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SELF-SUSTAINED FIRING IN POPULATIONS
OF INTEGRATE-AND-FIRE NEURONS*

CARL VANVREESWIJK! AND L. F. ABBOTT

Abstract. A coupled population of simple integrate-and-fire model neurons is analyzed to
determine the conditions that lead to stable firing sustained by all-to-all excitatory interactions. The
possible temporal firing patterns are determined, and the initial conditions that produce them are
discussed. For certain parameter values, two different patterns of firing are possible: one in which
the firing is distributed among many groups of neurons that fire sequentially, and another in which
the population breaks into two groups that fire alternately. The probabilities of different temporal
firing patterns arising from random initial conditions and noise inputs are analyzed by computer
simulation.
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1. Introduction. Studies of model neural networks [2], [6] have focused atten-
tion on self-sustained firing in neural populations. In network associative memories,
spatial patterns of self-sustained firing in populations of simple model neurons are used
to represent stored memories and are the outcome of memory retrieval. The model
neurons used in these networks are most often binary [7], [12], [13] or are based on a
mean-field description [16]. The activity of the resulting network models is described
in terms of an average firing rate [1]. The specific timing of action potentials is not
computed, so the temporal distribution of firing and issues such as the synchroniza-
tion or clumping of action potentials cannot be treated. This shortcoming has led to
the consideration of associative memories in populations of integrate-and-fire neurons
[4]. Integrate-and-fire neuron models [11] go beyond a simple firing rate description
by predicting action potential firing times. Therefore, firing patterns, not just av-
erage firing rates, in neuronal populations can be studied. Complex firing patterns
like those analyzed analytically here have been found in model simulations [3]. Other
studies have revealed some of the richness and complexity exhibited by populations
of integrate-and-fire neurons as well [8], [9].

The complexity of coupled systems of integrate-and-fire neurons has resulted in
a scarcity of analytic results. Our work is inspired by recent results of Mirollo and
Strogatz [14], who studied synchronization in populations of integrate-and-fire oscil-
lators with all-to-all coupling. Mirollo and Strogatz proved that, for almost all initial
conditions, the model oscillators tend to synchronized steady states. Related work
on coupled oscillators has been done by Kuramoto [10]. In this paper, we consider
populations of integrate-and-fire neurons that are not intrinsic oscillators. We look for
steady-state firing that is not the result of any intrinsic oscillatory properties of indi-
vidual neurons, but instead arises collectively as a cooperative phenomenon involving
the entire population. We determine the types of self-sustained temporal firing pat-
terns that can occur, and we indicate the conditions that must be satisfied for them to
arise. Using computer simulations, we analyze the probabilities that certain temporal
patterns of self-sustained firing appear and study the effect of noise.
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2. The model. The simple integrate-and-fire model we consider uses a variable
z to describe the degree of activation of a neuron. The activation variable satisfies
the equation (with 8 > 0)

(2.1) Z—f =a-fz
for 0 < z < 1. If z > 1, the neuron fires, and z is reset to zero. The value 1 is thus
the activation threshold. We consider populations in which all neurons are coupled
to all other neurons [10] with excitatory couplings of equal strength. When a single
neuron fires, the = values of all other neurons in the population are increased by a
positive amount €. If n neurons fire simultaneously, the z values of all the other
neurons in the population are increased by an amount ne. In this way, firing of some
neurons can induce other members of the population to fire. Mirollo and Strogatz
[14] considered this model with a/8 > 1. In this case, the presence of the a-term in
(2.1) causes individual neurons to fire repetitively even in the absence of coupling to
other neurons. The role that coupling plays is to synchronize these oscillations [14].

We wish to consider self-sustained firing in a population of neurons that cannot
fire without excitatory input from other neurons in the population. Therefore, we
set = 0 in (2.1). The resulting model is a leaky integrate-and-fire model with
excitatory couplings between neurons. With a = 0, there is no intrinsic oscillation
period to set the timescale for firing. (The model neuron will not oscillate if a/3 < 1.
It is straightforward to extend our results to the case of nonzero o satisfying this
bound, but since this adds complication and introduces no new features, we only
consider = 0.) Instead, in a real system of neurons, the minimum time between
neuronal firings would be determined by the transmission, integration, and response
delays in the population. To represent this phenomenon, we let the model evolve
in discrete timesteps equal to a typical delay time. In units of this basic timestep,
the time variable takes on integer values t = 0,1,2,.... If a neuron is pushed above
threshold and fires at time ¢, the excitation € due to that firing will not be added to
the activation of the other neurons until time ¢ + 1. The discrete nature of the time
evolution in the model plays an essential role in the results that we obtain.

For discrete time evolution, (2.1) can be integrated over one timestep. This has
the effect of multiplying z by a factor

(2.2) A = exp(-0).

A population of N neurons is described by the activation values z; for i = 1,2,..., N.
Suppose that at time ¢ there are n(t) neurons with x values greater than 1 that are in
the process of firing. At time ¢+ 1, this firing raises the level of all the other neurons
by an amount n(t)e. At the same time, the n(t) neurons that fired at time ¢ will drop
to the z = 0 level. Thus, if a given neuron i is at excitation level z;(t) at time ¢, then
at time t 4+ 1

(2.3) zi(t+1) = Az;(t) + n(t)e ifz;(t) <1
and
(2.4) zi(t+1)=0 ifz;(t) > 1.

The number of firing neurons n(t) is obtained by counting the total number of neurons
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at time ¢ with z(t) > 1

N
(2:5) n(t) = O(zi(t) - 1),
=1

where O is the unit step function. The evolution of the model for discrete timesteps
is determined by iterating (2.3) and (2.4) for all = 1,2,..., N. All of the neurons
are updated in parallel. -

3. Self-sustained firing patterns. We examine a population of N model neu-
rons described by (2.3) and (2.4), focusing in particular on the possibility of self-
sustained firing. Since the model neurons have no intrinsic ability to fire, they must
continually receive excitation from other neurons in the population to increase their
level of activation and ultimately fire themselves. Sustained firing, if it occurs, is a
cooperative phenomenon involving the entire population. At every timestep, some
firing must take place, otherwise the entire population will stop firing and ultimately
sink to the z = 0 level.

Suppose that we initialize the population by assigning a distribution of activation
levels z;(0) to the neurons for s = 1,2,...,N. If firing is to occur at all, at least some
of these neurons must be initialized above threshold, z;(0) > 1 for some values of 3.
This causes initial firing to occur. If firing is to continue, the initial firing must raise
some other neurons above threshold so that they can fire a time ¢ = 1. Similarly, if
this raises yet another group of neurons above the threshold, firing continues to occur
at t = 2, and so on. If at any time no new neurons are raised above the threshold,
then all firing stops forever.

The firing of n(t) neurons at time ¢ raises all neurons with sufficiently high acti-
vation levels above the threshold, causing them to fire at time ¢+ 1. All netirons with
activation levels z;(t) at time ¢ satisfying

1—n(t)e
A

are raised above the threshold and subsequently fire at time ¢ 4+ 1. All these neurons
then coalesce into a single group with activation level z(t + 1) = 0. Thus, the firing
process can take a collection of neurons with different  values and unite them into a
single group all having the same activation level. Because all neurons in such a group
are treated equivalently, the group cannot subsequently break up. However, it can
coalesce with another group if both groups are raised up past the threshold at the
same time. Unless firing stops altogether, the population will settle into an equilibrium
state through the coalescence of different groups until a situation is reached where
the combining of groups stops and the groups fire sequentially without changing their
sizes. For a stable periodic temporal pattern of firing to arise, each group must be
large enough to raise the next group in the sequence above the threshold when it fires,
but not so large that it raises more than one group above the threshold. Once this
equilibrium has been attained with M different groups, the activity of the population
will be periodic with period M or less. The only form of sustained firing in the model
is periodic firing. However, many different M values and many partitionings of the
N neurons into M groups are possible.

To begin our analysis, we derive limits on the number of neurons firing at any
time t, n(t), if firing is to continue. If firing occurs at time ¢, then, for it to continue
to time ¢+ 1, the number of neurons firing must at the very minimum be sufficient to

(3.1) <z(t) <1
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raise a neuron with the maximal activation z(t) = 1 past the threshold. This means
that Az(t) +n(t)e must be greater than 1 for z(t) = 1 or equivalently n(t) > (1—\)/e.
It is also essential that the number of neurons that fire at time ¢ be less than an upper
limit. After a particular group has fired, there must be enough neurons left over to
provide the impulses to reactivate that group back up to the threshold so that it can
fire again. If n(t) neurons fire, there are N —n(t) neurons left. For these to be capable
of raising the n(t) neurons back up to the threshold, we must have (N — n(t))e > 1.
Combining these two limits gives the condition
1-X 1

(3.2) — <n(t)< N - e

and from this bound we can derive the requirement
(3.3) Ne> 2 — ),

which must be satisfied if sustained firing is to occur. Of course, this condition is only
necessary, not sufficient.

4., Temporal patterns of self-sustained firing. If stable firing does arise in
the model, the final periodic firing pattern consists of M groups of neurons firing
sequentially at times ¢,t + 1,t + 2,... . We now derive bounds on the allowed values
of M and constraints on the numbers of neurons in each of these groups.

Suppose that we have achieved sustained, periodic firing in M separate groups.
For convenience, we reset the zero of time so that one of these groups, consisting of
n(1) neurons, fires at time ¢t = 1. Immediately after that, a group of n(2) neurons fires
at time ¢ = 2, and so on, until the last group containing n(M) neurons fires at time
t = M. At this point, if the firing is to continue, the first group of n(1) neurons must
fire again at time M + 1, the second group of n(2) neurons must fire at time M + 2,
and so on indefinitely. For the first group to fire at time t = M + 1, its activation level
must be raised above the threshold by the firing of the other neurons. At time ¢ = 2,
the activation level for the first group is zero, since it has just fired at the previous
time ¢t = 1. At time ¢t = 3, the level of group one is raised to n(2)e by the firing of the
second group. At time t = 4 the activation level is An(2)e + n(3)e and so forth. For
this group of neurons to fire again at time M + 1, we must therefore require that its
activation level at that time be greater than the threshold

(4.1) [AM=2n(2) + AM3n(3) + -+ + An(M — 1) + n(M)] € > 1.
By similar reasoning, the second group of neurons will fire at time M + 2 if
(4.2) [MM=2n(3) + AM3n(4) + -+ + An(M) + n(1)] € > 1.

Similar relations hold for the third, fourth, and subsequent groups up to the Mth
group, which requires that

(4.3) MM=2n(1) + AM3n(2) + -+ + An(M — 2) + n(M — 1)] e > 1.

Adding these M inequalities together and using the fact that

M

(44) > n(t)=N,

t=1



SELF-SUSTAINED FIRING IN NEURAL POPULATION 257

we find that we must require that

M-2
Ne(1— AM-1)
. Y-
(4.5) Ne ,,E:(; W= > M.

A lower limit on M is obtained by requiring that the groups do not fire prema-
turely. For example, the group that fired at time ¢ = 1 should fire again at time
M + 1. Therefore, at time M, its activation level must not be above the threshold.
This gives the condition

(4.6) AM=3n(2) + AM~n@) + -+ + Mn(M - 2) +n(M - 1)] e < 1.
Likewise, for the second group, we require that

(4.7) [M=3n(3) + AM~n(4) + -+ + Mn(M — 1) + n(M)] e < 1,
and so on, until for the last group

(4.8) [AMM3n(1) + AWM 4n(2) + -+ + Mn(M - 3) +n(M — 2)] e < 1.

Adding these M equations together gives the bound

M-3

Ne(1 - AM-2)
. Pt <M.
(4.9) Ne ,,E:o: X <M

Combining the two bounds derived, we have the condition

M < Ne < M
1—AM-1 =1\~ 1-\M-2’ .

which must be satisfied for self-sustained firing of M groups of neurons to be possible.
In addition, all of the above inequalities for n(1),n(2),...,n(M), as well as the fact
that these must all be positive integers, place restrictions on the partitioning of the
N neurons into M groups. In particular, some partitionings may be impossible even
though the bound (4.10) is satisfied. Of course, we must always have M < N, but
(3.2) sets an even more stringent upper limit on M because the minimum number
of neurons in each of the M groups must be an integer greater than (1 — X)/e. The
partitioning conditions become less restrictive for large N. Note that, other than
these partitioning restrictions, the limits on M depend only on the combination Ne
and on the value of A.

In Fig. 1 we have plotted the values of M allowed by (4.10) as a function of 1/Ne
for two values of A. Firing in two groups, M = 2, is allowed for any value of Ne
greater than two or equivalently for 0 < 1/Ne < 0.5. Firing in larger numbers of
groups, M > 2, occurs over an ever-narrowing range of values of 1/Ne. The behavior
of the population is quite different for no leakage, A = 1, than with leakage, A = 0.9.
For example, with no leakage, ever-increasing values of M can be attained as Ne
decreases to its minimum value consistent with sustained firing, 1. However, with
leakage, Ne near 1 does not permit sustained firing. For Ne around 2, several values
of M may be possible. For A < 1, two states occur at large values of Ne. One state
has M = 2, and the other has a large M value. The large M value can be estimated,
and we find the two possible sustained states for large Ne and A < 1,

Ne
1-X

(4.10)

(4.11) M=2 or M=
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Fic. 1. The allowea values of M as a function of 1/Ne for no leakage, A = 1.0, and with
leakage, A = 0.9. The allowed values of M for sustained firing are the integers lying between the two
curves drawn. For a given value of N, the M values may be further restricted by the partitioning
requirements. These have not been indicated because they depend on N.

It is interesting to note that this simple model with leakage has the sort of bistable
behavior characteristic of epilepsy. Epileptic activity is a complex dynamical behavior
involving interplay between excitatory and inhibitory processes [15]. Our model is
not intended to provide a complete description of this phenomenon. One stable firing
pattern occurs in which the neuronal firing is well distributed in many groups (large
M) firing at many different times. However, a second “epileptic” form of firing is also
possible for the same value of Ne. In this state (M = 2), the firing comes as near to
synchronizing as possible, and the entire population fires in two large groups In the
absence of leakage (A = 1), no similar two-state region exists.

5. The case where A\ = 1. The model we are discussing simplifies considerably
if we ignore leakage by setting A = 1. This approximation is justified if the amount of
leakage in a time of order 1 over the firing rate is small. For A = 1, the bounds of the
last section simplify, and we find that self-sustained firing can occur in M groups if

Ne 2Ne
Ne—1 <M= Ne—-1'

Until now, we have discussed the types of sustained firing that can occur, but
we have not addressed the question of whether they will occur given a set of initial
conditions. For the case where A = 1, we can answer this second question. As
soon as all the neurons have fired at least once, it is possible to determine whether
the population will continue firing forever. We initialize the population by assigning
activation levels to the N neurons. Starting at the time ¢ = 0, n(0) neurons fire, then
n(1), n(2), and so on. Suppose that firing continues until some time T" when all of
the neurons have either fired or are presently firing

(5.1)

T

(5.2) > n(t) > N.

t=0

Then, if the numbers of neurons that have fired previously or are presently firing
satisfy

(5.3) 0<n(t)<N-— %
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for all t < T, firing continues forever.

To prove this statement, we note that at the time T' the neurons are clustered
into groups that fired at earlier times 7' — 1,7 — 2,..., down to ;. Because (5.2) is
an inequality, any neurons that fired before time ¢y will have fired more than once by
the time 7. The key to our analysis is that we know the activation levels of all these
groups once they have fired. At time 7', the groups are arranged as follows. A group
of n(T") neurons is above the threshold and in the process of firing. The first group
of neurons below the threshold at this time is a group of n(t) neurons that fired at
some earlier time ¢ty < T. At the next lower occupied activation level is a group of
n(tp+1) neurons that fired at time o+ 1. Next is a group of n(ty+2) neurons, and so
on, until finally we find the group of n(T — 1) neurons that just fired at the previous
time located at the zero activation level. The time T is arbitrary as long as it is large
enough to satisfy condition (5.2). Note that we have used the time at which a group
last fired as a label.

We will begin by showing that, if 0 < n(tg) < N — 1/¢, then at least n(to)
neurons will fire at time 7'+ 1. To do this, we consider the activation level of the
highest subthreshold group of n(tp) neurons at time 7"+ 1. This can be determined
because we know that these neurons fired at time ¢y, so they must have occupied the
lowest, x = 0 level at time tg + 1. To determine the activation level at time T + 1,
we must simply count the number of inputs that this group has received from all the
other neurons in the intervening time. The analysis is made simpler by the fact that
we have taken A = 1. Thus, for this group of n(ty) neurons,

T

(5.4) gT+1) =€ Y n)

t=to+1
Since ’

T
(5.5) > n(t) =N,
we find that
‘ T

(5.6) z(T+1)=¢ (Z n(t) — n(to)> = €(N —n(to)) .-

Since n(tg) < N — 1/¢, this shows that z(T'+ 1) > 1, and the groups of n(t;) neurons
that fired at time to will fire again at time 7" + 1.

Thus, we see that, if n(tp) < N — 1/¢, firing will continue until time T + 1.
Using an identical argument, we can show that firing will continue until time 7" + 2
if n(to + 1) < N — 1/¢, and so on. Because (5.3) requires that n(t) < N — 1/e for
all ¢ < T, this proof continues to work until we get to a time when we must use
the condition n(T 4+ 1) < N — 1/e. Since this requirement for sustained firing is not
included in the original conditions, we must prove that it is true.

The number of neurons firing at time 7"+ 1 is equal to the sum of all neurons
that are raised above the threshold by the group of n(T) neurons firing at time 7'
Using the time at which a group of neurons fired as a label, we can write this sum in
the form

tmax

(5.7) n(T+1) =Y n(t),

t=to
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where tmayx is the largest time for which the activation of the corresponding group is
above the threshold at time 7"+ 1

T
(5.8) z(T+1)=¢ Z n(t) > 1.
t=tmax+1

In other words, the group of n(tmax) neurons is the lowest lying group to be pulled
above the threshold. Rearranging the sum in (5.8), we have

T tmax
(5.9) z(T+1) =€ Z n(t) — € Z n(t) = [N —n(T +1)] > L

From this inequality, it follows that n(T + 1) < N — 1/e. This means that we can
extend the proof of continued firing one more timestep. Furthermore, by repeating
the above analysis, we can prove that n(T'+ m) < N — 1/e for all m, and thus the
proof of continued firing can be extended indefinitely.

6. The probability of sustained firing. Now that we have characterized the
possible sustained firing states of the integrate-and-fire population, it is interesting
to determine the probabilities that different final states arise from a random starting
configuration. We assume that the initial values of the activation variables are chosen
from some probability distribution to be specified. We discuss the probability P(M)
that the population ends up in a sustained firing pattern consisting of M groups. By
definition, P(0) is the probability that the population stops firing.

In principle, the probabilities P(M) can be computed analytically, but the calcu-
lation is extremely tedious except when fairly small numbers of neurons are involved.
Nevertheless, we outline how it is done. Suppose that initially 7(0) neurons are ac-
tivated above threshold. At subsequent times n(1),n(2),..., neurons fire. Assume
that firing continues until a time T" — 1, satisfying

T-1
(6.1) e AT in(t) > L.

t=0

(If it does not, then, of course, this initial configuration contributes to P(0).) The time
T defined by the above equation is the same as the T defined in (5.2). Furthermore, the
set of firing numbers from time zero to time T', {n(0),n(1),...,n(T — 1)}, completely
determines all subsequent firing. To see this, we note that any neurons that have not
fired up until the time 7' — 1 have activation level at time T given by

T-1
(6.2) 2(T) = XTz(0) + € _ AT~ 7'n(t).
t=0

Because of (6.1), this is greater than 1, regardless of what the initial activation z(0) is
for this neuron. Thus, by the time T, all neurons will have fired. Using the reasoning
of the last section, once all the neurons have fired, their activation levels are completely
determined by the set {n(0),n(1),...,n(T — 1)}. Otherwise, all dependence on the
initial distribution of activation values is lost by the time 7T". In particular, a group of
neurons that fired a time ¢y have activation level at time T', given by

T-1

(6.3) z(T)=¢ Z AT=1=tn (1),

=to+1
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To calculate the probabilities P(M), we must compute the probability of a given
set of firings {n(0),n(1),...,n(T — 1)} arising from random initial conditions. The
probability that the set {n(0),n(1),...,n(T — 1)} arises is just the probability that
n(0) neurons were initially above threshold, that n(1) neurons have initial activations
in the range

[1—n(0)]e

(6.4) >

<z(0) <1,

n(2) neurons have

[1 = (n(0)X +n(1))]e
A

[1 —n(0)]e

(6.5) S

<z(0) <

and so on. However, we must also determine what final firing pattern results from
the set {n(0),n(1),...,n(T — 1)}, and this is extremely tedious if large numbers of
neurons are involved. Nevertheless, we have computed the probabilities P(M) in
this way for N = 20 and A = % and obtained excellent agreement with computer
simulation results.

For our computer simulations, we have determined the initial state of the popula-
tion by choosing the initial activation levels for the N neurons randomly and uniformly
in the range 0 < £(0) < ZTmax. When this is done, the average number of neurons
initialized above threshold is

N(Zmax — 1)

max

(6.6) < n(0) >=

A natural choice for Zmax would be 1 + €, giving < n(0) >= Ne/(1 + €). However,
from the bound (3.2), we must have n(0) > (1 — A)/e if any firing is to occur at time
t = 1. Therefore, to help ensure that at least some firing occurs, we have chosen Tmax
so that

1-A Ne
(6.7) < n(0) >= — e

The results of the computer simulations are shown in Fig. 2. These were obtained
by performing 1,000 repetitions, starting each time with initial activations chosen
randomly from the distribution discussed above. We have considered two cases, N =
20 and N = 100, and taken Ne in the range between 1 and 3, where Fig. 1 shows
that the largest range of M values occurs. We have considered no leakage, A=1 and
leakage corresponding to A = 0.9. As expected, P(0) = 1 for M outside the bounds
of (4.10). P(0) generally decreases as Ne increases. However, the decrease is not
monotonic, most likely due to the difficulties of partitioning the N neurons into M
groups for certain values. Figure 2 also shows that P(M ) decreases with increasing
M. The results for N = 20 and N = 100 are quite similar, except, of course, that
larger N allows for large values of M. In addition, the smaller X value clearly makes
it more difficult to produce states with large numbers of firing groups M.

Using random initial conditions with a uniform probability distribution, it is not
very likely that sustained firing with the highest M values will be found. However,
if a more uniform distribution of initial activations is used, these final states can be
attained. In our simulations, we have seen all of the states allowed by Fig. 1, starting
with suitable initial conditions.
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F1G. 2. The probability P(M) of sustained firing with M firing groups as a fungtion of Ne.

P(0) is the probability that firing stops. Initial conditions were chosen randomly over 1,000 trials.

20 neurons, and at right for N = 100.

The figures at left are for N

ts. In the last section, we initialized the population

inpu

7. The effect of noise
of integrate-and-fire neurons randomly. Here, we consider a more realistic example in

which the random initial state is followed by a period during which external inputs

enter the system. We then examine the final state of the system after the inputs

during the time that the inputs are active, we modify the

are removed. Specifically,
evolution equations (2.3) and

2.4) so that

(
= Az;(t) + n(t)e + ri(t)

(I}i(t + 1)

(7.1)

and

zi(t+1)=0 ifz(t) > 1,

(7.2)

where 7; is the external input. In our simulations, we have taken this input to be a

random number in the range

—o<rt)<o

(7.3)

with the random choice made independently for each neuron and at each timestep.

The two examples in Fig. 3 show the variety of impacts noise inputs can have.

One distinctive feature of the model in the absence of noise is that

, once a firing

group has formed, it can never break up because all of its members evolve identically.
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Fi1c. 3. The effect of noise inputs on P(M). Starting from a random initial configuration, the
population evolved in the presence of noise at the given strength for 8,000 timesteps. The noise input
was then turned off and P(M) was computed using 1,000 repetitions . Both figures correspond to a
population of N = 20 neurons. Strong noise with o = 0.2 greatly reduces the probability of sustained
firing especially for large M when A = 0.9. Noise with o = 0.1e had little effect when A = 0.9, but,
as shown, it increases the probability of sustained firing in large numbers of groups for A = 1.

With noise inputs present, this is no longer true. Thus, one effect of the noise is
to separate neurons within a group. One the other hand, the firing process forces
neurons that fire together to coalesce into a single group. In the presence of noise,
there are two opposing tendencies: noise breaking groups apart, and firing putting
them back together again. If the noise is small enough, the coalescing tendencies of
the firing win, and noise has little effect. For example, if the noise level o,= 0.1¢ is
applied to N = 20 neurons with A = 0.9, the results are virtually identical to those
shown in Fig. 2 without noise. (Over the range shown, this corresponds to ¢ in the
range 0.005 to 0.015.) For a given noise level, firing patterns with small M values are
more stable than those with large M because the groups are more widely separated.
This can be seen in Fig. 3, where a noise level of 0 = 0.2 for A = 0.9 reduces sustained
firing and completely eliminates sustained states with M > 4 (compare with Fig. 2).
In general, high-noise levels reduce sustained firing and particularly affect large M
states.

The results for A = 1 in Fig. 3 are considerably different than those of Fig. 2.
This is true, despite the fact that the noise level o = 0.1le had virtually no impact
when A = 0.9. Thus, we see that a given level of noise has more impact at low leakage.
This is due to a second important effect of noise. In the absence of noise inputs, the
model we have been discussing has the property that firing will stop forever if it does
not occur at every single timestep. If the noise level is large enough for a given A
value, then noise can reinitiate firing. Thus, a population that misses one timestep
of firing can, nevertheless, continue to fire. This clearly makes sustained firing more
likely, as we can see by comparing the A = 1 results in Figs. 3 and 2. For noise to be
able to resume firing, it must, at the very least, be strong enough to elevate a neuron
sitting right at the threshold at = 1 above the threshold in the next timestep. This
requires then that A + o0 > 1, or equivalently ¢ > 1 — A. For A = 1, clearly any
amount of noise satisfies this condition. Our resuits indicate that noise stronger than
this limit can considerably enhance the ability of the system to find sustained firing
states, especially those with large M values. However, even higher levels of noise
would start destroying the sustained firing states as seen in Fig. 3 for A = 0.9.
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8. Discussion. The model we have considered is extremely simple, and yet we
have found that it not only supports self-sustained firing but that it contains a sur-
prisingly rich spectrum of firing states. The simplicity of the model has enabled us to
determine what types of states are allowed and under what conditions they can arise.
The fact that the firing process collapses individual neurons into firing groups means
that the ultimate fate of any initial state depends only on the numbers of neurons
that fire during the first T — 1 timesteps, where T is defined by (5.2) or (6.1). This
means that the probabilty of sustained firing resulting from a statistically specified
initial state can be computed, although in most cases we have resorted to computer
simulation to produce these results due to the length of the calculations involved.
Noise inputs of moderate strength, especially at low leakage, result in an increase
in the probability of achieving self-sustained firing involving a large number of firing
groups. Higher noise levels destroy the sustained firing states with large M values.

We have experimented with some variations of the model, for example, by letting
the delay time or the excitation € vary from neuron to neuron. The basic behavior
does not change in these cases, and, in particular, we still find periodic sustained
firing states. It appears that noise is the only simple way to get nonperiodic firing.
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