plasticity (Figure 5, red line). Notably, both scaling results predict

qualitatively sparse connectivity because the exponents are
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significantly less than 1. The shallower scaling found in plastic

networks is broadly consistent with that predicted by previous,

theoretical work based on determining the wiring that maximizes

dimensionality (Figure 5, gray line; Litwin-Kumar et al., 2017). The

connectivity that maximizes dimensionality gives rise to K z
1.16N0.31 (method details).

Although both the fixed and plastic tasks we used to construct

networks result inquantitatively similar sparsePN-KCconnectivity

in fly-sized networks, theymake substantially different predictions

formouse-sizednetworks (N�1,000):Kz0.3731,0000.82z106

for fixed-category training, and K z 2.843 1,0000.12 z 7 for the

plastic task. Therefore, only fixed-category training appears to

produce a result consistent with the mouse data (K � 40–100).

However,wenote thatwehaveonly exploredonemethod to intro-

duce ongoing plasticity. The apparent discrepancy between the

mouse data and our plastic network prediction should not be

taken asevidence that plasticity and rapid learning of associations

are not important in early olfactory processing.

The emergence of an innate pathway
The repertoire of odorant receptors supports the detection of

many odors in the environment, but fewer receptors exhibit

specificity for odors that elicit innate behaviors (Dweck et al.,

2015; Ebrahim et al., 2015; Kurtovic et al., 2007; Min et al.,

2013; Stensmyr et al., 2012; Suh et al., 2004). In flies, PNs acti-

vated by those odors project to topographically restricted re-

gions of the lateral horn (LH) to drive innate responses (Datta

et al., 2008; Jefferis et al., 2007; Ruta et al., 2010; Varela et al.,



Figure 5. Sparsity for different species

The input degree K for networks with different numbers of ORs (N). K is pre-

dicted by various methods and is fitted with power-lawlines. Cyan, training

using the fixed-odor categorization task; red, meta-training using the plastic

odor-categorization task; gray, optimal K predicted by maximum dimension-

ality (Litwin-Kumar et al., 2017); crosses, experimental estimates. [2]: Miya-

michi et al., 2011; [3]: (Davison and Ehlers, 2011). For each N, error bars are

derived from networks trained with different learning rates.
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2019). We asked whether an artificial network could evolve

segregated pathways for innate and learned responses.

We trained neural networks to classify both odor class and

odor valence. Odor class was determined as in our original

models. To add an innate component, each odor was assigned

to one of three categories: ‘‘appetitive,’’ ‘‘aversive,’’ or ‘‘neutral.’’

Neutral odors activated all ORs as in our previous networks, with

activations drawn from a uniform distribution between 0 and 1

(Figure 6A, left). Each odor bearing a non-neutral valence acti-

vated all ORs but also activated a single innate OR especially

strongly (on average three times stronger than other ORs). Of

the 50 ORs, five were assigned innately appetitive responses,

and another five were assigned innately aversive responses.

We used a feedforward architecture with 500 ORNs, 50 PNs,

and 2,500 third-order neurons that project to both class and

innate valence output units (Figure 6B). In this case, there were

two sets of output units, one set to report odor class, and another

to report odor valence. The 2,500 third-order model neurons rep-

resented a mixture of LHN and KC neurons, allowing us to inves-

tigate whether the segregation into two distinct populations was

recapitulated by the model.

The network successfully performed both odor classification

and valence determination. Glomeruli emerged for neutral,

appetitive, and aversive ORs (Figure S10A). The network also

generated two segregated clusters of third-order neurons (Fig-

ures 6C, 6D, and S10B; method details). These clusters were

segregated based on both input and output connectivity profiles.

Cluster 1 typically contains �2,000 neurons (Figures S10C and

S10D). Cluster 1 neurons are analogous to KCs and project

strongly to class readout neurons but weakly to valence readout

neurons (Figures 6C and 6D). They receive �5–7 strong inputs

from random subsets of PNs (Figures 6E, 6F, S10E, and S10F).

In contrast, cluster 2 is smaller, containing �50–200 neurons.
Cluster 2 neurons, analogous to LHNs, project strongly to

valence readout neurons (Figures 6C and 6D) and, typically,

only receive a single strong PN input (Figures 6E and 6F).

Thus, the inputs to the KCs are unstructured, whereas the con-

nections to LHN-encoding, innate valence are valence specific

(Figure 6F). The innate pathway does not emerge if there are

no innate odor receptors that respond more strongly to innate

odors (Figures S10G–S10I).

We lesioned each cluster of KC/LHN neurons separately to

assess its contribution to odor and valence classification. Le-

sioning the putative KC cluster (cluster 1) led to a dramatic

impairment in odor classification performance (Figure 6G) but

left the determination of valence intact (Figure 6H). In contrast,

lesioning the putative LH cluster (cluster 2) substantially impaired

valence determination (Figure 6H) but had little effect on classi-

fication performance (Figure 6G). These results demonstrate

that the model network can evolve two segregated pathways

analogous to those in the fly.
DISCUSSION

Networkmodels constructed frommachine learning approaches

have been used to study the responses of neural circuits and

their relationship to circuit function by comparing the activities

of network units and recorded neurons (Mante et al., 2013;

Masse et al., 2019; Yamins and DiCarlo, 2016; Yamins et al.,

2014; Yang et al., 2019). Machine learning models generate

unit responses and perform the tasks they are trained to do by

developing specific patterns of connectivity. It is difficult to

perform a detailed comparison of those connectivity patterns

with biological connectomes (Cueva et al., 2019; Uria et al.,

2020), given the limited connectomic data. The current availabil-

ity of connectome data from flies (Li et al., 2020; Zheng et al.,

2018) and the promise of more connectome results in the future

make this an opportune time to explore links between biological

connectomes and machine learning architectures.

We found that broad network architectures and detailed fea-

tures of synaptic connectivity shared by the fly and themouse ol-

factory systems also evolved in artificial neural networks trained

to perform olfactory tasks. The observation that machine

learning evolves an olfactory systemwith striking parallels to bio-

logical olfactory pathways implies a functional logic to the suc-

cessful accomplishment of olfactory tasks. Importantly, the arti-

ficial network evolves without the biological mechanisms

necessary to build those systems in vivo. This implies that

convergent evolution reflects an underlying logic rather than

shared developmental principles. Stochastic gradient descent

and mutation and natural selection have evolved a similar solu-

tion to olfactory processing.

We constructed feedforward and recurrent networks using sto-

chastic gradient descent. When the feedforward networks were

initialized with each ORN that expressed all 50 receptors, each

ORN evolved to express a single receptor type, recapitulating

the expression pattern of ORs in flies and mice. Further, ORNs

that express a given receptor converge on a single PN, and PNs

connect with like ORNs to create a glomerular structure. This

convergence, observed in both flies andmice, ensures thatmixing
Neuron 109, 3879–3892, December 1, 2021 3887
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Figure 6. Emergence of separate innate and learned pathways

(A) Illustration of the class (left) and valence (right) tasks. Non-neutral odors (right, appetitive in blue or aversive in red) each strongly activates one non-neutral OR.

The network is trained to identify odor class (left), as previously described (Figure 1B) and also to classify odors into three valences (right).

(B) Schematic of a neural network that is trained to identify both odor class and odor valence using separate class and valence readout weights.

(C) Distribution of third-layer neurons based on output connection strengths to valence readout neurons against connection strengths to class readouts. K-means

clustering revealed that the third layer can be segregated into two clusters. The density of each cluster is normalized to the same peak value.

(legend continued on next page)
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of information across ORs does not occur at early processing

layers.

In the network models we studied, each KC initially received

input from all 50 PNs, but those connections became sparse dur-

ing training, with each KC ultimately receiving information from

�4–10 PNs, in agreement with the fly circuitry. Although most

of our machine modeling was based on the olfactory system in

flies, we extrapolated our networks to olfactory systems of far

greater size. The results of this extrapolation depended on the

task and training procedure. For fixed-odor classes, the original

task we considered, we obtained an estimate of the number of

inputs to piriform neurons from the olfactory bulb, in rough

agreement with data from the mouse (40–100).

The architecture of olfactory systems, in vivo and in silico, is

based upon two essential features: converging of many ORNs

onto a few glomeruli, followed by an expansion onto a much

larger number of third order neurons. Previous theoretical work

suggests that a goal of the olfactory systemmay be to construct

a high-dimensional representation in the expansion layer (KCs in

the MB or pyramidal cells in the piriform cortex) to support infer-

ences about the behavioral relevance of odors (Babadi and Som-

polinsky, 2014; Litwin-Kumar et al., 2017). This hypothesis has

two important implications for our results.

One result of this previous work is that task performance is pro-

portional to dimensionalitywhenodor classes are learned through

synaptic plasticity of aHebbian form (Litwin-Kumar et al., 2017). In

the learning task that we considered, new odor classes were

learned through synaptic plasticity that fits into the Hebbian cate-

gory, so the resulting network should maximize the dimension of

the expansion layer odor representation to optimize performance.

Indeed, we found that the sparsity of connections in the resulting

networks has a power-law dependence on the number of olfac-

tory receptor types that roughly agrees with the scaling that fol-

lows from maximizing dimensionality. However, we obtained a

quite different scaling when we trained non-plastic networks on

the fixed-class task. Because these networks do not involve Heb-

bian plasticity, it is not surprising that they exhibit a different de-

gree of sparsity, but we do not currently know of an underlying

theoretical principle that can explain the sparsity and scaling we

found in the non-plastic case. Interestingly, it is this case that

agrees with existing data on the connectivity in the mouse (Davi-

son and Ehlers, 2011; Miyamichi et al., 2011).

Another requirement for achieving maximum dimensionality is

that the representation of odors by the PNs should be uncorre-

lated (Litwin-Kumar et al., 2017). This provides an explanation

for the formation of glomeruli in our network models. The OR ac-

tivationswe usedwere uncorrelated and, tomaximize dimension-

ality, the transformation fromORs to ORNs and then to PNsmust

not introduce any correlation. When the weights along this

pathwayareconstrained tobenon-negative, the only connectivity
(D) The connectivity matrix from the first 10 third-layer neurons from each cluster to

are shown .

(E) Distribution of third-layer neurons based on output connection strengths to vale

is difficult to see because almost all of them have the same input-degree value o

(F) The connectivity matrix from PNs to the first 10 third-layer neurons from each

(G and H) Lesioning the KC-like cluster (group 1) leads to a dramatic drop in od

impaired odor valence performance (H).
pattern that does not induce PN-PN correlations is an identity

mapping fromORtypes toPNoutput. This ispreciselywhat singu-

lar OR expression and OR-specific projection through olfactory

glomeruli provides. Interestingly, the results we found suggest

that these ubiquitous features of the biological olfactory pathways

are not simply a consequence of noise robustness, as has been

conjectured, but, rather, arise as the unique solution to eliminating

correlations in the glomerular layer to maximize the dimension of

the expansion layer.
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Materials availability
This study did not generate new, unique reagents.

Data and code availability
This paper analyzes existing, publicly available data. These datasets are listed in the key resources table. All new data reported in this

paper will be shared by the lead contact upon request.

All original code has been deposited at https://github.com/gyyang/olfaction_evolution and is publicly available. Key resources ta-

bleBesides code to reproduce every panel in the paper, we also make available a self-contained Jupyter notebook that reproduces

key results and allows easier exploration.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Datasets
To generate the standard dataset, we first generated Nproto = 200 odor prototypes. Each prototype ~xðiÞ activates NOR = 50 ORN

types or ORs, and the activation of each ORN type is sampled independently from a uniform distribution between 0 and 1,
~x
ðiÞ
j � Uð0; 1Þ. The 200 prototypes are randomly assigned to Nclass = 100 classes, with each class containing two prototypes. A

given odor ~x is a vector in the 50-dimensional ORN-type space, sampled the same way as the prototypes. When the network’s

input layer corresponds to ORNs, each ORN receives the activation of its OR plus an independent Gaussian noise ε � Nð0;s2ORNÞ,
where sORN = 0 by default (no noise). Its associated ground-truth class c is set to be the class of its closest prototype, as measured

by Euclidean distance in the ORN-type space. The training set consists of 1 million odors. The validation set consists of

8192 odors.

Besides the standard dataset, we also considered several other datasets based on the standard dataset, as detailed below.

Concentration dataset
In this dataset (Figure 2), the prototypes ~xðiÞcon are the normalized versions of the prototypes in the standard dataset ~xðiÞ, so ~xðiÞcon =

~x
ðiÞ

j~xðiÞj. The concentration of each odor is explicitly varied while the average ORN activation across all odors is preserved. For each
Neuron 109, 3879–3892.e1–e5, December 1, 2021 e1

mailto:yanggr@mit.edu
https://github.com/gyyang/olfaction_evolution
https://www.janelia.org/project-team/flyem/hemibrain
https://www.janelia.org/project-team/flyem/hemibrain
https://www.python.org/
https://www.tensorflow.org/
https://pytorch.org/
https://www.scipy.org/
https://numpy.org/
https://scikit-learn.org/stable/
https://github.com/gyyang/olfaction_evolution
https://github.com/gyyang/olfaction_evolution


ll
Article
odor, the activation of each ORN type is sampled from a uniform distribution as described above, and is then multiplied by a

concentration scale factor. This scale factor, s, is determined by a single parameter, ε, in which:

s = ð1� εÞ+ 2 ε bð1� ε;1� εÞ
Where b is the beta distribution. A value of ε = 0 produces a dataset with no additional spread, whereas ε = 1 produces a dataset

exhibiting maximal spread with scale factors densely clustered around 0 and 2.

Relabel datasets
For the family of relabel datasets (Figure S2), we vary the number of prototypesNproto = 100, 200, 500, 1000while keeping the number

of classesNclass = 100 fixed. We refer to these datasets as relabel datasets, becauseNproto prototypes are relabeled toNclass classes.

The standard dataset uses relabeling as well. The ratio between Nproto and Nclass is the odor prototypes per class.

Meta-learning dataset
This dataset is organized into episodes. Each episode includes a small amount of training data and validation data. In each episode,

we randomly select Neps;class = 2 classes from the original Nclass = 100 classes in the standard dataset. For each of the Neps;class

classes chosen, we randomly select Neps;sample = 16 odors for training and validation respectively. Importantly, within each episode,

we re-map each of the Neps;class = 2 selected classes to Nmeta = 2 output classes. Intuitively, the network is always doing a ðNmeta = Þ
2-way classification task. However, the classification boundaries associated with each output class is different in every episode.

There is no fixed relationship between the original class label and the new label in each episode, so the network has to learn the

new class labels based on the Neps;sample data points per class. In total, for each episode, there are Neps;sampleNeps;class data points

in the training set, and the same amount in the validation set.

Valence dataset
In the valence dataset, we replaced Nspecial = 10 prototypes from the original Nproto prototypes with special prototypes that each lies

along one axis in the ORN-type space. In other words, each special prototype strongly activates a single ORN type (a special OR), at

activity level of 1.0. Of the Nspecial special prototypes, Nspecial=2= 5 are set to be appetitive or ‘‘good’’ odors, and the other 5 to be

aversive or ‘‘bad’’ odors. The rest of the Nproto � Nspecial prototypes and associated odors are set to be neutral and are sampled

the same way as the standard dataset. The task is both to classify the odors, as in the standard dataset, and to classify the valence

(appetitive, aversive, neutral). In both the training and the validation dataset, we have 10% of the overall odors be appetitive, another

10% be aversive, and the rest 80% be neutral. Therefore, if a network classifies all odors to neutral, the chance level performance for

valence classification is 80%. The neutral odors are sampled in the same way as the standard dataset. Each appetitive or aversive

odor is sampled by adding the activity level of one special prototype (1.0 for the special OR and 0.0 otherwise) with an activity pattern

sampled from a uniform distribution between 0 and 1. In other words, the activity level of an appetitive or aversive odor is sampled

randomly from Uð1; 2Þ for the special OR, and from Uð0;1Þ for other ORs.

Correlated dataset
In Figure S4, we introduce correlation between responses of different ORN types. The correlation is independently controlled be-

tween 0 and 0.9, while maintaining the marginal distribution of each ORN type to be uniform between 0 and 1. We used a previously

proposed method (Cario and Nelson, 1997) for generating such correlated random variables while maintaining their marginal

distributions.

Network architecture
We train networks of various architectures. The ORN-PN-KC network architecture consists of an input layer of 500 model ORNs,

50 PNs, 2500 KCs, and 100 output units. The 500 ORNs are made of 10 ORNs per type for all 50 types of ORNs. The activation

of each ORN is the sum of the activation of the corresponding ORN-type ~xj and an independent noise ε � Nð0; s2ORNÞ, where

sORN = 0 by default (no noise). The ORN-PN, PN-KC, and KC-output connections are all fully-connected at initialization. The ORN-

PN and PN-KC connectivity are initialized with a uniform distribution of between 1=N and 4=N, whereN is the number of input neurons

(500 for ORN-PN, and 50 for PN-KC). The KC-output connectivity is initialized with the standard Glorot uniform initialization. The

ORN-PN and PN-KC connections are constrained to be non-negative using an absolute function. All neurons use a rectified-linear

activation function (ReLU).

In the OR-ORN-PN-KC network, we add an additional layer of OR-ORN connections. Here, the inputs are 50 ORs, activated

similarly to the ORNs from the ORN-PN-KC network. The OR-ORN connections are non-negative as well and initialized similarly

to ORN-PN and PN-KC connectivity.

For the identity/valence classification task, we used a network with two output heads. One containing 100 output neurons as usual.

The other contains 3 output neurons for neutral, appetitive, and aversive valence.

We briefly considered an ORN-Output network (Figure S2) that has the output directly read out from the ORNs.

Optionally, we include dropout on the KC layer, which at training time, but not testing time, set a certain proportion pdropout of

neuron activities to zero. The default dropout rate is pdropout = 0 (no dropout).
e2 Neuron 109, 3879–3892.e1–e5, December 1, 2021
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The recurrent network used in Figure 3 is a discrete-time vanilla recurrent network,

rt + 1 = fðWrrt + Wuut + bÞ; t = 1; 2; .

The network consists of 2,500 units. The recurrent connection is initialized uniformly between 0 and 4:=2500, the input connection is

initialized using Glorot uniform initialization. The recurrent connection is constrained to be non-negative. Out of 2,500 units, 500

receive odor inputs at t = 1 in the same way as the ORNs in the feedforward network. The classification output is readout with at

step T with connections that are not sign-constrained. By default, we have T = 3, which means the network unrolled in time would

have 3 layers ðt = 1; 2; 3Þ and an output layer.

The KC recurrent inhibition mediated by a single APL neuron (Figure 1) is implemented by an inhibitory neuron interacting with the

KCs iteratively. The single inhibitory neuron has a neural response equal to the mean KC activation level at each time step. This

neuron then sends subtractive inhibitory inputs to all KCs with a connection weight g (KC recurrent inhibition strength in Figure 1).

Therefore, the KCs at each time step t are activated as

riðtÞ = f

 
uiðtÞ�g $

1

NKC

X
j

rjðt� 1Þ
!
:

Here fð $Þ is the ReLU activation function. uiðtÞ= ui is the feedforward input to the i-th unit. riðtÞ is the activation level of the i-th unit at

time step t. We run this recurrent inhibition for 10 time steps.

The divisive normalization used on the PN layer in Figure 2 is implemented in the following way. Neuron i in this layer receives input

ui, and the final activation of this neuron, ri follows,

ri = rmax$
ui

ui + r+m
P

j rj

Here, rmax; r; m are parameters that are trained with gradient descent alongside other trainable parameters. In initialization, we have

rmax = N=2, r = 0,m = 0:99, whereN is the number of neurons in this layer. For stability during training, we clampedN= 10% rmax%N,

0%r%3, 0:05%m%2.

Training
The output of the network is linearly read out with trainable weights from the final layer (KC layer in feedforward networks, or the recur-

rent layer). The loss is softmax cross-entropy loss. The default training method is the adaptive stochastic gradient descent method

Adam with learning rate 5e-4, and exponential decay rates for first and second moments 0.9 and 0.999 respectively (the Pytorch

default hyperparameter values). The network is typically trained for 100 epochs, each epoch would expose the network to all of

the one million odors from the training set.

The training batch size is B = 256. By default, we used Batch Normalization on the PN layer to prevent individual neurons from

being active or silent for all odors. Technically, Batch Normalization computes the mean mi and standard deviation si of inputs xi;b
to the i-th single neuron across a minibatch ðb = 1;.; BÞ,

mi =
X
i

xi;b; si =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ðxi;b � miÞ2
r

The actual input to the i-th neuron is first subtracted by mi, then divided by si. It is then multiplied by a trainable parameter, then

another trainable parameter is added to it. Biologically, Batch Normalization can be viewed as approximating single neuron adap-

tation or homeostasis to a range (i.e., a batch) of odors. If a neuron is strongly driven by most odors, then Batch Normalization would

reduce its inputs, making this neuron activated in a more balanced manner.

Ongoing plasticity
For the ongoing plasticity results in Figure 4, we use the delta rule to simulate ongoing plasticity in the readout connections (KC-

output weights for the model fly network) (Dayan and Abbott, 2005). The delta rule is more biologically plausible than the general

gradient descent algorithm because it relies on local information. However, it is not intended to model with high fidelity the biological

plasticity rules at the KC-MBON synapses. The delta rule is used here to encourage a KC representation that supports rapid, flexible

learning. The default delta rule learning rate is 5e-4.

During each learning episode (see Meta-learning dataset section), the network is presented with a small amount of training and

validation data from the meta-learning dataset. The network takes a single delta rule step based on the training data, and the loss

is evaluated based on the validation data. The objective of meta-training is to minimize the expected validation loss of the inner

training. Meta-training updates all weights and biases in the network at the end of each learning episode using the gradient descent

variant, Adam. This meta-training method is a special case of a more general method called MAML, or Model-Agnostic Meta-

Learning (Finn et al., 2017). This method aims at finding (meta-training) parameter values (connection weights and biases) that allow

rapid few-step gradient descent learning using a small amount of new training data.We largely adhered to themethod detailed in Finn

et al. (2017), with a few notable exceptions. First, the inner training only performs gradient descent on the KC-output connection.
Neuron 109, 3879–3892.e1–e5, December 1, 2021 e3
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Gradient descent applied only to the last layer reduces to the delta rule. Second, the learning rate of the inner training is allowed to be

adjusted by the meta-training process. The latter assumption does not substantially impact our results.

Weight pruning and connection sparsity estimation
By default, we have synaptic weight pruning during training. Weights below a certain threshold q are permanently set to zero during

and after training. The threshold is set to be q = 1=N, where N is the number of input neurons for each connectivity matrix. Weight

pruning provides a less ambiguous quantitative estimate of connection sparsity.

We observe that in some networks, the distribution of weights has a clear, single peak away from the pruning threshold, and the

weight distribution approaches 0 toward the threshold (see Figure S1C for examples). In these cases, the connection sparsity (or

density) can be easily inferred by simply quantifying the proportion of connection weights above threshold. However, we found

that in some networks (some hyperparameter settings), the distribution of weights has a peak very close to the threshold, making

it difficult to count the above-threshold weights. Therefore, we employ a simple heuristic to check if there is a clear peak in the weight

distribution far from the pruning threshold. Our heuristic requires the peak of the above-threshold weight distribution be at least 2:=N

larger than the threshold itself, which by default is at 1:=N. Networks that do not satisfy this ‘‘clear peak’’ criteria are not used to

compute the input degree, and their K values not shown in plots (e.g., Figure S1A).

When the network does not undergo pruning of weak weights as in some control experiments and for the RNN results, it is neces-

sary to try inferring a threshold separating weak and strongweights. We fit amixture of twoGaussiansmodel to the log-distribution of

weights. The weak/strong weight threshold is where the probability density of the two Gaussian modes cross. In this case, the in-

ferred threshold is used, instead of the pruning threshold, in the above heuristics for determining whether the strong weights have

a clear peak in its distribution.

We have done extensive comparisons between networks with and without pruning across various hyperparameter values (many

results not shown in figures). For the feedforward network architectures, pruning almost always leads to clearer above-threshold

peak in the weight distribution. Importantly, the sparsity result is not a result of pruning per se. When there is no pruning, and the

weights clearly separate into weak and strong peaks (for example when Nproto = Nclass = 100), the inferred connection sparsity is

quantitatively very close to that obtained from networks with pruning. In addition, the network performance is generally identical

with or without pruning.

QUANTIFICATION AND STATISTICAL ANALYSIS

GloScore
The glomeruli score (GloScore) of a PN-ORN connectivity matrixWPN/ORN is computed by first averaging all connections fromORNs

of the same type. For each PN,we find the strongest connectionweightw1 and the second strongest connectionweightw2 from each

ORN type by averaging weights across ORNs of the same type. For non-sign-constrained weights, we use the absolute values of

weights. Then GloScore for each unit is computed as,

GloScore = ðw1 �w2Þ=ðw1 + w2Þ:
Final GloScore of the entire connection matrix is the average GloScore of all PNs.

Inferring connection sparsity from experimental data in mouse
Two previous publications used different approaches to estimate the input degree, K, in mice. The first experiment (Miyamichi et al.,

2011) used retrograde anatomic tracing to derive a convergence index of the number ofmitral/tufted cells (equivalent of PNs) over the

number of piriform neurons (equivalent of KCs), and found values ranging from 3-20. The transfection efficiency of retrograde labeling

was estimated to be roughly 10% (Reardon et al., 2016), so the input degree may vary from 30-200 M/T inputs per piriform neuron.

The second experiment (Davison and Ehlers, 2011) used optical glutamate uncaging to activate defined points on the olfactory bulb

while recording piriform responses, and found that most cells responded to > 15 uncaging sites. The authors estimate that 2-3

glomeruli are activated per uncaging site, providing a lower bound of K = 40 for input degree.

Analysis of synaptic connectivity data from the hemibrain connectome
A compact connection matrix summary (v1.2 release) was downloaded from https://www.janelia.org/project-team/flyem/hemibrain.

ORNs, uniglomerular, biglomerular and multiglomerular PNs, and KCs and LH neurons were queried according to the naming

convention defined in Scheffer et al. (2020). Thermosensory, hygrosensory, and subesophageal zone PNs (VP and Z) were discarded.

Given that stronger synapses are formed by increasing the number of synapses, not by larger synapses, as in vertebrates, we use

synapse count as a proxy for synaptic strength (Scheffer et al., 2020). Only 2 types of ORNs were present within the dataset, so ORN

to PN connectivity was discarded. The distributions of KC input degree and PN to KC synaptic weights were previously reported (Li

et al., 2020) and were also extracted from the connectivity of uniglomerular PNs onto KCs. Multiglomerular PNs were excluded

because KCs only sample from 0.147 multiglomerular PNs on average.
e4 Neuron 109, 3879–3892.e1–e5, December 1, 2021
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Randomness
To determinewhether the frequency of PN input onto KCs is significantly above or below chance expectations, PN-KC connections in

the trained network were shuffled while maintaining the number of connections each KC receives. We generated the shuffled data by

making a list of PNs that contributed to each PN-KC connection. We then randomly permuted this list and drew from it sequentially to

construct a new set of connections for each of the 2500 KCs, drawing as many random connections for each KC as it receives in the

trained network. This shuffling eliminates any potential, non-random PN inputs onto individual KCs, and is used to analyze whether

KCs are connected to any preferential pair of glomeruli (Figure S3).

To determine whether the distribution of PN inputs onto KCs is binomial, the probability of a connection between each PN with

each KC is sampled independently from aBernoulli distributionwith the overall PN-KC connection probability, p, of a trained network.

Analysis of RNNs
In Figure 3, we analyzed a recurrent neural network, which unlike traditional recurrent networks, is not running in time. Instead we use

it as a way to force a limited budget on the total number of neurons, without specifying the exact number of neurons to be used at

each processing step.

The key analysis is to infer howmany neurons are assigned by the network to each processing step (the same neuronmay be used

at multiple steps). For each neuron, we computed its average activity at each processing step in response to all odors shown the

network. If its average activity at a processing step exceeds a certain threshold, we deem this neuron active at this step. Note

that by this definition, an ‘‘active neuron’’ may not be active for each odor. All we ask is that it is sufficiently active for some odors.

We used the same threshold of 0.2 across all processing steps, manually chosen after inspecting the distribution of activity (Fig-

ure S7). We did not use a threshold of 0 because many neurons are activated very weakly but above zero on average. With positive

connection weights and no regularization, it is generally more difficult to have a neuron be activated at 0 across all odors at a given

processing step.

Analyzing networks of different numbers of OR types
For Figure 5, we trained networks with different numbers of OR types ðNÞ, ranging from 25 to 200. For simplicity, we focused on the

connections from the compression to the expansion layer, while ignoring the connections from ORNs to the compression layer.

Therefore, all networks consist of N input neurons representing ORN activity, which in turn project to M expansion layer neurons.

For each value ofN, the number of expansion layer numbersM is set asN2. For each number of OR,we trained networkswith different

levels of learning rate 1e-3, 5e-4, 2e-4, 1e� 4:We include in our summary plot (Figure 5) only networks that contain a clear peak in the

weight distribution, using the criteria established above.

To obtain the maximum dimensionality curve in Figure 5, for each number of OR, we first computed the representation dimension-

ality (Litwin-Kumar et al., 2017) in response to the training odors when the third-layer input degree is fixed at different values. Then we

identified the input degree corresponding to the maximum dimensionality. Finally, we repeat this process for networks with different

numbers of ORs. Importantly, we did not use feedforward inhibition that sets the overall mean input to be zero.Whenmean-canceling

feedforward inhibition is used, themaximum dimensionality is achieved atK = N=2.When introducing an additional constraint on the

total number of connections, the optimalK becomes substantially lower, around 7 forN = 50. However, sincewe do not constrain the

total number of connections for each network, we did not include feedforward inhibition in Figure 5, leading to a K that is around 3 for

N = 50:

Analysis of identity/valence two-task networks
For the two-task networks, we used all combinations of the following hyperparameter values: PN normalization (None or Batch

Normalization), learning rate (1e-3, 5e-4, 2e-4, 1e-4), KC dropout rate (0, 0.25, 0.5), resulting in 24 networks trained.

To assess whether the expansion layer neurons break into multiple types when analyzing the two-task networks, we represent

each third-layer (expansion layer) neuron with three variables: (1) its input degree (the number of above-threshold connections

from the previous layer), (2) the norm of its connection weights to the identity classification head, (2) the connection weight norm

to the valence classification head. Since these variables are of different scales, we z-scored them (mean subtract then divide by stan-

dard deviation). We then obtained a 3-dimensional depiction of each third layer neuron.

Next we did k-means clustering on the normalized data with k (the pre-determined number of clusters) ranging from 2 to 10. We

quantified the quality of each clustering result with its silhouette score (the higher the better), which intuitively compares the inter-

cluster distance with the intra-cluster distance. We found that the optimal number of clusters is generally 2 or 3. We analyzed all net-

works with 2 optimal clusters. We named the cluster of neurons with stronger connections to the identity readout head as cluster 1,

the other as cluster 2.

In Figures 6C and 6E, we computed the density of neurons in these data spaces separately for each cluster, before adding the

densities together. This visualization allows for a clearer depiction of the density peak of each cluster.

When lesioning either cluster 1 or 2 in Figures 6G and 6H, we set the outboundweights from the lesioned neurons to 0, equivalent to

setting their activity to 0.
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