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We propose and develop a hierarchical approach to network control of
complex tasks. In this approach, a low-level controller directs the activity
of a “plant,” the system that performs the task. However, the low-level
controller may be able to solve only fairly simple problems involving the
plant. To accomplish more complex tasks, we introduce a higher-level
controller that controls the lower-level controller. We use this system to
direct an articulated truck to a specified location through an environ-
ment filled with static or moving obstacles. The final system consists of
networks that have memorized associations between the sensory data
they receive and the commands they issue. These networks are trained
on a set of optimal associations generated by minimizing cost functions.
Cost function minimization requires predicting the consequences of se-
quences of commands, which is achieved by constructing forward mod-
els, including a model of the lower-level controller. The forward models
and cost minimization are used only during training, allowing the trained
networks to respond rapidly. In general, the hierarchical approach can be
extended to larger numbers of levels, dividing complex tasks into more
manageable subtasks. The optimization procedure and the construction
of the forward models and controllers can be performed in similar ways
at each level of the hierarchy, which allows the system to be modified to
perform other tasks or to be extended for more complex tasks without
retraining lower-levels.

1 Introduction

A common strategy used by humans and machines for performing com-
plex, temporally extended tasks is to divide them into subtasks that are more
easily and rapidly accomplished. In some cases, the subtasks themselves
may be quite difficult and time-consuming, making it necessary to further
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divide them into sub-subtasks. We are interested in mimicking this strat-
egy to create hierarchical control systems. The top-level controller in such
a hierarchy receives an external command that specifies the overarching
task objective, whereas the bottom-level controller issues commands that
actually generate actions. At each level, a controller receives a command
from the level immediately above it describing the goal it is to achieve and
issues a command to the controller immediately below it describing what
that controller is supposed to do. In this approach, optimization of a global
cost function is abandoned in favor of a novel, more practical, but approx-
imately equivalent approach of optimizing cost functions at each level of
the hierarchy, with each level propagating cost-related information to the
level below it.

As an example of this hierarchical approach, we solve a problem that re-
quires two levels of control, using what we call lower-level and higher-level
controllers. The basic problem is to drive a simulated articulated semitruck
backward to a specified location that we call the final target location (the
truck is driven backward because this is harder than driving forward). The
backward velocity of the truck is held constant, so the single variable that
has to be controlled is the angle of the truck’s wheels. This problem was
first posed and solved by Nguyen and Widrow (1989), and their work is
an early example of the successful solution of a nonlinear control problem
by a neural network. We make this problem considerably harder by mov-
ing the final target location quite far away from the truck and, inspired by
the swimmer of Tassa, Erez, and Todorov (2011), distributing a number of
obstacles across the environment. Although the lower-level controller can
drive to a nearby location when no obstacles are in the way, it cannot solve
this more difficult task. Thus, we introduce a higher-level controller that
feeds a series of unobstructed, closer locations that we call subtargets to the
lower-level controller that generates the wheel-angle commands. The job of
the higher-level controller is to generate a sequence of subtargets that lead
the truck to its ultimate goal, the final target location, without hitting any
obstacles. Thus, we divide the problem into lower-level control of the truck
and higher-level navigation.

The controllers at both levels of the hierarchy we construct are neural
networks. The specific form of these networks is not unique and is un-
likely to generalize to other tasks, so we discuss their details primarily in
the appendix. We focus instead, within the text, on general principles of
their operation and construction. The tasks we consider are dynamic and
ongoing, so commands must be computed by the network controllers at
each simulation time step. To realize the speed for this computationally in-
tensive requirement, the network controllers are constructed to implement
complex look-up tables. Each controller receives input describing the goal it
is to achieve and “sensory” input providing information about the environ-
ment relevant to achieving this goal. Its output is the command specifying
the goal for the controller one level down in the hierarchy.
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The network controllers are trained to implement the appropriate look-
up table by backpropagation on the basis of optimal training data. The
training data consist of input-output combinations computed to optimize a
cost function defined for each hierarchical level. At each level, optimization
is achieved with the aid of an additional neural network that implements a
forward model of the controller being trained. The forward model is used
only for optimization during learning; the fully trained model consists
of only the controller networks. For the higher-level controller, the train-
ing procedure involves what is effectively a control-theory optimization in
which the “plant” being controlled is actually the lower-level controller.
This approach thus extends ideas about forward models and optimization
from the problem of controlling a plant to that of controlling a controller.
Once the optimal output commands are determined for a large set of in-
put commands and sensory inputs, these are used as training data for the
controller, which effectively “memorizes” them.

We begin by describing how the hierarchical approach, consisting of
lower- and higher-level controllers, operates after both networks have been
fully trained. We do this sequentially, first showing the lower-level con-
troller operating the truck when its subtarget data are generated externally
(by us) rather than by the higher-level controller. We then discuss how the
higher-level controller generates a sequence of subtarget locations to navi-
gate through the environment. To allow the higher-level controller to detect
and locate obstacles, we introduce a sensory grid system. We present and
analyze the complete hierarchical system with the two controllers working
together and compare its operation with that of a more conventional opti-
mal controller. After we have shown the system in operation and analyzed
its performance, we present the procedures used for training, including the
cost functions and forward models used for this purpose at each level.

2 Results

All of the networks we consider run in discrete time steps, and we use this
step as our unit of time, making all times integers. Distance is measured in
units such that the length of the truck cab is 6, the trailer is 14, and both
have a width of 6. In these units, the backward speed of the truck is 0.2.
The final target for the truck and the obstacles it must avoid have a radius
of 20. Distances from the initial position of the truck to the final target are
typically in the range of 100 to 600.

2.1 Driving the Truck. Our hierarchical model for driving the truck
(see Figure 1) starts with a lower-level controller that sends out a sequence
of commands u(t) that determines the angle of the wheels of the truck. This
controller is provided with “proprioceptive” sensory information, namely,
the cosine and sine of the angle between the cab and trailer of the truck,
[cos(θrel), sin(θrel)], and a subtarget location toward which it is supposed to
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Figure 1: Flow diagram of the hierarchical control system. Commands that con-
trol the wheel angle of the truck are issued by the lower-level controller, which
receives information about a subtarget direction toward which the truck should
be driven from the higher-level controller. Both controllers receive propriocep-
tive information about the angle between the cab and trailer of the truck, and
the higher-level controller also receives information about obstacles in the envi-
ronment from a grid of sensors. In addition, the higher-level controller receives
input about the final target that the truck is supposed to reach.

direct the truck (to ensure continuity and promote smoothness, we process
all angles by taking their cosines and sines). The target information is pro-
vided as a distance from the truck to the subtarget, dst/L (L = 100 is a scale
factor) and the cosine and sine of the angle from the truck to the subtarget,
[cos(θst), sin(θst)]. This subtarget information is provided by a higher-level
controller that receives the same proprioceptive input from the truck as
the lower-level controller but also receives sensory information about ob-
stacles in the environment (described later). In addition, the higher-level
controller is provided with external information about the distance from
the truck to the final target location and also the cosine and sine of the angle
from the truck to this location, [log(1 + dft/L), cos(θft), sin(θft)]. The task
of the higher-level controller is to provide a sequence of subtargets to the
lower-level controller that lead it safely past a set of obstacles to the final
target location. Note that the higher-level controller receives the logarithm
of the distance to the final target, log(1 + dft/L), rather than dft/L itself. This
allows for operation over a larger range of distances without saturating
the network activities. The logarithm is not needed for dst/L because the
distance to the subtarget is maintained within a constrained range by the
higher-level controller.

2.1.1 Lower-Level Controller. The job of the lower-level controller is
to generate a sequence of wheel angles, u(t), given the proprioceptive
data, [cos(θrel(t)), sin(θrel(t))], and a subtarget location specified by [dst(t),
cos(θst(t), sin(θst(t))] (see Figure 1). The proprioceptive information is
needed by the controller not only to move the truck in the right direc-
tion but also to avoid jackknifing. The lower-level controller is a three-layer
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Figure 2: (A) The lower-level controller directs the truck to a subtarget (white
square). The black trace shows the path of the back of the truck. (B) The lower-
level controller directs the truck to trace the constellation Ursa Major (the white
line is the path of the truck) by approaching subtargets at the locations of the
stars. The subtargets appear one at a time; when the back of the truck arrives
close to the current subtarget, it is replaced by the next sub-target. (Photo by
Akira Fujii.)

basis function network with the 5 inputs specified above, 100 gaussian-
tuned units in a hidden layer, and 1 output unit that reports u as a linear
function of its input from the hidden layer (see the appendix). Figure 2A
shows an example in which the subtarget location is held fixed and the
lower-level controller directs the truck along the backward path indicated
by the curved line.

At this point, we are showing the lower-level controller working au-
tonomously with the subtargets we specified, but when the truck is directed
by the higher-level controller, it will be given a time-dependent sequence
of subtargets. To test whether it can deal with sequential subtargets, we
switched the subtarget we provide every time the truck got close to it using
a rather fanciful sequence of subtargets (see Figure 2B). This indicates that
the lower-level control is up to the job of following the directions that will
be provided by the higher-level controller.

2.1.2 Higher-Level Controller. The higher-level controller is a five-layer
feedforward network with a bottleneck architecture. It has 205 inputs
(3 specifying the final target location, 2 the angle between the cab and trailer
of the truck, 199 describing the state of the sensory grid described below,
and a bias input; see Figure 1); hidden layers consisting of 30, 20, and
30 units; and 3 command outputs providing the subtarget information
for the lower-level network (see the appendix). The bottleneck layer with
20 units ensures that the network responds only to gross features in the
input that reliably predict the desired higher-level command. When we ini-
tially trained the higher-level controller without any form of bottleneck, it
did not generalize well to novel situations.

In the absence of any obstacles, the job of the higher-level controller is
to provide a sequence of subtargets to the lower-level controller that lead
it to the location of the final target, which is specified by the variables
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Figure 3: The truck following a sequence of subtargets provided by the higher-
level controller. The subtargets are indicated by black, gray, and white squares,
with darker colors representing earlier times in the sequence. The trajectory that
the truck follows in pursuing the subtargets is shown in black. A connecting line
indicates the subtarget that is active when the truck reaches particular trajectory
points. The background shading indicates the distance to the final target, located
off the lower-left corner.

[dft, cos(θft), sin(θft)] that the higher-level controller receives as external in-
put. The higher-level controller also receives a copy of the proprioceptive
input provided to the lower-level controller (see Figure 1). The subtargets
that the higher-level controller propagates to the lower-level controller are
natural parameterizations of the lower-level goals because they define a
target state in terms of the sensory information available at the lower level.
Such parameterizations have previously appeared in the motor control lit-
erature where they are known as via points (Jordan, Flash, & Arnon, 1994)
and are also used frequently in navigational planning (Lazanas & Latombe,
1995). Similar ideas have also been applied to robot walking where a target
state is defined at a time slice of the walker’s dynamical orbit or Poincaré
return map (Tedrake, Zhang, & Seung, 2004). Figure 3 shows a trajectory
generated by the higher-level controller and the motion of the truck as
directed by the lower-level controller, leading to a target just beyond the
bottom-left corner of the plot. Note the sequence of target locations that
lead the truck along the desired path. Although this example shows that
the higher-level controller is operating as it should and that the lower-level
controller can follow its lead, this task is quite simple and could be handled
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Figure 4: (A) An egocentric coordinate system surrounds the truck, composed
of grid points. During movement, the grid shifts with the truck. Only a small
fraction of the grid points is shown here. (B) The full set of grid points in
an environment with obstacles (yellow circles). The points that lie within an
obstacle are blackened, indicating that the grid element is activated.

by the lower-level controller alone. To make the task more complex so that it
requires hierarchical control, we introduced obstacles into the environment.

The obstacles are discs with the same radius as the final target scattered
randomly across the arena (see Figure 4B). These are soft obstacles that
do not limit the movement of the truck, but during training, we penal-
ize commands of the higher-level controller that cause the truck to pass
too close to them (see below). Making this environmental change requires
us to introduce a sensory system that provides the higher-level controller
with information about the locations of the obstacles. Just as the final and
subtarget locations are provided in “truck-centric” (egocentric) coordinates
(distances and angles relative to the truck), we construct this sensory system
in a truck-centric manner (see Figure 4A).

Specifically, we construct a hexagonal grid of points around the truck (see
Figure 4). The grid is a lattice of equilateral triangles with sides of length
20 units. One grid point lies at the back of the trailer, and the most distant
grid points are 150 units away from this point. In total, there are 199 grid
points. These points move with the truck and align with the longitudinal
axis of the trailer (see Figure 4A). If a grid point lies inside an obstacle,
we consider it to be activated; otherwise, it is inactive. The state of the full
grid is specified by a 199-component binary vector g with component i
specifying whether grid point i is active (gi = 1) or inactive (gi = 0). Neither
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Figure 5: (A) The truck is directed to avoid the obstacles and reach the final
target. The white square indicates the first subtarget; note that it is not at a
position the truck actually reaches. The higher-level controller merely uses this
to indicate the desired heading to the lower-level controller. (B) With 50 static
obstacles, more than the 20 that were present during training, the higher-level
controller steers the truck around all of the obstacles to the final target on each
of 50 consecutive trials. The black lines show the paths taken by the back of the
trailer.

topological closeness nor Euclidean distance information is explicit in this
vector representation. The grid vector is provided as additional input to the
higher-level controller (see Figure 1).

2.1.3 Operation of the Full System. We now show how the full system op-
erates when the higher-level controller provides the lower-level controller
with subtargets as they drive the truck together through a field of obstacles
to the final target (see Figure 5A). Figure 5B shows a number of guided
trajectories through an obstacle-filled arena.

To quantify the performance of the system, we executed 100 trials in
100 different environments with 20 obstacles. The hierarchical controller
avoids the obstacles on each trial; the minimum distance to an obsta-
cle never decreases below one obstacle radius (20 units; see Figure 6A).
As the number of environmental obstacles is increased (see Figure 6B),
the probability of obstacle collision grows slowly. This occurs even though
the controllers were trained with only 20 obstacles in the environment. The
control system directs the truck to the final target along short paths (see Fig-
ure 6C) that are comparable in length to the straight-line distance between
the initial position and the nearest edge of the final target, with devia-
tions when the truck must execute turning maneuvers or circumnavigate
obstacles.
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Figure 6: Performance measures. (A) Obstacle avoidance: Black dots show the
minimum distance between the truck and any target averaged over 50 runs
to the final goal with 20 obstacles in the environment. (B) Collisions versus
obstacles: The black line shows the probability of a collision with an obstacle
per trip to the final target as a function of the number of obstacles. The shaded
regions are 95% confidence intervals. As the number of obstacles increases
from 5 to 75, the probability of a collision grows slowly, despite high obstacle
densities. (C) Target directedness: The black dots show the lengths of paths taken
to the final target, averaged over 50 trials, in an environment with 20 obstacles.
The dashed line shows the straight-line distance from the initial location of the
truck to the nearest edge of the final target. (D) Brownian obstacle motion: The
black line shows the probability of a collision with an obstacle per trip as a
function of the diffusion constant of the obstacle motion. The gray region is
as in panel B. Although we did not explicitly train the controllers to handle
obstacle movement, the controller can frequently navigate to the goal without
collision in an environment of 20 obstacles undergoing Brownian motion.

The trained higher-level controller continuously generates subtargets
based on the sensory information it receives (see video 1 in the online sup-
plement). Because all the contingencies are memorized, it needs very little
time to compute these plans. Thus, the higher-level controller should be
able to respond quickly to changes in the environment. To illustrate this,
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we tested the system with obstacles that moved around, even though it was
trained with stationary obstacles. The obstacle motions were generated as
random walks (see video 2 in the online supplement). The probability of col-
lision grows slowly with increasing diffusion constant of the random walk
(see Figure 6D). At high rates of diffusion, the obstacles move significantly
farther than the truck for small numbers of time steps. For example, when
the diffusion coefficient is 1 (units [L2/T]), the obstacles typically diffuse
(but can diffuse farther than) the width of the trailer within 9 time steps. It
takes the truck 30 time steps to travel the same distance.

2.1.4 Comparison to Optimal Control. The hierarchical system cannot be
described as optimal with respect to a single cost criterion for several rea-
sons. First, the responses of the networks are memorized and therefore only
approximate the responses of optimization computations. Second, the net-
works do not observe all state variables in the environment exactly; they
observe mappings of those state variables through a sensory system. Third,
the temporal horizon, or the amount of planning foresight granted during
training, is less than the total duration of typical trials. Fourth, and most
important, the controller networks are trained on separate cost functions
and then coupled. We therefore compare the results obtained from the hier-
archical network with those from an optimal control calculation. It should
be stressed that the optimal control approach is not a practical way to solve
the truck problem we considered because it is far too slow without speed
tweaks and, as we will see, it fails to find reasonable paths a fair fraction
of the time. Nevertheless, comparing paths produced by the hierarchical
controller, at an expense of tens of milliseconds per path, with paths con-
structed by an optimization program over many seconds per path provides
a way to judge the success of the hierarchical approach.

To compare our results with those of an optimal control calculation, we
generated 150 random environments and computed solution trajectories
from identical initial conditions using either the network hierarchy or an
optimal control calculation computed by differential dynamic program-
ming, a commonly used algorithm for hard optimal control calculations.
We compared the two solutions using the nonconstraint portions of the cost
function used in the optimal control calculation (see the appendix). Note
that this means that we are judging the hierarchical model using a cost
function that was not used in its construction.

Figure 7A shows a comparison of paths generated by the hierarchical
network and the optimal control algorithm. Many of the paths are quite
similar. Other paths are clearly equivalent, although they differ by go-
ing around opposite sides of an obstacle. In some cases, the optimal con-
trol algorithm has clearly failed to find a good solution, and it produces
paths with loops in them. These cases appear as a long negative tail on the
distribution of cost-function differences shown in Figure 7B. Importantly,
there are very few cases in which the cost of the solution provided by the
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Figure 7: Comparison with optimal control. (A) In 25 trials in a single environ-
ment, we can see that the hierarchical controller’s (continuous line) and optimal
control solver’s (dashed line) trajectories often overlap. On some trials, the tra-
jectories diverge symmetrically around an obstacle. On other trials, the optimal
control solver finds poor local minima in which the trajectories develop loops.
This behavior is extremely rare for the hierarchical controller. (B) The per-trial
cost differences over 150 trials in random environments show that the hierar-
chical controller infrequently performs worse than the optimal control solver
(positive tail in the distribution), often performs equivalently (peak near 0),
and sometimes performs much better when the optimal control calculation fails
(negative tail). The average cost per path for either scheme is approximately 300.

hierarchical network is significantly worse than that of the optimal control
path (the small positive tail in Figure 7B). Our conclusions are that the
majority of paths constructed by the hierarchical network come close to
being optimal with respect to the cost function used for this comparison
and that the hierarchical model produces fewer and less disastrously bad
paths when it fails to approximate optimality.

2.2 The Training Procedure. The controllers at each level of the hier-
archy work because they have been trained to generate commands (sub-
targets or wheel angles for the truck) that are approximately optimal for
the input they are receiving at a given time. Recall that this input consists
of the subtarget received from the upstream controller and whatever sen-
sory information is provided. The coupling between the two levels of the
hierarchy requires an extension of the methodology of model-based opti-
mal control. The key modification has two connected parts. Input from the
higher level not only acts as a command but also serves to specify the cost
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function that the lower-level controller is trained to minimize. As a result,
the lower-level controller is trained to minimize a family of cost functions
parameterized by the value of the higher-level command. The higher-level
control problem is to choose a sequence of higher-level commands to send
to the lower-level controller that will minimize a higher-level cost func-
tion. To find the appropriate higher-level command, a higher-level forward
model is trained to predict the feedback that will result from propagating
commands. Because the higher-level optimization acts on the higher-level
forward model, which is trained only after the lower-level controller has
been trained, the optimization problems at both levels are decoupled. This
is a virtue because we do not need to execute nested optimizations to train
the higher-level controller.

Tasks like the one we consider are difficult because a significant amount
of time may elapse before the cost associated with a particular command
strategy can be determined. In our lower-level example, it takes a while
for the truck to move far enough to reveal that the wheels are not at a
good angle. Typically, as tasks get more complex, this delay gets longer.
For example, it takes longer to evaluate whether a subtarget issued by
the higher-level controller is going to get the truck closer to the final tar-
get without leading it into an obstacle. One consequence of this delay
is that we cannot assess the cost associated with a single command; we
must evaluate the cost of a sequence of commands. This requires that we
predict the consequences of issuing a command, which we do at each level
using a forward model. Once we have minimized the cost function by
choosing an optimal sequence of commands, we train a controller network
at each level to memorize the optimal commands given particular inputs.

To deal with the hierarchy of timescales associated with a hierarchy of
control levels, we introduce two timescales per level. The first is associated
with the temporal scale over which a process needs to be controlled. There is
no point in issuing commands that change more rapidly than the dynamics
of the object being controlled. In the truck example, wiggling the wheels
back and forth rapidly is not an intelligent way to drive the truck, and
swinging the subtarget around wildly is not a good way to guide the lower-
level controller. At level l of the hierarchy, we call this dynamic timescale Tl.
In general, the choice of Tl is governed by the dynamics of the system being
controlled by level l. For the truck problem, we take T1 = 6 and T2 = 72 time
steps.

In optimal control problems, the cost of a command is considered only
in the context of an entire sequence of commands. What is good to do now
depends on what will be done later. The second timescale is therefore the
length of the sequence of commands used to compute the cost of a trajec-
tory. At level l, we denote this number by Kl. In other words, it requires Kl
commands, spaced apart by Tl time steps, to determine the cost of a partic-
ular command strategy. In the case of the truck, we set K1 = 15 and K2 = 10.
An explanation of these particular settings is provided in the appendix.
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2.2.1 The Cost Functions. We denote a command given at time t
by the level l controller by the vector ml(t). For the lower-level con-
troller in the truck example, m1(t) = u(t), and for the upper-level
controller m2(t) = [dst(t), cos(θst(t)), sin(θst(t))]. We also define a vec-
tor sl(t) that represents the sensory input to layer l at time t on
which the decision to issue the command sequence is based. For the
case of the truck, s1(t) = [cos(θrel), sin(θrel), dst, cos(θst), sin(θst)] and s2 =
[cos(θrel), sin(θrel), g, log(1 + dft/L), cos(θft), sin(θft)] (see Figure 1).

The cost of a sequence of commands [ml (t), ml (t + Tl ), ml (t +
2Tl ), . . . , ml (t + KlTl )] takes the general form

S l =
Kl∑

k=0

Ll

(
sl (t + (k + 1)Tl ), ml (t + kTl ); ml+1(t)

)
. (2.1)

The functions Ll for the lower- (l = 1) and higher- (l = 2) level controllers
are specified below. It is important to observe that the cost function at level
l depends parametrically on the command from the level above, ml+1(t).
This command is provided at time t and, during training, is fixed until time
t + K1T1.

We would like the truck to drive toward the target along a straight
angle of attack, without articulating the link between the cab and trailer
too much and using minimal control effort. A cost function satisfying these
requirements can be constructed from

L1 = α1dst + β1θ
2
st + γ1(|θrel| − θmax)

2�
(|θrel| − θmax

) + ζ1u2. (2.2)

The third term makes use of the Heaviside step function, which is 1 if x ≥ 0
and 0 otherwise. We use the convention that all angles are in radians, and
we center all angles around 0 so they fall into the range between ±π . The
parameters α1, β1, γ1, ζ1, and θmax are given in Table 1 in the appendix.

The higher-level cost function is divided into three parts: L2 = Lsensory
2 +

Lcommand
2 + Lobstacle

2 . All the parameters in these cost functions are given
in Table 1. The sensory cost contains a distance-dependent term, but we
no longer need to penalize large cab-trailer angles because the lower-level
controller takes care of this on its own, so

Lsensory
2 = α2 log

(
1 + dft/L

)
. (2.3)

The higher-level motor command portion of the cost is given by

Lcommand
2 = β2

(
cos(θst)

2 + sin(θst)
2 − 1

)2 + γ2

((
dst − dmin

)2
�

(
dmin − dst

)
+ (

dst − dmax

)2
�

(
dst − dmax

))
. (2.4)
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The first term in this equation may look strange because the sum of the
squares of a cosine and a sine is always 1. However, the optimization pro-
cedure does not generate an angle θst and take its cosine and sine. Instead,
it generates values for the cosine and sine directly without any constraint
requiring that these obey the laws of trigonometry. As a result, this con-
straint needs to be included in the cost function. The distance-dependent
terms in equation 2.4 penalize subtarget distances that are either too short
or too long.

The final term in the higher-level cost function, Lobstacle
2 penalizes truck

positions that are too close to an obstacle. We are not concerned with the
distance from the truck to every single obstacle; rather, we care primarily if
the truck is too near a single obstacle, the closest one. Thus, we choose the
smallest distance to an obstacle, dobstacle

min (t) and impose a gaussian penalty
for proximity to this closest obstacle with a standard deviation equal to
the disc’s radius, σdisc. We also add a smaller, flatter penalty with a larger
standard deviation, σareola, as a warning signal to prevent the truck from
wandering near the obstacle. The resulting cost function is

Lobstacle
2 = ρ2 exp

(
−

(
dobstacle

min

)2

2σ 2
disc

)
+ ν2 exp

(
−

(
dobstacle

min

)2

2σ 2
areola

)
. (2.5)

Recall that the obstacles are detected by the sensory grid system shown in
Figure 4, and thus the distances to obstacles are not directly available. We
solve this problem by introducing a network that evaluates the cost func-
tion 2.5 directly from the sensory grid information g(t). We call this network
the obstacle critic because it serves the same role as critic networks in rein-
forcement learning (Widrow, Gupta, & Maitra, 1973; Sutton & Barto, 1998):
predicting the cost of sensory data, ultimately to train another network. It
has 199 grid inputs and one bias and a single output, representing the esti-
mated cost of the sensor reading (see the appendix). We train this network
to predict the obstacle cost from grid data by creating a large number of
measurement scenarios and computing the true cost function.

The complete higher-level cost function is the sum of the costs given in
equations 2.3 to 2.5. The trajectories that minimize the complete higher-level
cost function are goal seeking and obstacle avoiding.

2.2.2 The Forward Models. In equation 2.1, the cost function depends
not only on the sequence of commands but also on the entire sequence of
sensory consequences of those commands. In other words, Sl depends on
sl (t) . . . sl(t + KlTl ), but only sl (t) is provided. To predict the future sensory
data resulting from the command sequence, we build a forward model at
each level of the hierarchy. To do this, we sample the space (sl(t), ml (t)) and
record the resultant states sl(t + Tl ). We then build a network that predicts
the resultant sensory data.
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The forward model for level l predicts the future sensory data sl(t + Tl )

that result from passing the command ml(t) to the level below it. We use
the convention that the forward model is named after the level that issues
the commands and receives the sensory data, not the level that follows those
commands and causes the sensory data to change. Thus, the higher-level
forward model is actually modeling the sensory consequences of sending a
command to the lower-level controller, and the lower-level forward model
is modeling the consequences of sending a command to the truck. Because
we have a full kinematic description of the truck, we could use the truck
itself, rather than a forward model of it, to optimize the lower-level cost
function, though this solution would be limited to simulations with perfect
knowledge of the truck dynamics. Nevertheless, we use a forward model so
that we can treat and discuss the lower and higher levels in a similar manner.
The higher-level forward model could also be eliminated in three ways.
First, we could resort to a reinforcement learning method based on noise
injection to detect correlations between propagated subgoals and resultant
higher-level trajectory costs. This is likely to scale poorly for long sequences
of subgoals. Second, we could optimize sequences of subgoals using an
expensive finite difference calculation. Third, we could optimize directly
through the lower-level controller and the environment by backpropagating
at the lower-level timescale. However, by using the higher-level forward
model, we can optimize at a much coarser timescale and also decouple
the optimization entirely from execution of the lower-level controller. This
interesting property implies that long-term planning can be done without
operation or minutely detailed simulation of lower-level motor systems and
is a recognizable feature of human planning.

The lower-level forward model, a single network, is trained by randomly
choosing a set of sensory data, s1(t), consisting of the distance and cosine
and sine of the angle to a target, and a command m1(t), defining a wheel
angle, within their allowed ranges. We then simulate the motion of the
truck for a time T1 and determine the sensory data s1(t + T1), indicating the
articulation of the cab with respect to the trailer and where the truck lies
in relation to the subgoal. We continue to gather data for the lower-level
forward model by applying another command to the truck and taking a
new sensory measurement after the delay. In this way, we generate several
command sequences along a single trajectory to gather more data. To create
a diversity of training cases for the forward model, we periodically termi-
nate a trajectory and start a new trial from a random initial condition. On
the basis of several thousand such measurements, we train the lower-level
forward model network to predict the motion and articulation of the truck
over the full range of initial conditions and motor commands.

The higher-level forward model is composed of three networks: pro-
prioceptive, goal related, and obstacle related (see the appendix). Each
of these networks receives the command m2(t). The proprioceptive net-
work also receives the proprioceptive information, [cos(θrel(t)), sin(θrel(t))],
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Figure 8: Schematic showing the iterated use of the forward model for com-
puting an optimal command sequence. The system is provided with sensory
input at time t through the vector sl (t). The forward model is used repeatedly
to generate predictions of the sensory vector at times t + Tl, . . . , t + (Kl + 1)Tl .
The command sequence ml (t), ml (t + Tl ), . . . , m1(t + KlTl ) is an input to both
the cost-function computation and the forward model, and it is optimized.

and predicts [cos(θrel(t + T2)), sin(θrel(t + T2))]. The goal-related forward
model receives these proprioceptive data and the goal-related information,
[log(1 + dft/L), cos(θft), sin(θft)], and predicts the goal-related variables at
time t + T2. The obstacle-related forward model is the most complicated.
It receives the proprioceptive information and the obstacle grid data g(t).
Unlike the other forward model networks we have described, which make
deterministic predictions, the predictions of the goal-related forward model
are probabilistic. This is necessary because the grid predictions are under-
determined. For example, at time t, the grid input cannot provide any in-
formation about obstacles outside its range, but one of these may suddenly
appear inside the grid at time t + T2. The goal-related forward model cannot
predict such an event with certainty. Therefore, we ask the obstacle-related
network to predict the probability that each grid point will be occupied at
time t + T2, given a particular grid state and command issued at time t. This
is obviously a number between 0 and 1, in contrast with the true value of
gi(t + T2), which would be either 0 or 1. We explain how this is done in the
appendix.

When we use forward model networks to predict sensory information
along a trajectory, sl (t), sl (t + Tl ), sl (t + 2Tl ), . . . , we simply iterate using
the predicted sensory data time t + kTl to generate a new prediction at t +
(k + 1)Tl . This allows us to compute the summed cost functions of equation
2.1 for both controller levels (see Figure 8).

2.2.3 Computing Optimal Commands. Our procedure for generating opti-
mal command sequences is schematized in Figure 8. We begin by initializ-
ing states of the environment and truck randomly (within allowed ranges)
and measure sl (t). We then choose an initial (or nominal) sequence of
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commands [ml (t), ml (t + Tl ), . . . , m1(t + KlTl )]. For the lower-level con-
troller, we choose m1(t + kT1) = u(t + kT1) = 0 for all k, indicating that
pointing the wheels straight is our first guess for the optimal command.
For the higher-level controller, we choose the initial command sequence to
consist of identical commands placing a subtarget 50 length units directly
behind the truck. We apply these commands sequentially to calculate an
entire truck trajectory.

The command sequences are then optimized by using the dynamic op-
timization algorithm described in the appendix—also known as Pontrya-
gin’s minimum principle (Stengel, 1994) or backpropagation through time
(LeCun, 1988). Briefly, we calculate the effect that a small change to each
command will have on the total trajectory cost and determine the gradient
of the cost function with respect to the parameters defining the commands.
This gradient information is used to change the commands according to a
variable-metric update accomplished with the limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) method in “minFunc” (Schmidt, 2013).
L-BFGS uses successive gradient computations to compute an approxima-
tion of the inverse Hessian of the cost function, which speeds up optimiza-
tion considerably compared to steepest descent. We iterate the optimiza-
tion until performance does not improve (more details are provided in the
appendix).

The above procedure generates a single command sequence that is opti-
mal for the initial sensory data sl(t). However, we can use the sensory data
after the first command has generated its sensory consequences (at time
t + Tl) to optimize a new trajectory starting from the new sensory data. This
process can obviously be repeated at subsequent times. We periodically ter-
minate the trajectory and begin a new trial to obtain sufficient variety in the
initial sensory data. When this process is completed, the pairings of initial
sensory data and optimal commands constitute a training set for the con-
troller being trained, which learns to associate each sensory measurement
with the appropriate command.

Computing an optimal trajectory of K1 steps at the lower level takes on
average 1.3 seconds on our computer (averaged over 100 such optimiza-
tions). Computing an optimal trajectory of K2 steps at the higher level takes
on average 12.47 seconds (averaged over 10 such optimizations). Once the
lower- and higher-level controllers have been trained, only 0.001 seconds is
needed to run the two controllers in series. Clearly, memorization provides
a tremendous advantage in speed over online optimization.

2.2.4 Training the Networks. Having drawn random initial sensory data
sl (0) and solved the optimal control problem defined by equation 2.1, sub-
ject to the dynamics of the forward model, we then train the controller
network to predict the first motor command in the sequence from the sen-
sory data: ml (0) from s1(0). We do not use the full sequence of optimal
commands for training the controller; we use the full sequence only to
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evaluate the cost function. The rationale is that all the future commands be-
yond the first one in the sequence are based on sensory inputs predicted by
the forward model. Training the controller to associate these predicted sen-
sory states with their paired commands in the sequence introduces errors
into the controller because the sensory predictions of the forward model
are not entirely accurate.

The training procedure for each controller is straightforward. We apply
a particular input to the controller network and use backpropagation to
modify its parameters so as to minimize the squared difference between
the output command given by the controller and the optimal command for
that particular set of inputs. After a sufficient number of such trials (see the
appendix), the controller network learns to produce the desired command
in response to a particular input. Furthermore, if the network is properly de-
signed, it will generalize to novel inputs by smoothly interpolating among
the trained examples.

3 Discussion

3.1 Biological Evidence for Hierarchical Control and Forward Models.
Although our networks are certainly not models of specific biological neural
systems, we cannot resist drawing various connections to physiology. Bio-
logical evidence for hierarchical control is diverse, although we lack a clear
understanding of its architectural logic. Lashley (1930) and Bernstein (1967)
independently advocated hierarchical theories of motor control after rea-
soning from psychophysical experiments and intuition. Lashley’s principle
of motor equivalence paralleled Bernstein’s degrees of freedom problem:
namely, there is more than one movement that will accomplish a task goal.
It is, for example, possible to write with one’s left or right hand. Raibert
(1977) studied the problem of cursive writing while varying properties of
the utilized effector. He wrote, “Able was I ere I saw Elba,” using both
hands, with an immobilized wrist, and even with his teeth, demonstrat-
ing a relative invariance of the basic form of the orthography, suggesting
that musculoskeletal control is only loosely coupled to the problem of goal-
directed planning.

Anatomically, of course, projections from motor cortex to the spinal cord
are hierarchical in that control of muscle contraction is indirect (Loeb,
Brown, & Cheng, 1999). This was perhaps first grasped by Hughlings
Jackson in 1889 (Jackson, 1889). Therefore, from the perspective of cortical
control centers, the problem of movement corresponds to the problem of
sending commands to the spinal cord in such a way that will satisfy higher-
level intentions. In the octopus, large networks of ganglia, interposed be-
tween the central nervous system and the arm muscles, are themselves nec-
essary and sufficient for the production of complicated movements; when
the axial nerve cords of the peripheral nervous system are stimulated elec-
trically, severed arms propagate a bend that results in qualitatively normal
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extension (Sumbre, Gutfreund, Fiorito, Flash, & Hochner, 2001). Analo-
gously, in zebra finch singing behavior, the nucleus HVc controls song
timing through its projections to the motor region RA, which is ultimately
responsible for the control of syllable vocalization by syringeal muscles
(Albert & Margoliash, 1996).

A long-standing hypothesis is that the cerebellum implements a forward
model that predicts the delayed sensory consequence of a motor command
(Miall, Weir, Wolpert, & Stein, 1993; Shadmehr, Smith, & Krakauer, 2010).
Intriguingly, a recent study suggests that neurons in Clarke’s column in the
spinal cord simultaneously receive input from cortical command centers
and from proprioceptive sensory neurons, and the authors speculate that
this joining of sensory and motor inputs could function as a predictor,
akin to a forward model (Hantman & Jessell, 2010). Experimentalists have
therefore already proposed multiple loci for forward models, functioning
at different levels of the motor system. This connection suggests that motor
behavior may be produced by hierarchies of controllers that are trained by
forward models at each level of the hierarchy.

3.2 Relationship to Other Approaches. Research on hierarchical con-
trol is dispersed among several different fields with varying agendas and,
in fact, conceptions of the word hierarchy. Robotics has embraced hierar-
chical mechanisms wholeheartedly, and most current systems for compli-
cated tasks are now hierarchical. A typical mobile robot will segregate
low-level control from planning and navigation, a functional division that
we have borrowed. This is the case in Stanley, the self-driving car that
won the DARPA Grand Challenge (Thrün et al., 2006), which was mod-
eled on the three-layer architectures of Gat (1998). In these architectures,
however, planning is entirely separated from lower-level motor control;
in particular, higher levels do not model the result of commanding lower
levels, so no notion of feasibility is available to the higher-level system. As
a workaround, the navigational models in these systems are heuristically
instructed to generate paths that are smooth and free from obstruction. We
feel that endowing higher-level systems with explicit models of the results
of propagating commands to lower levels can make robots more flexible
and better able to cope with or exploit the particularities of their lower-level
controller and plant dynamics.

Hierarchical reinforcement learning (Dietterich, 1998; Barto & Mahade-
van, 2003; Sutton, Precup, & Singh, 1999) considers a different notion of
hierarchy, which we might term a recursive hierarchy. Whereas our notion of
hierarchy is structural and embedded in a hierarchy of circuits, hierarchi-
cal reinforcement learning systems are representatives of the same form of
hierarchy as procedural programs—procedures that call subprocedures re-
cursively. The procedures in hierarchical reinforcement learning correspond
to tasks, which can be recursively decomposed into subtasks. Termination
conditions within each subtask return the system back to the caller task. Our
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major borrowing from this literature is the idea of a subtask or subgoal, but
our implementation of this idea is only superficially related to the models
in reinforcement learning.

Mathematically, our design procedure is closest to work in inverse opti-
mal control. This field concerns itself with the problem of inferring the cost
function that an observed agent is obeying (Ratliff et al., 2009; Abbeel & Ng,
2004; Kalakrishnan, Pastor, Righetti, & Schaal, 2013). Within inverse opti-
mal control, work connected to bilevel programming (Albrecht, Sobotka, &
Ulbrich, 2012; Mombaur, Truong, & Laumond, 2010) is the closest to ours, as
it explicitly considers the question of how to choose parameters for a lower-
level cost function to minimize a higher-level cost function. In most studies
using inverse optimal control, the higher-level cost function is a measure
of deviation between the experimentally measured movements of a subject
and the outputs of an optimal control model optimizing the lower-level
cost function, defined by the higher-level parameters. The aim of this work
is different from ours in that the goal is to understand the behavior of an
experimental subject. Additionally, in implementation, these inverse opti-
mal control studies have not used higher-level forward models to decouple
the optimization across levels or memorized the results of optimization to
construct feedback controllers.

Other work on hierarchical control in the context of theoretical modeling
of human motor control has sought to reduce the dimensionality of the state
space, sending the higher level a compressed description of the state of the
plant to simplify the computation of optimal commands (Liu & Todorov,
2009). While this may often prove useful, it is orthogonal to our approach. In
our model, the state dimensionality at the higher level is in fact almost two
orders of magnitude larger than at the lower level because it includes new
sensory data unavailable to the lower level. This massive dimensionality
expansion is, for example, consistent with the observation that the visual
and motor information for visuomotor control is first merged cortically,
even though reflexive movements, for example, triggered by noxious stim-
uli, are processed entirely within the spinal cord. Thus, higher-level control
can serve roles beyond dimensionality reduction and can take into account
altogether new channels of information.

Work on dynamical movement primitives (Ijspeert, Nakanishi,
Hoffmann, Pastor, & Schaal, 2013; Schaal, Peters, Nakanishi, & Ijspeert,
2005) aims to construct lower-level control systems obeying attractor or
limit cycle dynamics that simplify the production and planning of smooth,
feedback-sensitive movements. In this research program, a canonical low-
dimensional dynamical system with intrinsic dynamics generates control
outputs, and the goal is specified by sending a set of parameters to the
movement primitive that specify the end goal, for example. This work is
quite closely connected to our own in its purpose. The primary difference is
that work in this field studies a somewhat limited set of dynamical systems
of a specific kind, and the higher-level control of these systems has not
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used higher-level forward models but instead sampling-based reinforce-
ment learning and supervised learning from demonstration.

The idea of controlling a physical system by building a model of it is
quite old, entering the connectionist literature with Nguyen and Widrow
(1989) and Jordan and Rumelhart (1992) but existing in a prior incarna-
tion as model-reference adaptive control. More recently, model-based con-
trol has been identified as a very data-efficient means to train controllers
(Deisenroth & Rasmussen, 2011). Neural networks have also received re-
newed attention in recent years as generic substrates for feedback con-
trollers (Huh & Todorov, 2009; Sutskever, 2013). To the best of our knowl-
edge, the idea of using a network to model the feedback from another
network and then to use that model to control the modeled network is
novel. We expect it to have ramifications that exceed the traditional frame-
work of motor control. Forward models could be constructed by either
motor babbling or a more intelligent experimentation procedure. Once the
controllers have been trained, they exhibit automaticity, an ability to gen-
erate answers without extensive computation. Automating complex com-
putations by caching has been proposed before (Kavukcuoglu, Ranzato, &
LeCun, 2008; Dayan, 2009) in different contexts, but using cached circuits
as lower-level substrates for higher-level control circuits has not.

4 Conclusion

Our work consists of three innovations: (1) dividing the task hierarchically
by designing a higher level that propagates cost-related information to a
lower level, (2) introducing higher-level forward models to train higher-
level controllers, and (3) caching computed optimal commands in network
controllers.

Apart from navigation problems, the hierarchical scheme and training
procedure using forward models should be useful for tackling any problem
requiring simultaneous application of sensorimotor and cognitive skills.
Consider, for example, a robotic gripper moving blocks. It would be quite
a challenge to construct a unitary network that directs the gripper to pick
up, move, and drop blocks and that decides how to arrange them into a
prescribed pattern at the same time. It is easier to separate the problem into
a manual coordination task and a puzzle-solving task, and a natural vehicle
for this separation is the network architecture itself. More generally, the ap-
proach we have described is suited to problems that can be formulated and
solved by division into easier subproblems. Many interesting tasks have this
structure, so this strategy should be quite widely applicable. Surprisingly,
despite the intuitiveness of this idea, it has received little attention.

The construction of the hierarchy is recursive or self-similar. This makes
training considerably easier because each controller in the hierarchy is ba-
sically doing the same thing: receiving and issuing commands describ-
ing goals. Thus, we can apply the same training procedure at each level.
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Another advantage of this approach is that lower-level controllers do not
need to be retrained if the overall task changes. In addition, the hierarchy
can be extended by adding more levels if the task gets more difficult, again
without requiring retraining of the lower levels.

Although we have trained the forward model and controller networks
sequentially, we do not preclude the attractive possibility of training them
at the same time, maybe even at multiple levels of the hierarchy simulta-
neously. To do so, we expect it would be crucial to account for errors in
the forward models; we could generate cautious commands by penalizing
those commands that a forward model is unlikely to predict accurately,
or we could also generate commands that attempt to probe the response
properties of the level below to improve the model.

This study presents a hard result, a hierarchical neural network, and
a method for training it based on higher-level forward models; perhaps
equally important, it bolsters a soft view. To create intelligent behaviors
from neuron-like components, we need to embed those neurons in mod-
ules that perform specific functions and operate to a large extent indepen-
dently. These modules should have protocols for interfacing one to another,
protocols that effectively hide the complexity of the full computation from
the constituents. In experimental neuroscience, studying how such modules
interact may require us to move beyond single-area recordings to under-
stand the causal interactions between connected regions and identify the
goals of the computations performed by each region.

Appendix: Methods

A.1 Parameters. In Table 1, the lower-level dynamic timescale T1 was
chosen to be as many time steps as possible without causing the emer-
gence of jackknifing of the truck during optimization. The length of the
lower-level control sequence K1 was chosen to be relatively short, subject
to the requirement that the lower-level controller needed to be able to turn
around and approach a nearby target. The performance of the lower-level
controller was not strongly sensitive to these particular values for K1 and
T1. The upper-level dynamic timescale T2 was chosen to be shorter than the
amount of time it takes for the truck to cross directly through an obstacle.
Otherwise the optimization could command the truck through an obstacle,
but because the forward model is showing only a before-and-after snapshot
of the location of the truck, the whole system would be blind to its error.
The length of a higher-level command sequence K2 was chosen so that a
truck that drives straight for K2T2 time steps would not reach beyond the
edge of the obstacle grid observed at time t = 0. That is, the sensory system
contains most of the information needed for planning K2T2 steps. Again,
small variations in these numbers do not change the behavior of the system
significantly, but the numbers are intelligently chosen to make the system
work as well as possible.
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Table 2: Architectures of the Networks.

Network Dimensions and Activation Functions

Lower-level forward 6 × [G]150 × [L]5
Lower-level controller 5 × [G]100 × [L]1
Higher-level forward (proprio.) 5 × [T]40 × [T]20 × [T]20 × [L]2
Higher-level forward (goal) 8 × [T]40 × [T]20 × [T]20 × [L]3
Higher-level forward (obstacle) 205 × [T]300 × [T]200 × [T]200 × [T]300 × [Si]199
Higher-level critic (obstacle) 199 × [T]300 × [T]100 × [T]100 × [So]1
Higher-level controller 205 × [So]30 × [So]20 × [So]30 × [L]3

A.2 Network Structure and Training. The lower-level makes use of
radial basis function (RBF) neural networks. RBF networks possess a strong
bias toward generating smoothly-varying outputs as a function of their
inputs and can train very quickly on low-dimensional input data, two
qualities that are useful at the lowest level of the hierarchy. The functional
targets for the higher-level networks were more complicated and higher-
dimensional, so we had to develop “deep” (or many-layered) networks to
approximate them accurately.

The architectures of the networks are shown in Table 2. The bracketed let-
ters indicate the activation functions used for the units. [G] is a normalized
gaussian RBF for input x,

exp
(−||x − μi||2/(2σ 2

i )
)

∑
j exp

( − ||x − μ j||2/(2σ 2
j )

) ,

with basis function centers μi and standard deviations σi. The RBF centers
were chosen by randomly selecting exemplars from the input data. They
were not further adapted in training. The RBF standard deviations were
initialized to scale linearly with the number of input dimensions. To avoid
division-by-zero, we computed using the inverse standard deviations 1/σi.

All the other multiplication signs in Table 2 imply matrix multiplication
followed by an activation function. [L] is a linear activation function, [T]
is tanh(x), [Si] is a logistic sigmoid 1/(1 + exp(−x)), and [So] is a “soft-
rectification” function log(1 + exp(x)). We chose these activation functions
using a mixture of prior knowledge and experimentation. The soft rectifi-
cation in the obstacle critic imposed the constraint that costs are positive.
The logistic function in the obstacle grid forward model bounds the outputs
between 0 and 1 and allows us to interpret them as the probabilities that
the grid points will be occupied. The soft-rectification in the higher-level
controller alleviated overfitting.

A weight matrix W from a layer of size M to another layer was initialized
to have independent gaussian entries of mean 0 and standard deviation
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1/
√

M. This makes the networks balanced in that the mean input to every
unit is 0 and the response variance of all units is self-consistently O(1).
This ensures a constant response variance from one layer to the next. All
multilayer networks included a single additional bias unit in their inputs.

We chose to interpret an obstacle grid model output as the probability
that the corresponding grid element would be occupied after movement.
We consequently used the cross-entropy cost function to train this network.
We can derive this cost function from a maximum-likelihood argument.

Suppose we have a data set of patterns (xk, yk)
Npatterns

k=1 and a neural network
with M outputs whose ith output unit as a function of the kth input vec-
tor given by zi(xk) represents the binomial probability that yi(xk) = 1. The
likelihood of the data is binomial, so the log likelihood is

Npatterns∑
k=1

M∑
i=1

yi(xk) log zi(xk) + (1 − yi(xk)) log(1 − zi(xk)).

When negated, this gives the cross-entropy cost function.
Optimization of the network parameters was accomplished using batch

training with the quasi-Newton optimization method L-BFGS in minFunc
(Schmidt, 2013). To train the lower-level forward model or the lower-level
controller, at the beginning of each trial a random angle θst was drawn along
with a random distance dst in the range between 0 and 500. The trailer angle
θtrailer was similarly drawn uniformly. The cab angle was initialized to be
within ±(π/2 − π/64) radians of the trailer angle.

The higher-level proprioceptive and goal-related models were trained
to predict not the values of their targets but the difference between the
values of their targets before and after movement. This reduced training
time because the interesting predictions of many forward models are the
deviations from the identity.

A.3 Equations for the Truck. The truck is a kinematic model of a cab
and trailer (see Figure 9), first defined by Nguyen and Widrow (1989). The
cab is connected to the trailer by a rigid linkage. The wheels are connected
to the front of the cab and translate backward by distance r in one time step.
Note that the wheels drive the cab the same way that the linkage drives the
trailer, so we can solve for the motion of the cab and trailer in a similar way.

We begin by decomposing the motion of the front of the cab caused by the
wheels into a component orthogonal to the front of the cab, defined as A =
r cos(u(t)), and a component parallel to the front of the cab, C = r sin(u(t)).
Only the orthogonal component, A, gets transferred through the linkage to
the trailer. Performing a similar decomposition of the motion of the front of
the trailer, we find an orthogonal component B = A cos(θcab(t) − θtrailer(t))
and a parallel component D = A sin(θcab(t) − θtrailer(t)). In one time step,
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Figure 9: Variables describing the truck. The position of the center of the back
of the trailer is given by (x, y), and the center of the front of the trailer is at
(x′, y′). The angle of the cab with respect to the x-axis is θcab(t) and for the trailer,
θtrailer(t). The angle by which the front wheels deviate from straight ahead is u,
and the relative angle between the cab and trailer is θrel = θcab − θtrailer.

the center of the front of the trailer (see Figure 8) therefore moves by

x′(t + 1) = x′(t) − B cos(θtrailer(t)) + D sin(θtrailer(t)),

y′(t + 1) = y′(t) − B sin(θtrailer(t)) − D cos(θtrailer(t)).

The back of the trailer is constrained to move straight backward, so

x(t + 1)= x(t) − B cos(θtrailer(t)),

y(t + 1)= y(t) − B sin(θtrailer(t)).

If the length of the trailer is Ltrailer, x′(t) = x(t) + Ltrailer cos(θtrailer(t)) and
y′(t) = y(t) + Ltrailer sin(θtrailer(t)). The tangent of the angle of the trailer is
equal to (y′ − y)/(x′ − x), so at time t + 1, we have

tan(θtrailer(t + 1)) = Ltrailer sin(θtrailer(t)) − D cos(θtrailer(t))
Ltrailer cos(θtrailer(t)) + D sin(θtrailer(t))

.

An identical argument applied to the cab yields

tan(θcab(t + 1)) = Lcab sin(θcab(t)) − C cos(θcab(t))
Lcab cos(θcab(t)) + C sin(θcab(t))

.

Consolidating all of the equations, we have

A = r cos(u(t)),

B = A cos(θcab(t) − θtrailer(t)),

C = r sin(u(t)),
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D = A sin(θcab(t) − θtrailer(t)),

x(t + 1)= x(t) − B cos(θtrailer(t)),

y(t + 1)= y(t) − B sin(θtrailer(t)),

θcab(t + 1)= tan−1
(

Lcab sin(θcab(t)) − C cos(θcab(t))
Lcab cos(θcab(t)) + C sin(θcab(t))

)
,

θtrailer(t + 1)= tan−1
(

Ltrailer sin(θtrailer(t)) − D cos(θtrailer(t))
Ltrailer cos(θtrailer(t)) + D sin(θtrailer(t))

)
.

It is worth mentioning that (x, y, θcab, θtrailer) is a four-dimensional state
vector with a one-dimensional control variable, u. Control theorists call
problems in which the control vector is lower dimensional than the state
vector “underactuated”; such problems are typically more difficult than
fully actuated problems because it may take more than one step to modify
a given state variable, and it may be impossible to drive the system to an
arbitrary point in the state-space (a concept known as controllability). The
truck is also a nonlinear system and an unstable one because setting u = 0
amplifies any angular deviation of the cab from the trailer.

A.4 Minimizing the Cost Functions. In this section we describe how to
minimize the cost functionals with respect to the command parameters. We
are minimizing a cost functional of the form

S =
K∑

k=0

L(s(k + 1), m(k)) (A.1)

as in equation 2.1, but to streamline the notation, we have dropped the
time t and the temporal scale factor T that appear in equation 2.1. This
means that we have shifted the time variable to starting at time t and are
measuring time in units of T. The original equations can be recovered by
shifting and scaling back. We have also dropped the subscripts l because
the same procedure is applied at each level.

The sensory vector s is estimated by a forward model, and we denote
the output of the forward model by F(s, m), so that s(k + 1) is estimated as
F(s(k), m(k)). To implement this constraint, we introduce Lagrange multi-
pliers for every component of m and at every moment in time and minimize

Sconstrained =
K∑

k=0

L(s(k + 1), m(k)) + λ(k)�(F(s(k), m(k)) − s(k + 1)).

(A.2)

For convenience, we define λ(K + 1) = 0.
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The gradient of this function with respect to the sensory vector is

δSconstrained

δs(k)
= Ls(s(k), m(k − 1)) + Fs(s(k), m(k))�λ(k) − λ(k − 1),

where the subscript s indicates a derivative with respect to that variable. At
a minimum of the cost functional, we find the backward equation for the
Lagrange multipliers:

λ(k − 1) = Ls(s(k), m(k − 1)) + Fs(s(k), m(k))�λ(k). (A.3)

It is easy to find an extremum of the cost functional with respect to the
sensory variables and the Lagrange multipliers. It is more difficult to mini-
mize with respect to the command variables, where the relevant gradient is

δSconstrained

δm(k)
= Lm(s(k + 1), m(k)) + Fm(s(k), m(k))�λ(k).

This is done using Algorithm 1.

A.5 Differential Dynamic Programming Comparison. We used an im-
plementation of differential dynamic programming (DDP) based on the
description in Erez (2011). The DDP cost function was closely related to the
two cost functions used in the hierarchical optimization, L1 and L2, but we
had to modify a few of the terms because DDP appeared more sensitive
to discontinuities of the derivatives of the original costs. Our overall cost
function could be decomposed as LDDP = Lobstacle

DDP + Lgoal
DDP + Lconstraints

DDP .
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Here,Lconstraints
DDP (s2) = u2/2 + 20(1 − cos(θrel))

4. These two terms roughly
accomplish the same purpose as the constraint terms in the lower-level cost
function but are C∞ smooth. Lgoal

DDP(s2) = log(1 + d/L), as in equation 2.3.
The obstacle cost function was identical to equation 2.5, except that the
minimum operation used to compute dobstacle

min was replaced by a smooth
approximation: min(x1, x2, . . . , xn) ≈ (

∑n
i=1 xp

i )1/p, with p = 10.
We executed DDP as a receding-horizon controller in which trajectories

of length K2T2 steps were planned at once. The first step of the plan was ex-
ecuted, and the entire sequence of optimized motor commands was shifted
back by one step. This was used to “warm-start” DDP on the next iteration
of planning. The motor command sequence at the initialization of each trial
was chosen to be the same as the command sequence that the hierarchical
controller selected.

When comparing the costs of trajectories, we computed Lobstacle
DDP + Lgoal

DDP
for both trajectories. Therefore, the hierarchical controller was evaluated on
a cost function it was not exactly trained to minimize.
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