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Gain modulation of recurrent networks
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Abstract

Gain modulation is an important mechanism by which attentional and other inputs modify
the amplitude of neuronal responses without changing their selectivity. Gain modulation has
been studied previously in feedforward circuits but not in recurrent neural networks. We show
how gain modulation modi"es the response of a recurrent network to feedforward inputs. Even
modest gain modulation of the recurrent network can cause downstream neurons to switch
from a state in which they are unresponsive to a stimulus to a state where they respond
selectively. Funneling the recurrent connections of a network through gain modulated neurons
allows the selectivity within the network to be modi"ed by modulatory inputs. ( 2000
Elsevier Science B.V. All rights reserved.
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1. Introduction

Neuronal responses can change over short time scales due to attentional e!ects and
processes related to motor response selection and activation. Goldberg et al. [7] have
recorded neurons in area LIP that only "re to stimuli that recently have appeared in
their receptive "elds, or to stimuli that have behavioral signi"cance (see also [13]).
One possible mechanism for this type of change is rapid modulation of synaptic
e$cacy, essentially a faster form of the same processes that account for changes in
selectivity over much longer time scales during learning and development [14].
A second idea is that switching arrays shift the input to the neuron being modulated
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Fig. 1. (a) Gain-modulated neurons in a reccurent network driving a single down-stream neuron. The
recurrent neurons are driven by stimulus input characterized by a single variable labelled &orientation'.
(b) Upper panel: Response tuning curves of the downstream neuron when the network is not gain
modulated (stars on x-axis indicating no response) and when it is gain modulated (curve). Lower panel:
Response tuning curves of a representative neuron within the recurrent network in the unmodulated (stars)
and modulated (curve) states.

[3,10]. Here we explore another possibility, gain modulation of individual neurons
within a recurrent network.

Gain modulation is a widespread mechanism by which neural responses amplitude
is scaled while the selectivity of the neuron remains unchanged. Information about eye
and head position is combined with visual input in parietal cortex through gain
modulation of visual receptive "elds [2,4]. Gain modulation has also been seen in V4
neurons as a function of attention [5,9]. The e!ects of gain modulation have been
studied in feedforward networks [15,12,11], but not in recurrent networks. We show
here that gain modulation within a recurrent circuit can dramatically a!ect both the
activity of downstream neurons and the selectivity of the network itself.

2. Models and results

Our "rst model is a linear recurrent network as shown in Fig. 1a. The activity of
neuron i within such a network of N neurons, u

i
, is determined by solving

u
i
"g

iAIi#
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=
ij
u
jB. (1)

The "rst term within the parentheses is the feedforward input to neuron i, and the
second term represents recurrent input from the other neurons in the network.=

ij
is

the weight of the synapse from unit j to unit i. The parameter g
i
(this is a multiplicative

factor not a function) is the factor by which we introduce gain modulation. Initially,
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we evaluate this network with all g
i
"1. In this case, we solve for the activities by

expressing the rates and feedforward inputs in terms of a complete set of eigenvectors
mk
i
of the recurrent weight matrix, +

j
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i
for k"1, 2,2, N, where jk are the

eigenvalues. The solution is
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This equation displays the phenomenon of selective ampli"cation if the largest
eigenvalue, j

1
, is near (but (1) 1 [1,6]. The factor 1!j

1
in the denominator causes

the k"1 term to dominate, and we "nd
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We now study the e!ect of gain modulation by allowing the g
i
factors to be di!erent

from one. We wish to study how large e!ects could arise from modest gain modula-
tions, so we restrict our analysis to the case where all the g

i
are close to one. This

allows us to perform a perturbative calculation in powers of the quantities g
i
!1. To

"rst order, it is possible to derive an analytic expression for the activity of unit i,
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The factor A, which we have not bothered to write out, depends on the input and gain
factors. We leave out this expression because it plays no role in the switching function
we are studying.

The important term for our purposes is the second one in Eq. (4). This indicates that
gain modulation changes the pattern of the population response of the network, not
simply its amplitude. Consider a downstream neuron with response given by

v"
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+
j/1

ml
j
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j

(5)

with lO1. The downstream neuron is connected to neuron j of the recurrent network
through a synapse of weight ml

j
. Because lO1, this neuron will be completely

insensitive to patterns of activity in the recurrent network proportional to m1
i
. How-

ever, when the recurrent network is modulated, the second term in Eq. (4) shows that
the pattern of network activity picks up terms proportional to the other eigenvectors
of the recurrent weight matrix. Using Eq. (4), we "nd that
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The activity of this unit vanishes if all the g
i
are equal to one, or indeed if they are all

equal to each other. However, when the recurrent network is gain modulated in
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Fig. 2. (a) Recurrent network with a &pointer' neuron architecture. All the recurrent connections are
funneled through a set of gain modulated neurons. (b) Upper panel: the input}output curve of a gain
modulated neuron before and after gain modulation. Lower panel: the change of selectivity for one of the
constant gain neurons due to gain modulation. The dashed and solid response tunning curves correspond
to the dashed and solid gain curves in the upper panel.

a nontrivial way, the downstream unit responds. Furthermore, the amplitude of v is
ampli"ed by the original factor 1/(1!j

1
). Fig. 1b (upper panel) shows the output of

the downstream neuron in a simulation. Although the recurrent network neurons
change their activities only slightly after gain modulation (Fig. 1b, lower panel), the
downstream neuron's activity changes dramatically. It is switched from a nonrespon-
sive to a selectively responsive state.

Hahnloser et al. [8] have proposed an architecture for recurrent networks in which
the recurrent connections are funneled through a set of what they call &pointer'
neurons. Gain modulation of these neurons is a powerful way to modify network
behavior because they e!ectively control the strength of the recurrent connections. In
a second model, we have studied this form of gain modulation. The network has the
structure shown in Fig. 2a. All the recurrent connections between the constant gain
neurons project through a set of gain modulated neurons. In the example we studied,
the connection from unmodulated neuron i to modulated neuron k has strength gkmki
and the return connection has strength mk

i
. Here gk is the gain modulation factor for

neuron k. The "ring rates of the constant gain neurons are then governed by Eq. (1)
with=

ij
"+kgkmki mk

j
. The eigenvectors of this matrix have components mk and have

the eigenvalue gk . Recall that selective ampli"cation occurs when one of the eigen-
values is close to one. By modulating the gain factors, we can control which of the
eigenvectors has an eigenvalue near one, and hence which eignevector determines the
selectivity of the network. Fig. 2b shows that the selectivity of one of the unmodulated
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neurons is shifted signi"cantly when a small change is made in the gain of the
modulated neurons.

3. Conclusions

Modulation that changes the gain of selected neurons by a small amount can have
a dramatic e!ect on the responses of other neurons within a recurrent network.
Downstream neurons can switch between unresponsive and selectively responsive
states, and network selectivity can be signi"cantly modi"ed. Thus, gain modulation is
a good candidate mechanism for major behavioral decision functions involving
switching and shaping of selectivity.

References

[1] L.F. Abbott, Decoding neuronal "ring and modeling neural networks, Quart. Rev. Biophys. 27 (1994)
291}331.

[2] R.A. Andersen, G.K. Essick, R.M. Siegel, Encoding of spatial location by posterior parietal neurons,
Science 230 (1985) 450}458.

[3] C.H. Anderson, D.C. Van Essen, Shifter circuits: A computational strategy for dynamic aspects of
visual processing, Proceedings of the National Academy of Sciences of the United States of America
Vol. 84, 1987, pp. 6297}6301.

[4] P.R. Brotchie, R.A. Andersen, L.H. Snyder, S.J. Goodman, Head position signals used by parietal
neurons to encode locations of visual stimuli, Nature 375 (1995) 232}235.

[5] C.E. Connor, J.L. Gallant, D.C. Preddie, D.C. Van Essen, Responses in area V4 depend on the spatial
relationship between stimulus and attention, J. Neurophysiol. 75 (1996) 1306}1308.

[6] R.J. Douglas, C. Koch, M. Mahowald, K.A.C. Martin, H.H. Suarez, Recurrent excitation in neo-
cortical circuits, Science 269 (1995) 981}985.

[7] J.P. Gottlieb, M. Kusunoki, M.E. Goldberg, The representation of visual salience in monkey parietal
cortex, Nature 391 (1998) 481}484.

[8] R. Hahnloser, R.J. Douglas, M. Mahowald, K. Hepp, Feedback interaction between neuronal
pointers and maps for attentional processing, Nature Neurosci. 8 (1999) 746}752.

[9] C.J. McAdams, J.H.R. Maunsell, E!ects of attention on orientation-tuning functions of single neurons
in macaque cortical area V4, J. Neurosci. 19 (1999) 431}441.

[10] B.A. Olshausen, C.H. Anderson, D.C. Van Essen, A neurobiological model of visual attention and
invariant pattern recognition based on dynamical routing of information, J. Neurosci. 13 (1993)
4700}4719.

[11] A. Pouget, T.J. Sejnowski, Spatial transformations in the parietal cortex using basis functions,
J. Cognitive Neurosci. 9 (1997) 222}237.

[12] E. Salinas, L.F. Abbott, Transfer of coded information from sensory to motor networks, J. Neurosci.
15 (1995) 6461}6474.

[13] E. Seidemann, E. Zohary, W.T. Newsome, Temporal gating of neural signals during performance of
a visual discrimination task, Nature 394 (1998) 72}75.

[14] C. Von der Malsburg, W.A. Schneider, Neural cocktail-party processor, Biol. Cybernet. 54 (1986)
29}40.

[15] D. Zipser, R.A. Andersen, A back-propagation programmed network that simulates response proper-
ties of a subset of posterior parietal neurons, Nature 331 (1988) 679}684.

J. Zhang, L.F. Abbott / Neurocomputing 32}33 (2000) 623}628 627



Jian Zhang is a Ph.D. student in computational neuroscience. His research
explores the e!ects of gain modulations in cortical circuits.

L.F. Abbott is the Nancy Lurie Marks Professor of Neuroscience and the Director of the Volen Center for
Complex Systems at Brandeis University. His research explores the e!ects of recurrent connectivity and
both short- and long-term synaptic plasticity on the functional properties of cortical circuits.

628 J. Zhang, L.F. Abbott / Neurocomputing 32}33 (2000) 623}628


