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B
ayesian inference methods hold great promise for the prediction of hand-movement tra-
jectories in neural prosthetic devices. The accuracy of such probabilistic methods can be
improved by incorporating meaningful priors, thereby appropriately constraining the
space of possible states that the system can attain. In this work we review and extend
methods for constructing reach trajectories that incorporate prior information of the

intended movement target. For computational tractability, we model arm motion as a linear dynam-
ical system driven by Gaussian noise, conditioned on this end-point information. These assump-
tions, while biomechanically unrealistic, give rise to a priori model arm-paths that share many of
the characteristics of natural arm trajectories. Moreover, in this model formulation we may com-
pute the predicted arm position, given simultaneously observed neural data, using standard
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forward-backward computations familiar from the theory of the
Kalman filter. Here we review an earlier recursive approach for
computing such reach trajectories and present a new nonrecur-
sive approach, with computations that may be performed analyti-
cally for the most part, leading to a significant gain in the
accuracy of the inferred trajectory while imposing a very small
computational burden. Finally, we discuss extensions of our
approach, including the incorporation of multiple target observa-
tions at different times, and multiple possible target locations.

INTRODUCTION
In recent times there has been a significant effort, aided by the
development of multielectrode arrays and sophisticated decoding
algorithms, to design neural prostheses for patients with motor
deficits [1], [2]. To derive the maximum clinical impact, research
in the development of neural prostheses has focused on reaching
movements, primarily because most day-to-day tasks are of this
nature and also because it is a convenient framework in which a
person in a locked-in state can interact with the world through a
computer interface by choosing one of several possible options [3].

A number of studies have shown that firing rates of cortical
neurons measured during reaching movements encode position
[4], direction [5], velocity [6], acceleration [7], and intended
reach goal [8], among other parameters of interest. This infor-
mation encoded in the neural firing rates may be decoded to
reconstruct the intended hand trajectory on a given behavioral
trial. Algorithms that have been used include population vectors
[5], optimal linear filters [3], [9], and Bayesian decoders
[10]–[12]. Of these methods, the Bayesian approach is perhaps
the most promising, since it allows for a principled incorpora-
tion of different sources of signal and noise, and prior informa-
tion, in the decoding system. The standard Kalman filter is the
most popular instance of a Bayesian decoder, with the well-
known recursive nature of this filter potentially allowing for
real-time implementation [13].

It has been recently emphasized that a key problem in the con-
struction of an efficient decoder is in suitably constraining the
hand trajectories. In Bayesian language, the challenge is to con-
struct priors on hand trajectories which are accurate and compu-
tationally tractable. Accuracy in a probabilistic setting implies that
samples drawn from this prior should resemble natural hand
paths. Proper specification of these priors will clearly lead to
improvements in the accuracy of Bayesian decoders. Such prior
information includes knowledge about the smoothness of the
hand path [14], [15] and also about the start and end state of the
hand; for example, in a goal-directed reaching task the hand veloc-
ity at the beginning and end of the trial should be zero, and we
may know the target location with some uncertainty [16], [17].

We will focus on the problem of incorporating this prior end-
point information in a computationally efficient manner. We
develop a model of the hand trajectory as a linear dynamical sys-
tem driven by Gaussian noise conditioned on this end-point data
and describe how to apply standard Kalman tools in this setting.
We begin by reviewing techniques from the Kalman filter litera-
ture which may be used to incorporate this end-point informa-

tion optimally and briefly present the work in [17], where the
authors develop a recursive algorithm to compute the condi-
tioned trajectories. Subsequently, we present our approach,
demonstrating that the necessary forward-backward  computa-
tions of the Kalman filter in this model may be performed nonre-
cursively and, for the most part, analytically. This approach is
more efficient than the recursive approach when the conditioned
trajectories are to be computed at only a subset of times, a sce-
nario that is likely when the neural signal is being sampled at a
high-rate making the real-time implementation of the condi-
tioned trajectories at all points in time computationally impracti-
cal. More importantly we show that our formulation lends itself
easily to further extensions including to two clinically important
problems that we consider: the moving target paradigm, in
which the subject is required to reach multiple targets at differ-
ent times, and the multiple choice paradigm, in which the sub-
ject reaches one of several targets at a given time. Throughout
this article we will be neutral about the precise details of the neu-
ral observations available; the techniques developed here may be
applied without great modification either to multielectrode sin-
gle-unit [3], [18], local field potential [19], or electrocortico-
graphic [20] recordings, or to any combination thereof.

THEORY

MODELING HAND DYNAMICS
We begin by specifying our model for the system dynamics. The
state of the system at time t will be denoted as qt. We will, for
notational convenience, burden the interpretation of t to denote
both running continuous time as well as a discrete time index;
the interpretation implied should be readily clear from the con-
text. The vector qt may include various types of information about
the state of the hand at time t: the hand position, the hand veloci-
ty, and higher time-derivatives like acceleration and jerk. To be
concrete, for movement in a two-dimensional plane we may take
the state vector qt to be qt = [sx(t), vx(t), sy(t), vy(t)]′, where
s(t) denotes the hand position at time t, v(t) velocity, and x and y
denote the horizontal and vertical axes, respectively.

We assume the following simple linear Gaussian dynamics
for qt:

q̇t = Rqt + ρ + Wt, (1)

where ρ is a constant-drift term, R is a fixed dynamics matrix,
and Wt is zero-mean, temporally independent Gaussian noise
with covariance matrix E [WsW ′

t ] = Qδ(t − s) for some fixed
matrix Q. This formulation of the arm dynamics implies qt is a
Gauss-Markov process and we have 

p(qt|qt−1, qt−2, . . . , q0) = p(qt|qt−1) = G(μ,�)(qt),

where we have introduced the notation G(μ,�)(x) to denote that
the random variable x has a Gaussian distribution whose mean
is given by μ and covariance by �. For dynamical system given
by (1)
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μ = �(t, t − 1)qt−1 +
∫ t

t−1
�(t, τ )ρdτ

∑
=

∫ t

t−1
�(t, τ )Q�(t, τ )′dτ,

where �(t, τ ) = exp((t − τ)R ). We shall derive these terms
later, but note for now that μ depends on the model parame-
ters and the last state of the system, qt−1, while � depends
only on the model parameters. It is important to realize that
this model formulation is an a priori assumption, which is
quite classical in the control and estimation literature, prima-
rily due to its analytical tractability. It is worth discussing the
features and weaknesses of this model specifically in the neural
prosthetic context.

We first discuss the individual terms of (1) in more depth.
The deterministic terms R and ρ define the system’s behavior
in the absence of noise (i.e., as Q → 0). The dynamics matrix R
specifies how the different elements of the state vector qt inter-
act. For example, for the position-plus-velocity qt specified
above, a reasonable R might be of block diagonal form

R =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ ;

this form specifies that the horizontal and vertical positions do
not interact with each other and that the velocity signal is
unaffected by the current position. Of course, by modifying
this matrix it is easy to introduce dependencies between these
variables and model, for example, anisotropic inertial effects
due to the biomechanical properties of the arm. The constant
drift term ρ , on the other hand, fixes the set point of the
dynamics: assuming stable dynamics (i.e., the real parts of all
the eigenvalues of R are less than zero), the system will evolve
towards the fixed point q∞ = R−1ρ . Finally, the covariance
matrix Q, which models neuromuscular noise, specifies the
variability of the hand paths; large values of Q lead to hand
paths whose position or velocity might vary quite noisily as a
function of time, while smaller Q leads to smoother hand
paths. We also note in passing that other interpretations of Q
are possible; for example, it can reflect our uncertainty as
external observers about the intended trajectory as time pro-
gresses [17].

Clearly, this linear-Gaussian model is at best an approxima-
tion. For example, if we include joint angle information in our
state vector, where the elbow angle may take values only
between 0 and π radians, the dynamics would be constrained
and nonlinear. We will return to this issue later; for now, howev-
er, it is enough to note that this model may be considered a
good local model, enforcing constraints such as the smoothness
of the hand path on a local scale (i.e., for small time steps dt in
p(qt+1|qt)).

REACHING FOR A SINGLE TARGET
In this section we describe how to use this dynamics model
to efficiently incorporate the observed neural data, initial
state, and end-point information to predict the hand state qt

at time t. We denote the observed neural data at time t by Ot

and the entire set of observations over the interval [0, t ] by
{Ot}. We first consider the case when we have a single end-
point observation yT where T is the duration of motion and is
assumed to be known. We further assume that the observa-
tion yT is some noise-contaminated version of the final hand
state qT, that is, 

yT = KqT + ν, (2)

where ν ∼ G(0,M )(ν). For now we assume that the Gaussian
noise ν is independent of qT (many of these assumptions may be
relaxed somewhat). The observation matrix K is not assumed to
be invertible, implying that we may have incomplete informa-
tion of the reach goal. For example, if we know that the hand
velocity must be zero at the end of the trial, but we don’t know
the end position, K would be of the form 

K =
(

0 1 0 0
0 0 0 1

)
,

with yT being a two-dimensional zero vector. The noise ν here
allows some error in this final velocity; that is, this final velocity
might not always be exactly zero. Similarly, we may incorporate
information about the final position by letting K be of full rank
(with the noise covariance M chosen to emulate the size of the
position and velocity errors observed during the reaching task).
An identical model formulation was described in [17].

Now our goal is to compute p(qt |q0, {Ot}, yT ). Here we
make the key assumption that the neural observations {Ot}
depend on the state variable qt in a simple Markov manner,
that is,

p(Ot|qt, qt−1, . . . , q0, qt+1, qT ) = p(Ot|qt ).

Thus the neural data Ot only depends on the current hand
state qt. We again note in passing that this model is only
approximately correct; for example, it is known that many
neurons in the parietal and prefrontal cortex preferentially
encode the intended hand position than the current position
or velocity [19], [21]. We discuss methods for incorporating
this intentional information below. Another situation where
this assumption is violated is the history-dependent firing rate
observed in the primary motor cortex [15], though this can be
readily remedied by augmenting the state-vector to account
for such history dependence. 

Before we present our approach we first briefly review an ear-
lier work [17] that considered the same problem of reaching a
single fixed target and developed a recursive solution to obtain
the target-constrained hand trajectories. The key backwards
recursion that they used may be derived by expanding 
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p(qt |q0, yT, {Ot} ) = (1/Z )p(qt, yT, {Ot }|q0 )

= (1/Z )

∫
···

∫
p(qt, yT, {qti },

{Ot }|q0 )d {qti}
= (1/Z )

∫
···

∫
p(qt, {Ot }|q0 )p(qt+1|qt )

× p(qt+2 |qt+1 ) · · · p(qT |qT−1 )

× p(yT |qT )d{qti}
= (1/Z )p(qt, {Ot }|q0 )

∫
p(qt+1 |qt )

× dqt+1 · · ·
∫

p(qT |qT−1 )dqT−1

×
∫

p(qT |qT−1 )p(yT |qT )dqT ,

where Z is a normalization factor and the equalities follow using
Bayes’ rule and the Markov nature of the model.

We will subsequently show that we can compute the last
integral on the right, corresponding to time T, using Gaussian
integration formulas. And in particular we show that, p(yT |qt )

is an unnormalized Gaussian for all times t, and integrating
p(yT |qt ) against a Gaussian term of the form p(qt |qt−1 ) pre-
serves this Gaussianity. So we may simply recurse backward,
from this last integral on the right, computing p(yT |qu ) for all
times t ≤ u ≤ T, starting from T and moving backwards:
u = {T− 1, T− 2, . . . , t} , until we obtain the desired
p(yT |qt ) term. This is the stan-
dard backwards recursion, famil-
iar from the forward-backward
Baum-Welch algorithm in hidden
Markov models [22]. In the lan-
guage of hidden Markov models,
the term p(qt, {Ot }|q0) is the
usual forward probability, while∫

p(yT |qT )p(qT |qt )dqT is the
backwards probability.

This recursive approach is
much slower than the approach
we develop if we only need to
compute p(qt |q0, yT, {Ot} ) at a
single time t, or more generally
at a small subset of times. Such a
scenario is likely when the neural
observations are being sampled
at a high rate, and the computa-
tions required to construct the
reach-target constrained trajec-
tories at all instants of time can-
not be carried out in real time.
Also, our approach allows us to
efficiently incorporate multiple
observations of a moving target.
Finally, as we will describe below,
our approach will allow us to

address the important situation when there are multiple reach
targets with little increase in computational effort.

We are now in a position to develop our approach which cir-
cumvents the need for such a recursive approach we have that

p(qt |q0, yT, {Ot}) = 1
Z

p(qt, {Ot}, yT |q0)

= (1/Z)p(qt, {Ot }|q0)p(yT |qt, q0, {Ot })
= (1/Z )p(qt, {Ot }|q0)p(yT |qt)

= (1/Z )p(qt, {Ot }|q0)

∫
p(yT, qT |qt)dqT

= (1/Z )p(qt, {Ot }|q0)

×
∫

p(yT |qT )p(qT |qt )dqT, (3)

where Z is a normalizing constant. The key fact now is that all
of the terms in (3) may be computed quite efficiently. As men-
tioned earlier, p(qt, {Ot }|q0) is the forward probability, while∫

p(yT |qT )p(qT |qt )dqT is the backwards probability. In subse-
quent discussion we will refer to p(qt |q0, yT, {Ot }) at the tar-
get-conditioned estimate, while we will refer to p(qt, {Ot }|q0)

as the forward-filter estimate (Figure 1).
We will not discuss computation of the forward filter term in

depth because a number of good treatments are already available
in the literature. In particular, in the case that the observed neu-
ral data may be treated as Gaussian given qt,the computation of
p(qt, {Ot }|q0) corresponds exactly to the forward sweep of the

[FIG1] Schematic of algorithm. This figure demonstrates the implementation of the
algorithm to compute the term p(qt |q0, yT , {Ot}); that is, to compute at time t the target-
conditioned trajectories. The algorithm is initialized with q0 and this state is propagated
forward via the stochastic differential equation (1) to the next time step. Neural
observations O1 are then incorporated into our estimate of the state to obtain p(q1 |q0, O1).
This process, known as the forward Kalman filter, is carried out recursively over the interval
[0, t] to obtain at t, p(qt|q0, {Ot}). Then the terms from (3) corresponding to the fact that we
are conditioning on the reach-target (i.e., p(yT |qt)) are computed, and finally, the target-
conditioned distribution, p(qt |q0, yT , {Ot}), is obtained.

O1

q0 q1 q2 qt qT

0 1 2 t T
Time

O2 Ot

yT

p(qT | qt)
p(yT | qT)

1) Initialize with State qo

2) Propagate Density via Dynamics Term

3) Incorporate Neural Observations

4) Compute Recursively to Obtain p(qt | qo, Ot) 

Forward Sweep
of Kalman Filter

Reach Target
Conditioned
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Kalman filter [13], [23], [24]. When we have point-process obser-
vations Ot on the Gauss-Markov process, we may employ
approximate point-process filters, such as those that apply
Gaussian approximations about the posterior density mean [14],
or the prediction density mean [11]. Particle filters may be applied
for more general representations of uncertainty [10], [25].

The remaining term 
∫

p(yT |qT )p(qT |qt )dqT turns out to
be similarly easy to deal with. Discrete-time recursions for
this backwards probability (starting with p(yT |qT ), which
we know explicitly, from (2), and recursing backwards for
t = T− 1, T− 2 · · · ) are well known; see [22] for the basic
theory or [17] for an implementation in the Gaussian model
under consideration here. Our insight here is that this term
may be computed explicitly, with no need for a time-con-
suming recursion.

Both terms under the integral in (3) are Gaussian, due to the
linear Gaussian nature of the model, and so computing the condi-
tional distribution p(yT |qt ) just requires some simple Gaussian
manipulations. Let’s start by evaluating the mean and covariance
E [qt |qt0 ] and Cov[qt |qt0 ], for some arbitrary time t > t0. By
applying linearity of expectation to our model (1), we have that 

d
dt

E[qt |qt0 ] = ρ + RE[qt |qt0 ].

This is a linear ordinary differential equation with initial condi-
tion E[qt0 |qt0 ] = qt0 , which we may solve explicitly to obtain 

E[qt |qt0 ] = e (t−t0)Rqt0 +
∫ t

t0
e (t−τ)Rρdτ

= e (t−t0)Rqt0 + R −1(I − e (t−t0)R)ρ.

Similarly, to compute the covariance, we have 

Cov[qt |qt0 ] = E[qtq
′

t |qt0 ] − E[qt |qt0 ]E[qt |qt0 ]′

= E

[(∫ t

t0
exp((t − u)R )W(u)du

)

×
(∫ t

t0
exp((t − v)R )W(v)dv

)′]

= exp(tR )

[ ∫ t

t0

∫ t

t0
exp(−uR )

× E[W(u)W(v) ′]exp(−vR )′du dv
]

exp(tR )′

= exp(tR )

[ ∫ t

t0
exp(−uR )Q

× exp(−uR )′du
]

exp(tR )′

= GV (t − t0)G
′

where we have used the fact that E[WtW ′
t0

] = Qδ(t − t0) and
we define 

V(t)i, j = (G−1QG ′−1)i, j

di + dj
(exp[(di + dj )t ] − 1).

We have assumed that R = GDG−1 can be diagonalized, and di

refers to the ith diagonal term of D. (In the case that the dynam-
ics matrix R is not diagonalizable, we instead make use of the
Jordan form, R = SJS−1, where J is a simple block-diagonal
matrix [26], [27]. The resulting expression for Cov (qt|qt0) is
more complicated but not significantly more computationally
expensive than the form we have presented here in the diagonal-
izable case.)

We now use these expressions to compute the integral in (3).
Let �t = exp(tR ), and C(t−t0) = Cov[qt |qt0 ]. Using the dynam-
ics equation (1) we have p(qt |q0) = G(�tq0, Ct)(qt ) ,
p(qT |qt)= G(�(T−t)qt, C(T−t))(qT ) and p(yT |qT )= G(KqT, M )(yT ).

We then have 

∫
p(yT |qT )p(qT |qt )dqT =

∫
G(KqT, M )(yT )

× G(�(T−t)qt,C(T−t))(qT )

= w exp
{
−1

2
(qt − m ) ′ A(qt − m )

}
,

where w is a normalizing constant and

A =
(

� ′
(T−t)C−1

(T−t)�(T−t) − � ′
(T−t)C−1

(T−t) ĈC−1
(T−t)�(T−t)

)
,

m = A
(

� ′
(T−t)C−1

(T−t) ĈK ′M −1 yT

)
,

Ĉ =
(

C−1
(T−t) + K ′M −1K

)−1
.

If A is of full rank then this is an nonnormalized Gaussian in qt

with mean given by m and covariance by A−1. More generally,
qt will be a Gaussian with infinite variance in some directions.

Now to complete our expansion of (3), we need to supply an
expression for the forward probabilities p(qt, {Ot} |q0). As
emphasized earlier, these forward probabilities may be comput-
ed via a number of different algorithms, depending on the
observed neural data. Common ways to compute these probabil-
ities are via a Kalman filter [13] or approximate point-process
filter [14], [15]. In this case, the forward probabilities 
are approximated as a weighted Gaussian form
p(qt, {Ot} |q0 ) ≈ wf

tG(q f
t C f

t )(qt ), where w f
t is a normalization

factor. We have
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p(qt |q0, qT, {Ot} ) = 1
p({Ot}, yT |q0)

p(qt, {Ot} |q0)

×
∫

p(yT |qT )p(qT |qt )dqT

≈ 1
p({Ot}, yT |q0)

w f
t G(q f

t C f
t )(qt )

× exp
{
−1

2
(qt − m )TA(qt − m )

}

= 1
Z

Gq s
t ,C

s
t
(qt ),

where Z is a normalizing constant and 

C s
t =

[
C f

t
−1 + � ′

(T−t)C−1
(T−t)�(T−t)

− � ′
(T−t)C−1

(T−t) ĈC−1
(T−t)�(T−t)

]−1

, (4)

q s
t = C s

t

[
C f

t
−1

q f
t + � ′

(T−t)C−1
(T−t) ĈK ′M −1 yT

]
. (5)

The superscript s here implies the smoothed estimate,
given all available information. We have thus obtained, in
closed form, the estimates for qt given the initial state q0, the
forward probabilities p(qt, {Ot}|q0), and the end-point infor-
mation yT. Computing these quantities requires just some
simple low-dimensional linear-algebraical manipulations, and
therefore this decoding algorithm may be tractably imple-
mented in real time; note in particular that many of the quan-
tities that appear in the above equations may either be
precomputed (e.g., G, D, and K ′M −1) or computed just once
per time-step and recycled for efficiency (e.g., the term
C−1

(T−t)�(T−t)).

INCORPORATING MULTIPLE OBSERVATIONS: 
TRACKING A MOVING TARGET
Now we are ready to develop an important generalization of
the above single-observation case. Imagine that we have a
sequence of target observations yTi to be reached at times Ti

for {i = 1, 2. · · · , N }, with T1 < T2 < · · · < TN , or yTi could
correspond to observations of a single moving target whose
state changes as a function of time. Performing inference in
this setting may be done by a version of the standard back-
wards recursion described above; in particular, we may use our
analytical solution to work our way back from the observation
at time TN to the current time t. We have 

p(qt |q0, {yTi }) = (1/Z )p(qt, {yTi }|q0)

= (1/Z )

∫
···

∫
p(qt, {yTi}, {qTi}|q0)d{qTi}

= (1/Z )

∫
···

∫
p(qt |q0)p(qT1 |qt)p(yT1 |qT1)

×
N∏

i=2

p(qTi |qTi−1)p(yTi |qTi)d{qTi}

= (1/Z )p(qt |q0)

∫
p(qT1 |qt )p(yT1 |qT1)dqT1

×
∫

p(qT2 |qT1)p(yT2 |qT2 )dqT2 · · ·

· · ·
∫

p(qTN−1 |qTN−2)p(yTN−1 |qTN−1)dqTN−1

×
∫

p(qTN |qTN−1)p(yTN |qTN )dqTN .

So, as before, we apply our analytic solution to compute each
of the above integrals, in the sequence {TN, TN−1, TN−2, . . . ,

T1, t}. Note that this solution is typically much more efficient
than the full backwards recursion, since we only perform compu-
tations at the subset of observation times Ti, instead of at all times
t < u < TN

2. (See [17] for a different approach to this problem.)

MULTIPLE TARGETS
In this section we consider the multiple target setting,
which is of key importance in the neural prosthetic context
[3], [28], [29]. Let the random variable X denote one of the
possible K targets, with the probability that reach to target
denoted by Xk is given by p(X = Xk ). We assume that our
prior information about these targets  is  given by a
Gaussian distribution where p(qT |X = Xk ) ∼ G(μk,�)(qT ) .
Note that this is a special instance of the case considered
earlier where we did not assume that the variance in our
prior information of the state vector was finite for all its
elements (K was allowed to be noninvertible). Though the
more general case can be considered, in this section, we
stick to the simpler case to keep the formulas derived
straightforward while still demonstrating the flexibility of
our modeling approach. 

Now to compute the marginal distribution p(qt |q0) we
average over all possible end states

p(qt |q o) =
∑

k

p(X = Xk )

∫
p(qT |X = Xk )

× p(qt |q0, qT, X = Xk )dqT .

The integral can be computed using the same methods devel-
oped earlier, and we are left with a mixture-of-Gaussians model
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p(qt |q o) = 1∑
k w s

k,t

(∑
k

p(X = Xk )w s
k,t G(

q s
k,t ,C

s
t

)(qt )

)

with the smoothed covariance C s
t defined as above (4)

q s
k,t = C s

t

[
C f

t
−1

q f
t + � ′

(T−t)C−1
(T−t)

×
(
�−1 + C(T−t)

)−1
�−1μk

]
,

and

w s
k,t = exp

[
− 1

2
μ ′

k

(
�−1 − �−1 A−1

t �−1 − �−1 A−1
t C−1

(T−t)

× � ′
(T−t)Bt�(T−t)Bt�(T−t)C−1

(T−t) A−1
t �−1

)
μk

+ μ ′
k�

−1 AtC
−1
(T−t)�(T−t)BtC

f
t

−1
q f

t

]
,

where

At =
(
�−1 + C−1

(T−t)

)−1
,

Bt =
(

C f −1

t + � ′
(T−t)C−1

(T−t)�(T−t)

− � ′
(T−t)C−1

(T−t) A tC
−1
(T−t)�(T−t)

)−1

.

Thus, our analytic solution allows for efficient implementation
of this more complex and realistic setting. Extensions to mix-
tures of target times T (not just target locations qT) are also
straightforward, although we lack the space to pursue these
applications here.

RESULTS
In this section we present some simulation results to demon-
strate the utility of our approach. We start with the simplest
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[FIG2] Reach trajectory conditioned on terminal state without neural observations. In these figures we depict a simulation in which the
state vector qt is two dimensional, capturing the position and velocity of the hand, starting from the origin, and reaching for a noisy
observation of the terminal point depicted by the red ‘o’ sign. In (a) the thick red line depicts the expected value of the position
conditioned on the target, while the thick blue line depicts its expected value in the absence of any end-point information. The standard
deviation is also shown at a few points along the trajectories. Similar plots for vx(t ) are shown in (b). Plots (c) and (d) show sample paths
drawn from the target-conditioned and the forward filter distributions. The values of the various parameters are presented in the
accompanying text. The key observation is that the target-conditioned trajectory has a very natural bell-shaped profile, as seen in the
plot of velocity against time (b), while the unconditioned paths wander aimlessly, with unrealistic velocity profiles.
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case, in which the reach movement is constrained to be along
the horizontal (x) axis. We consider the case where no neural
observations have been made, that is we want to compute
p(qt |q0, yT ). Figure 2 shows the mean target-conditioned
trajectory E (qt |q0, yT ), along with the standard deviation.
For our simulations, we consider a state vector
qt = [sx(t), vx(t)] ′ , with 

R =
[

0 1
−0.01 −0.5

]
.

The −0.5 term here corresponds to frictional forces (which
are proportional to the velocity), while the −0.01 term models
a weak restorative (spring-like) force towards the origin.
(None of the results presented here depend strongly on these
friction and spring tension coefficients.) The noise driving the
system enters through Q, which is taken to be 

Q =
[

0 0
0 1

]
.

This models the realistic scenario that while acceleration can
be discontinuous, the velocity and position of the hand will
have continuous trajectories. We choose the reach target to be
qT = [ 1 0 ] ′ , specifying that we would like to reach the tar-
get at position sx(T) = 1 with zero velocity. The observation
matrix K is taken to be the identity matrix, while the observa-
tion noise covariance M is a diagonal
matrix, M = 10−3 · I2, indicating that
uncertainty in the knowledge of sx(T)

is not correlated with vx(T), and that
both uncertainties are fairly modest.
Finally, the duration of the reach
motion is taken to be T = 1.

The first thing to note from the
Figure 2 is that the target-condi-
tioned trajectories have a natural
profile, as exemplified in Figure 2(b)
by the bell-shaped form of  the
expected velocity E(vx(t)|q0, qT ) .
We also note that the uncertainty in
our estimate is the least at the ter-
minal points and is greatest in the
middle of the motion (since we have
conditioned on both the start and
end points of the trajectory). In the
absence of target information (or
more generally,  when the target
uncertainty becomes very large), the
trajectory wanders about unsystem-
atically, as shown by the blue lines
in Figure 2(c) and (d). Thus, while
the basic linear Gaussian model (1)
does not produce realistic priors,
conditioning on the target produces
trajectories which are similar to nat-

ural reaching trajectories. See [17] for further discussion
and examples.

In the next set of simulations (Figure 3) we consider the
mixture-model setting described earlier, where reach is to be
made to one of six targets. The state vector is taken to be four
dimensional, qt = [sx(t), vx(t), sy(t), vy(t)] ′ . The targets are
situated symmetrically in the x, y plane at a radial distance of
two units, and the velocity components of all the targets are
zero. For the simulation one of the six targets is chosen at ran-
dom. Following our notation  

R =

⎡
⎢⎢⎣

0 1 0 0
−0.01 −0.5 0 0

0 0 0 1
0 0 −0.01 −0.5

⎤
⎥⎥⎦ , � = 0.01 · I4

and W = I4. To simulate the neural data used in the forward-fil-
ter, p(qt |q0, μk) is first computed following our results to the
chosen target with mean μk for each t. The mean of this distri-
bution is taken to be the true trajectory, and noisy Gaussian
observations of this true trajectory are used as neural data in the
forward filter. The observational noise is assumed to be univari-
ate Gaussian with zero mean and covariance of 20 · I4. Finally,
the duration of the motion is taken to be T = 1. 

[FIG3] Sample simulation for reach trajectory conditioned on multiple targets with neural
observations. In this figure we consider reaching motion towards one of several terminal
states which are known a priori. The figure shows the x, y plane of (a) the forward
distribution p (qt |{Ot }, q0) conditioned on the initial state and neural observations up to
that point, (b) the backward distribution p(yT |qt ), and (c) the reach-conditioned distribution
p (qt |{Ot }, q0, yT ). In this case the forward distribution is a single Gaussian, the backward
distribution is an unweighted mixture of Gaussians, and the smoothed distribution is a
weighted mixture of Gaussians (where the weights w s

k on each component reflect the
probability that the hand will end up at target location k). The white plus signs in the top
and bottom panel show the known end-targets, while the white disc in the bottom panel
shows the noisy observation made at that time. Note, in particular, the forward and
smoothed estimates at T = 0.6. At this time, the smoothed estimate, conditioned on the
targets, shows peaks in its distribution indicative of this a priori knowledge. Note also that
by T = 0.8 the smoothed estimate has zeroed in on the correct reach target while the
forward-filter estimate is still at a distance from it. The values of the various parameters are
presented in the accompanying text.
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[SP]

As can be seen from the figure, the mixture model is a useful
framework in which to model reach to one of multiple targets.
While the forward filter (by construction) does not take into
account the location of the targets, the target-conditioned esti-
mate of qt is better at minimizing the error on average between
the estimated state and the true state.

CONCLUSIONS
We have discussed the problem of constructing reaching tra-
jectories conditioned on a known initial state, a noisy obser-
vation of the terminal state, and neural data. We made the
assumption that arm motion can be reasonably modeled by a
linear dynamical system driven by Gaussian noise, and we
also assumed that measurement noise over the terminal state
is Gaussian. While the noise model for the observational
process is not required to be Gaussian, at each step of the for-
ward filter the posterior distribution after incorporating the
neural observations is approximated by a Gaussian. Under
these simplifying assumptions we have presented a method
which can compute the target-conditioned trajectories, in
different cases, in a computationally efficient manner allow-
ing for its real-time implementation.

The first and foremost requirement of any algorithm pro-
posed for a neural prosthetic setting is its real-time applicabili-
ty. The most important advantage that our method offers is its
computational speed. Our modeling approach is also very flexi-
ble. Using our approach, we have considered cases where reach
is to a target over which noisy observations are made, to differ-
ent targets at different times, and to one of several targets.

The major limitations of our method arise from our
assumptions of linearity for the arm dynamics and assump-
tions about the Gaussian nature of the various sources of
noise. These assumptions were made to allow for a real-
time implementation. The most limiting of these assump-
tions is that regarding linear dynamics for arm motion. We
note that recent approaches which extend the Kalman filter
to nonlinear systems without significantly increasing com-
putational overhead [30], [31] might enable us to circum-
vent this limitation.
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