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Adaptively optimizing experiments has the potential to significantly
reduce the number of trials needed to build parametric statistical models
of neural systems. However, application of adaptive methods to neuro-
physiology has been limited by severe computational challenges. Since
most neurons are high-dimensional systems, optimizing neurophysiol-
ogy experiments requires computing high-dimensional integrations and
optimizations in real time. Here we present a fast algorithm for choosing
the most informative stimulus by maximizing the mutual information
between the data and the unknown parameters of a generalized linear
model (GLM) that we want to fit to the neuron’s activity. We rely on impor-
tant log concavity and asymptotic normality properties of the posterior
to facilitate the required computations. Our algorithm requires only
low-rank matrix manipulations and a two-dimensional search to choose
the optimal stimulus. The average running time of these operations
scales quadratically with the dimensionality of the GLM, making real-
time adaptive experimental design feasible even for high-dimensional
stimulus and parameter spaces. For example, we require roughly 10
milliseconds on a desktop computer to optimize a 100-dimensional
stimulus. Despite using some approximations to make the algorithm
efficient, our algorithm asymptotically decreases the uncertainty about
the model parameters at a rate equal to the maximum rate predicted by
an asymptotic analysis. Simulation results show that picking stimuli by
maximizing the mutual information can speed up convergence to the
optimal values of the parameters by an order of magnitude compared
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to using random (nonadaptive) stimuli. Finally, applying our design
procedure to real neurophysiology experiments requires addressing the
nonstationarities that we would expect to see in neural responses; our
algorithm can efficiently handle both fast adaptation due to spike history
effects and slow, nonsystematic drifts in a neuron’s activity.

1 Introduction

In most neurophysiology experiments, data are collected according to a de-
sign that is finalized before the experiment begins. During the experiment,
the data already collected are rarely analyzed to evaluate the quality of the
design. These data, however, often contain information that could be used to
redesign experiments to better test hypotheses (Fedorov, 1972; Chaloner &
Verdinelli, 1995; Kontsevich & Tyler, 1999; Warmuth et al., 2003; Roy, Ghosal,
& Rosenberger, in press). Adaptive experimental designs are particularly
valuable in domains where data are expensive or limited. In neuroscience,
experiments often require training and caring for animals, which can be
time-consuming and costly. As a result of these costs, neuroscientists are
often unable to conduct large numbers of trials using different subjects. The
inability to collect enough data makes it difficult for them to investigate
high-dimensional, complex neural systems. By using adaptive experimen-
tal designs, neuroscientists could potentially collect data more efficiently.
In this article, we develop an efficient algorithm for optimally adapting the
experimental design in one class of neurophysiology experiments.

A central question in neuroscience is understanding how neural systems
respond to different inputs. For sensory neurons, the input might be sounds
or images transduced by the organism’s receptors. More generally, the
stimulus could be a chemical or electrical signal applied directly to the
neuron. Neurons often respond nonlinearly to these stimuli because their
activity will typically adapt or saturate. We can model these nonlinearities
by viewing a neuron’s firing rate as a variable dependent on its past activity
in addition to recent stimuli. To model the dependence on past stimuli
and responses, we define the input as a vector comprising the current and
recent stimuli, {�xt, �xt−1, . . . , �xt−tk }, as well as the neuron’s recent activity,
{rt−1, . . . , rt−ta } (Keat, Reinagel, Reid, & Meister, 2001; Truccolo, Eden,
Fellows, Donoghue, & Brown, 2005). �xt and rt denote the stimulus and
firing rate at time t, respectively. When we optimize the input for time
t + 1, we can control only �xt+1, as the rest of the components of the input
(i.e., past stimuli and responses) are fixed. To distinguish the controllable
and fixed components of the input, we use the subscripts x and f :

�st = [�xT
t , �sT

f,t

]T
(1.1)

�sx,t = �xt (1.2)

�s f,t = [�xT
t−1, . . . , �xT

t−tk , rt−1, . . . , rt−ta

]T
. (1.3)
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Figure 1: (a) Schematic of the process for designing information-maximizing
(infomax) experiments. Stimuli are chosen by maximizing the mutual infor-
mation between the data and the parameters. Since the mutual information
depends on the posterior distribution on �θ , the infomax algorithm updates the
posterior after each trial. (b) Schematic of the typical independent and identi-
cally distributed (i.i.d.) design of experiments. Stimuli are selected by drawing
i.i.d. samples from a distribution that is chosen before the experiment starts. An
i.i.d. design does not use the posterior distribution to choose stimuli.

�st is the input at time t. �s f,t is a vector comprising the past stimuli and
responses on which the response at time t depends. tk and ta are how far
back in time the dependence on the stimuli and responses stretches (i.e., if
tk = 0 and ta = 0, then �st = �xt). Not all models will include a dependence
on past stimuli or responses; the values of tk and ta will depend on the
model adopted for a particular experiment.

We can describe a model that incorporates all of these features by spec-
ifying the conditional distribution of the responses given the input. This
distribution gives the probability of observing response rt at time t given
the input �st . We use a distribution as opposed to a deterministic function
to specify the relationship between rt and �st because a neuron’s response
varies for repeated presentations of a stimulus. To simplify the model, we
restrict our consideration to parametric distributions that lie in some space
�. Each vector �θ denotes a particular model in this space. To fit a model,
p(rt | �st, �θ ), to a neuron, we need to find the best value of �θ .

We estimate �θ by observing the neuron’s response to various stimuli. For
these experiments, the design is a procedure for picking the stimulus on
each trial. The design can be specified as a probability distribution, p(�xt),
from which we sample the stimulus on each trial. Nonrandom designs
can be specified by putting all the probability mass on a single stimulus.
A sequential design modifies this distribution after each observation. In
contrast, the standard nonsequential approach is to fix this distribution
before the experiment starts, and then select the stimulus on each trial
by drawing independent and identically distributed (i.i.d.) samples from
p(�xt). Figure 1 provides a schematic of the sequential approach we want to
implement, as well as a diagram of the typical i.i.d. design.
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We want to design our experiments to facilitate identification of the
best model in �. Based on this objective, we define the optimal design
for each trial as the design that provides the most information about �θ . A
natural metric for the informativeness of a design is the mutual information
between the data and the model (Lindley, 1956; Bernardo, 1979; Watson &
Pelli, 1983; Cover & Thomas, 1991; MacKay, 1992; Chaloner & Verdinelli,
1995; Paninski, 2005),

I ({rt, �st}; �θ ) =
∫

p(rt, �st, �θ )
log p(rt, �st, �θ )

log p(rt, �st)p(�θ )
drtd�std�θ. (1.4)

The mutual information measures how much we expect the experimental
data to reduce our uncertainty about �θ . The mutual information is a function
of the design because it depends on the joint probability of the data, p(rt, �st),
which obviously depends on how we pick the stimuli. We can determine
the optimal design by maximizing the mutual information with respect to
the marginal distribution p(�sx,t = �xt).

Designing experiments by maximizing the mutual information is com-
putationally challenging. The information we expect to gain from an exper-
iment depends on what we have already learned from past observations.
To extract the information from past observations, we need to compute the
posterior distribution p(�θ | {rt, rt−1, . . . , r1}, {�st, �st−1, . . . , �s1}) after each trial.
Once we have updated the posterior, we need to use it to compute the
expected information gain from future experiments; this requires a high-
dimensional integration over the space �. Maximizing this integral with
respect to the design requires a nonlinear search over the high-dimensional
stimulus space, X . In sensory neurophysiology, the stimulus space is high-
dimensional because the stimuli tend to be complex, spatiotemporal signals
like movies and sounds. The challenge of evaluating this high-dimensional
integral and solving the resulting nonlinear optimization has impeded the
application of adaptive experimental design to neurophysiology. In the
worst case, the complexity of these operations will grow exponentially
with the dimensionality of �θ and �st . For even moderately sized spaces, di-
rect computation will therefore be intractable, particularly if we wish to
adapt the design in a real-time application.

The main contribution of this article is to show how these computations
can be performed efficiently when � is the space of generalized linear mod-
els (GLM) and the posterior distribution on �θ is approximated as a gaus-
sian. Our solution depends on some important log-concavity and rank-one
properties of our model. These properties justify the gaussian approxima-
tion of the posterior distribution and permit a rapid update after each trial.
These properties also allow optimization of the mutual information to be
approximated by a tractable two-dimensional problem that can be solved
numerically. The solution to this 2D optimization problem depends on the
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stimulus domain. When the stimulus domain is defined by a power con-
straint, we can easily find the nearly optimal design. For arbitrary stimulus
domains, we present a general algorithm for selecting the optimal stimulus
from a finite subset of stimuli in the domain. Our analysis leads to efficient
heuristics for constructing this subset to ensure the resulting design is close
to the optimal design.

Our algorithm facilitates estimation of high-dimensional systems be-
cause picking more informative designs leads to faster convergence to the
best model of the neuron. In our simulations (see section 5.4), the optimal
design converges more than an order of magnitude faster than an i.i.d.
design. Our algorithm can be applied to high-dimensional, real-time appli-
cations because it reduces the complexity with respect to dimensionality
from exponential to on average quadratic running time.

This article is organized as follows. In section 2, we present the GLM
of neural systems. In section 3, we present an online method for comput-
ing a gaussian approximation of the posterior distribution on the GLM’s
parameters. In section 4, we show how the mutual information, I (rt; �θ | �st),
can be approximated by a much simpler, low-dimensional function. In sec-
tion 5, we present the procedure for picking optimal stimuli and show
some simulation results. In section 6, we generalize our basic methods to
some important extensions of the GLM needed to handle more complicated
experiments. In section 7, we show that our algorithm asymptotically de-
creases the uncertainty about �θ at a rate nearly equal to the optimal rate
predicted by a general theorem on the rate of convergence of information
maximizing designs (Paninski, 2005). We therefore conclude that this ef-
ficient (albeit approximate) implementation produces designs that are in
fact asymptotically optimal. Simulations investigating the issue of model
misspecification are presented in section 8. Finally, we discuss some limi-
tations and directions for future work in section 9. To help the reader, we
summarize in Table 1 the notation that we will use in the rest of the article.

2 The Parametric Model

For the model space, �, we choose the set of generalized linear models
(GLM) (see Figure 2). The GLM is a tractable and flexible parametric family
that has proven useful in neurophysiology (McCullagh & Nelder, 1989;
Simoncelli, Paninski, Pillow, & Schwartz, 2004; Paninski, 2004; Truccolo
et al., 2005; Paninski, Pillow, & Lewi, 2007). GLMs are fairly natural from a
physiological point of view, with close connections to biophysical models
such as the integrate-and-fire cell. Consequently, they have been applied in
a wide variety of experimental settings (Brillinger, 1988, 1992; Chichilnisky,
2001; Theunissen et al., 2001; Paninski, Shoham, Fellows, Hatsopoulos, &
Donoghue, 2004).

A GLM model represents a spiking neuron as a point process. The like-
lihood of the response, the number of spikes, depends on the firing rate, λt ,
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Table 1: Definitions of Symbols and Conventions Used Throughout the Article.

�xt Stimulus at time t
rt Response at time t
�st = [�sT

x,t, �sT
f,t]

T Complete input at time t
�sx,t Controllable part of the input at time t
�s f,t Fixed part of the input at time t

x1:t
�= {�x1, . . . , �xt} Sequence of stimuli up to time t; boldface

denotes a matrix.

r1:t
�= {r1, . . . , rt} Sequence of observations up to time t

s1:t
�= {�s1, . . . , �st} Sequence of inputs up to time t

Eω(ω) = ∫
p(ω)ω dω. Expectation with respect to the distribution

on the random variable denoted in the
subscript

H(p(ω | γ ))
�= ∫ −p(ω | γ ) log p(ω | γ ) dω. Entropy of the distribution p(ω | γ )

d= dim(�θ) Dimensionality of the model
p(�θ | �µt, Ct) Gaussian approximation of the posterior

distribution, p(�θ | s1:t, r1:t); (�µt, Ct) are the
mean and covariance matrix, respectively

Figure 2: Diagram of a general linear model of a neuron. A GLM consists of
a linear filter followed by a static nonlinearity. The output of this cascade is
the estimated, instantaneous firing rate of a neuron. The unknown parameters
�θ = [�θT

x , �θT
f ]T are the linear filters applied to the stimulus and spike history.

which is a nonlinear function of the input,

λt = Ert | �st ,�θ (rt) = f
(�θT�st

) = f
(�θT

x �sx,t + �θT
f �s f,t

)
. (2.1)

As noted earlier, the response at time t depends on the current stimulus, �xt ,
as well as past stimuli and responses. The inclusion of spike history in the
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input means we can account for refractory effects, burstiness, and firing-
rate adaptation (Berry & Meister, 1998; Keat et al., 2001; Paninski, 2004;
Truccolo et al., 2005). As noted earlier, we use subscripts to distinguish the
components that we can control from those that are fixed (see Table 1).

The parameters of the GLM are the coefficients of the filter, �θ , applied
to the input. �θ can be separated into two filters �θ = [�θT

x , �θT
f ]T , which are

applied to the variable and fixed components of the input, respectively.
After filtering the input by �θ , the output of the filter is pushed through
a static nonlinearity, f (), known as the link function. The input-output
relationship of the neuron is fully specified by the log likelihood of the
response given the input and �θ ,

log p
(
rt | �st, �θ)= log

e−λtdt(λtdt)rt

rt!
(2.2)

= rt log f (�θT�st) − f (�θT�st) dt + const. (2.3)

dt is the length of the time window over which we measure the firing rate,
rt . The constant term is constant with respect to �θ but not rt . In this article, we
always use a Poisson distribution for the conditional likelihood, p(rt | �st, �θ ),
because it is the best one for modeling spiking neurons. However, by mak-
ing some minor modifications to our algorithm, we can use it with other
distributions in the exponential family (Lewi, Butera, & Paninski, 2007).

To ensure the maximum a posteriori (MAP) estimate of �θ is unique,
we restrict the GLM so that the log likelihood is always concave. When
p(rt | �st, �θ ) is a Poisson distribution, a sufficient condition for concavity of
the log likelihood is that the nonlinearity f () is a convex and log concave
function (Wedderburn, 1976; Haberman, 1977; McCullagh & Nelder, 1989;
Paninski, 2004). f () can be convex and log concave only if its contours are
linear. When the contours are linear, we can, without loss of generality,
assume that f () is a function of a scalar variable, ρt . ρt is the result of
applying the linear filter of the GLM to the input,

ρt = �θT�st. (2.4)

Since ρt is a scalar, �θ must be a vector and not a matrix. Convexity of f ()
also guarantees that the nonlinearity is monotonic. Since we can always
multiply �θ by negative 1 (i.e., flip our coordinate system), we can without
loss of generality assume that f is increasing. Furthermore, we assume f () is
known, although this condition could potentially be relaxed. Knowing f ()
exactly is not essential because previous work (Li & Duan, 1989; Paninski,
2004) and our own results, (see section 8) indicate that the parameters of a
GLM can often be estimated, at least up to a scaling factor, even if the link
function is incorrect.
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Figure 3: Schematic illustrating the procedure for recursively constructing the
gaussian approximation of the true posterior; dim(�θ ) = 2. The images are con-
tour plots of the log prior, log likelihoods, log posterior, and log of the gaussian
approximation of the posterior (see text for details). The key point is that since
p(rt | �st, �θ ) is one-dimensional with respect to �θ , when we approximate the log
posterior at time t using our gaussian approximation, p(�θ | �µt−1, Ct−1), we need
to do only a one-dimensional search to find the peak of the log posterior at time
t. The gray and black dots in the figure illustrate the location of �µt−1 and �µt ,
respectively.

3 Representing and Updating the Posterior

Our first computational challenge is representing and updating the poste-
rior distribution on the parameters, p(�θ | r1:t, s1:t). We use a fast, sequential
procedure for constructing a gaussian approximation of the posterior, (see
Figure 3). This gaussian approximation leads to an update that is both
efficient and accurate enough to be used online for picking optimal stimuli.

A gaussian approximation of the posterior is justified by the fact that
the posterior is the product of two smooth, log-concave terms—the GLM
likelihood function and the prior (which we assume to be gaussian, for
simplicity). As a result, the log posterior is concave (i.e., it always curves
downward) and can be well approximated by the quadratic expression for
the log of a gaussian. Furthermore, the main result of Paninski (2005) is
a central limit-like theorem for optimal experiments based on maximizing
the mutual information. This theorem guarantees that asymptotically, the
gaussian approximation of the posterior will be accurate.

We recursively construct a gaussian approximation to the posterior by
first approximating the posterior using our posterior from the previous
trial (see Figure 3). Since the gaussian approximation of the posterior at
time t − 1, p(�θ | �µt−1, Ct−1), summarizes the information in the first t − 1
trials, we can use this distribution to approximate the log posterior after the
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tth trial,

log p(�θ | s1:t, r1:t) = log p(�θ )+
t−1∑
i=1

log p(ri | �si , �θ )

︸ ︷︷ ︸
+ log p(rt | �st, �θ )+ const.

(3.1)

≈ log p(�θ | �µt−1, Ct−1) + log p(rt | �st, �θ ) + const. (3.2)

≈ log p(�θ | �µt, Ct) + const. (3.3)

We fit the log of a gaussian to the approximation of the log posterior
in equation 3.2, using the Laplace method (Berger, 1985; MacKay, 2003).
This recursive approach is much faster, albeit slightly less accurate, then
using the Laplace method to fit a gaussian distribution to the true poste-
rior. The running time of this recursive update is O(d2), whereas fitting a
gaussian distribution to the true posterior is O(td3). Since t and d are large,
easily O(103), the computational savings of the recursive approach are well
worth the slight loss of accuracy. If the dimensionality is low, d = O(10),
we can measure the error by using Monte Carlo methods to compute the
Kullback-Leibler distance between the true posterior and our gaussian ap-
proximation. This analysis (results not shown) reveals that the error is small
and rapidly converges to zero.

The mean of our gaussian approximation is the peak of equation 3.2.
The key to rapidly updating our posterior is that we can easily compute
the direction in which the peak of equation 3.2 lies relative to �µt−1. Once
we know the direction in which �µt lies, we just need to perform a one-
dimensional search to find the actual peak. To compute the direction of
�µt − �µt−1, we write out the gradient of equation 3.2,

d log p(�θ | r1:t, s1:t)

d�θ ≈ ∂ log p(�θ | �µt−1, Ct−1)

∂�θ + ∂ log p(rt | �st, �θ )

∂�θ (3.4)

=−(�θ − �µt−1)T C−1
t−1 +

(
rt

f (ρt)
− dt

)
d f
dρ

∣∣∣∣
ρt

�sT
t . (3.5)

At the peak of the log posterior, the gradient equals zero, which means the
first term in equation 3.5 must be parallel to �st . Since Ct−1 is nonsingular,
�µt − �µt−1 must be parallel to Ct−1�st ,

�µt = �µt−1 + �t Ct−1�st. (3.6)

�t is a scalar that measures the magnitude of the difference, �µt − �µt−1. We
find �t by solving the following one-dimensional equation using Newton’s
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method:

−�t +
(

rt

f (ρt)
− dt

)
d f
dρ

∣∣∣∣
ρt=�sT

t �µt−1+�t�sT
t Ct−1�st

= 0. (3.7)

This equation defines the location of the peak of the log posterior in the
direction Ct−1�st . Since the log posterior is concave, equation 3.7 is the so-
lution to a one-dimensional concave optimization problem. Equation 3.7 is
therefore guaranteed to have a single, unique solution. Solving this one-
dimensional problem involves a single matrix-vector multiplication that
requires O(d2) time.

Having found �µt , we estimate the covariance matrix Ct of the posterior
by forming the Taylor approximation of equation 3.2 about �µt :

log p(�θ | r1:t, s1:t) ≈ −1
2

(�θ − �µt)T C−1
t (�θ − �µt) + const. (3.8)

−C−1
t = ∂2 log p(�θ | �µt, Ct)

d�θ2
(3.9)

= ∂2 log p(�θ | �µt−1, Ct−1)

∂�θ2
+ ∂2 log p(rt | �st, �θ )

∂�θ2
. (3.10)

The Laplace method uses the curvature of the log posterior as an estimate
of the inverse covariance matrix. The larger the curvature, the more certain
we are that our estimate �µt is close to the true parameters. The curvature,
as measured by the second derivative, is the sum of two terms, equation
3.10. The first term approximates the information provided by the first t − 1
observations. The second term measures the information in our latest ob-
servation, rt . The second term is proportional to the Fisher information. By
definition, the Fisher information is the negative of the second derivative of
the log likelihood (Berger, 1985). The second derivative of the log likelihood
provides an intuitive metric for the informativeness of an observation be-
cause a larger second derivative means that small differences in �θ produce
large deviations in the responses. Hence, a large Fisher information means
we can infer the parameters with more confidence.

To compute the Hessian, the matrix of partial second derivatives, of the
log posterior, we need to sum only two matrices: C−1

t−1 and the Hessian of
log p(rt | �st, �θ ). The Hessian of the log likelihood is a rank 1 matrix. We can
therefore efficiently invert the Hessian of the updated log posterior in O(d2)
time using the Woodbury matrix lemma (Henderson & Searle, 1981; Seeger,
2007). Evaluating the derivatives in equation 3.10 and using the Woodbury
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lemma yields

Ct =
(

C−1
t−1 − ∂2 log p(rt | ρt)

∂ρ2 �st�sT
t

)−1

(3.11)

= Ct−1 − Ct−1�st D(rt, ρt)�sT
t Ct−1

1 + D(rt, ρt)�sT
t Ct−1�st

(3.12)

D(rt, ρt) =−∂2 log p(rt | ρ)
∂ρ2

∣∣∣∣
ρt

=−
(

rt

f (ρt)
− dt

)
d2 f
dρ2

∣∣∣∣
ρt

+ rt

( f (ρt))2

(
d f
dρ

∣∣∣∣
ρt

)2

(3.13)

ρt = �θT�st. (3.14)

D(rt, ρt) is the one-dimensional Fisher information—the negative of the
second derivative of the log likelihood with respect to ρt . In this equation, ρt

depends on the unknown parameters, �θ , because we would like to compute
the Fisher information for the true parameters. That is, we would like to
expand our approximation of the log posterior about �θ . Since �θ is unknown,
we use the approximation

ρt ≈ �µT
t �st (3.15)

to compute the new covariance matrix. Since computing the covariance
matrix is just a rank one update, computing the updated gaussian approx-
imation requires only O(d2) computations. A slower but potentially more
accurate update for small t would be to construct our gaussian by match-
ing the first and second moments of the true posterior distribution using
the expectation propagation algorithm (Minka, 2001; Seeger, Gerwinn, &
Bethge, 2007).

Asymptotically under suitable regularity conditions, the mean of our
gaussian is guaranteed to converge to the true �θ . Consistency can be es-
tablished by applying theorems for the consistency of estimators based on
stochastic gradient descent (Fabian, 1978; Sharia, 2007). We used numerical
simulations (data not shown) to verify the predictions of these theorems.
To apply these theorems to our update, we must be able to restrict �θ to
a closed and bounded space. Since all �θ corresponding to neural models
would naturally be bounded, this constraint is satisfied for all biologically
reasonable GLMs.

Our update uses the Woodbury lemma, which is unstable when Ct is
close to being singular. When optimizing under a power constraint (see
section 5.2), we can avoid using the Woodbury lemma by computing the
eigendecomposition of the covariance matrix. Since we need to compute
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the eigendecomposition in order to optimize the stimulus, no additional
computation is required in this case. When the eigendecomposition was
not needed for optimization, we usually found that the Woodbury lemma
was sufficiently stable. However, a more stable solution in this case would
have been to compute and maintain the Cholesky decomposition of the
covariance matrix (Seeger, Steinke, & Tsuda, 2007).

4 Computing the Mutual Information

A rigorous Bayesian approach to sequential optimal experimental design is
to pick the stimulus that maximizes the expected value of a utility function
(Bernardo, 1979). Common functions are the mean squared error of the
model’s predictions (Fedorov, 1972; Cohn, Ghahramani, & Jordan, 1996;
Schein, 2005), the entropy of the responses (Bates, Buck, Riccomagno, &
Wynn, 1996), and the expected information gain (Lindley, 1956; Bernardo,
1979; MacKay, 1992; Chaloner & Verdinelli, 1995). A number of different
quantities can be used to measure the expected information depending on
whether the goal is prediction or inference. We are primarily interested in
estimating the unknown parameters, so we measure expected information
using the mutual information between �θ and the data (�st, rt). The mutual
information measures the expected reduction in the number of models
consistent with the data. Choosing the optimal design requires maximizing
the mutual information, I ({�st+1, rt+1}; �θ | s1:t, r1:t), conditioned on the data
already collected as a function of the design p(�xt+1),

popt(�xt+1) = arg max
p(�xt+1)

I ({�st+1, rt+1}; �θ | s1:t, r1:t). (4.1)

We condition the mutual information on the data already collected because
we want to maximize the information given what we have already learned
about �θ .

Before diving into a detailed mathematical computation, we want to
provide a less technical explanation of our approach. Before we conduct any
trials, we have a set, �, of possible models. For any stimulus, each model in
� makes a prediction of the response. To identify the best model, we should
pick a stimulus that maximizes the disagreement between the predictions
of the different models. In theory, we could measure the disagreement
for any stimulus by computing the predicted response for each model.
However, since the number of possible models is large, explicitly computing
the response for each model is rarely possible.

We can compute the mutual information efficiently because once we
pick a stimulus, we partition the model space, �, into equivalent sets with
respect to the predicted response. Once we fix �st+1 , the likelihood of the
responses varies only with the projection ρt+1 = �sT

t+1
�θ . Hence, all models

with the same value for ρt+1 make the same prediction. Therefore, instead
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of computing the disagreement among all models in � space, we only
have to compute the disagreement between the models in these different
subspaces; that is, at most, we have to determine the response for one model
in each of the subspaces defined by ρt+1 = const.

Of course, the mutual information also depends on what we already
know about the fitness of the different models. Since our experiment pro-
vides no information about �θ in directions orthogonal to �st+1, our un-
certainty in these directions will be unchanged. Therefore, the mutual in-
formation will only depend on the information we have about �θ in the
direction �st+1; that is, it depends only on p(ρt+1 | �st+1, �µt, Ct) instead of our
full posterior p(�θ | �st+1, �µt, Ct).

Furthermore, we have to evaluate the mutual information only for
nonrandom designs because any optimal design popt(�xt+1) must place
all of its mass on the stimulus, �xt+1, which maximizes the conditional
mutual information I (rt+1; �θ | �st+1, s1:t, r1:t) (MacKay, 1992; Paninski, 2005).
This property means we can focus on the simpler problem of efficiently
evaluating I (rt+1; �θ | �st+1, s1:t, r1:t) as a function of the input �st+1.

The mutual information measures the reduction in our uncertainty about
the parameters �θ , as measured by the entropy,

I (�θ; rt+1 | �st+1, s1:t, r1:t)

= H(p(�θ | s1:t, r1:t)) − E�θ | �µt,Ct
Ert+1 | �θ,�st+1

H(p(�θ | s1:t+1, r1:t+1)). (4.2)

The first term, H(p(�θ | s1:t, r1:t)), measures our uncertainty at time t. Since
H(p(�θ | s1:t, r1:t)) is independent of �st+1, we just need to minimize the second
term, which measures how uncertain about �θ we expect to be after the next
trial. Our uncertainty at time t + 1 depends on the response to the stimulus.
Since rt+1 is unknown, we compute the expected entropy of the posterior,
p(�θ | s1:t+1, r1:t+1), as a function of rt+1 and then take the average over rt+1

using our GLM to compute the likelihood of each rt+1 (MacKay, 1992;
Chaloner & Verdinelli, 1995). Since the likelihood of rt+1 depends on the
unknown model parameters, we also need to take an expectation over �θ .
To evaluate the probability of the different �θ , we use our current posterior,
p(�θ | �µt, Ct).

We compute the posterior entropy, H(p(�θ | s1:t+1, r1:t+1)), as a function
of rt+1 by first approximating p(�θ | rt+1, �st+1) as gaussian. The entropy of a
gaussian is easy to compute (Cover & Thomas, 1991):

H(p(�θ | s1:t+1, r1:t+1)) ≈ H(p(�θ | �µt+1, Ct+1)) (4.3)

= 1
2

log | Ct+1 | + const. (4.4)
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According to our update rule,

Ct+1 = Ct − Ct�st+1 D(rt+1, ρt+1)�sT
t+1Ct

1 + D(rt+1, ρt+1)�sT
t+1Ct�st+1

(4.5)

ρt+1 = �θT�st+1. (4.6)

As discussed in the previous section, the Fisher information depends on
the unknown parameters. To compute the entropy, we treat the Fisher in-
formation,

Jobs(rt+1, �st+1, �θ ) = −∂2 log p(rt+1 | ρt+1)
∂ρ2 �st+1�sT

t+1, (4.7)

as a random variable since it is a function of �θ . We then estimate our expected
uncertainty as the expectation of H(p(�θ | �µt+1, Ct+1)) with respect to �θ using
the posterior at time t. The mutual information, equation 4.2, already entails
computing an average over �θ , so we do not need to introduce another
integration.

This Bayesian approach to estimating the expected posterior entropy
differs from the approach used to update our gaussian approximation of
the posterior. To update the posterior at time t, we use the point estimate
�θ ≈ �µt to estimate the Fisher information of the observation at time t. We
could apply the same principle to compute the expected posterior entropy
by using the approximation

ρt+1 ≈ �µT
t+1�st+1, (4.8)

where �µt+1 is computed using equations 3.6 and 3.7. Using this approx-
imation of ρt+1 is intractable because we would need to solve for �µt+1

numerically for each value of rt+1. We could solve this problem by us-
ing the point approximation ρt+1 ≈ �µT

t �st+1, which we can easily compute
since �µt is known (MacKay, 1992; Chaudhuri & Mykland, 1993; Cohn,
1994). This point approximation means we estimate the Fisher information
for each possible (rt+1, �st+1) using the assumption that �θ ≈ �µt . Unless �µt

happens to be close to �θ , there is no reason that the Fisher information com-
puted assuming �θ ≈ �µt should be close to the Fisher information evaluated
at the true parameters. In particular, at the start of an experiment when �µt

is highly inaccurate, we would expect this point approximation to lead to
poor estimates of the Fisher information. Similarly, we would expect this
point approximation to fail for time-varying systems as the posterior co-
variance may no longer converge to zero asymptotically (see section 6.2).
In contrast to using a point approximation, our approach of averaging the
Fisher information with respect to �θ should provide much better estimates
of the Fisher information when our uncertainty about �θ is high or when
�θ is changing (Lindley, 1956; Chaloner & Verdinelli, 1995). Averaging the
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expected information of �st+1 with respect to our posterior leads to an ob-
jective function, which takes into account all possible models. In particular,
it means we favor inputs that are informative under all models with high
probability as opposed to inputs that are informative only if �θ = �µt .

To compute the mutual information, equation 4.2, we need to evaluate
a high-dimensional expectation over the joint distribution on (�θ, rt). Eval-
uating this expectation is tractable because we approximate the posterior
as a gaussian distribution and the log likelihood is one-dimensional. The
one-dimensionality of the log likelihood means Ct+1 is a rank 1 update of
Ct . Hence, we can use the the identity | I + �w�zT | = 1 + �wT�z to evaluate the
entropy at time t + 1,

|Ct+1| = | Ct |
∣∣∣∣∣I − �st+1 D(rt+1, ρt+1)�sT

t+1Ct

1 + D(rt+1, ρt+1)�sT
t+1Ct�st+1

∣∣∣∣∣ (4.9)

= |Ct | · (1 + D(rt+1, ρt+1)σ 2
ρ

)−1
(4.10)

σ 2
ρ =�sT

t+1Ct�st+1

ρt+1 =�sT
t+1

�θ.

Consequently,

E�θ | �µt ,Ct
Ert+1 | �st+1,�θ H(p(�θ | �µt+1, Ct+1)) (4.11)

= −1
2

E�θ | �µt,Ct
Ert+1 | �st+1,�θ log

(
1 + D(rt+1, ρt+1)σ 2

ρ

)+ const. (4.12)

We can evaluate equation 4.12 without doing any high-dimensional in-
tegration because the likelihood of the responses only depends on ρt+1 =
�sT

t+1
�θ . As a result,

−1
2

E�θ | �µt+1,Ct+1
Ert+1 | �θ,�st+1

log
(
1 + D(rt+1, ρt+1)σ 2

ρ

)
= −1

2
Eρt+1 | �µt+1,Ct+1 Ert+1 | ρt+1 log

(
1 + D(rt+1, ρt+1)σ 2

ρ

)
. (4.13)

Since ρt+1 = �θT�sT
t+1 and p(�θ | �µt, Ct) is gaussian, ρt+1 is a one-dimensional

gaussian variable with mean µρ = �µT
t �st+1 and variance σ 2

ρ = �sT
t+1Ct�st+1. The

final result is a very simple, two-dimensional expression for our objective
function,

I (rt+1; �θ | �st+1, s1:t, r1:t)

≈ Eρt+1 |µρ,σ 2
ρ

Ert+1 | ρt+1 log
(
1 + D(rt+1, ρt+1)σ 2

ρ

)+ const

µρ = �µT
t �st+1 σ 2

ρ = �sT
t+1Ct�st+1. (4.14)
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The right-hand side of equation 4.14 is an approximation of the mutual
information because the posterior is not in fact gaussian.

Equation 4.14 is a fairly intuitive metric for rating the informativeness of
different designs. To distinguish among models, we want the response to
be sensitive to �θ . The information increases with the sensitivity because as
the sensitivity increases, small differences in �θ produce larger differences
in the response, making it easier to identify the correct model. The infor-
mation, however, also depends on the variability of the responses. As the
variability of the responses increases, the information decreases because it
is harder to determine which model is more accurate. The Fisher informa-
tion, D(rt+1, ρt+1), takes into account both the sensitivity and the variability.
As the sensitivity increases, the second derivative of the log likelihood in-
creases because the peak of the log likelihood becomes sharper. Conversely,
as the variability increases, the log likelihood becomes flatter, and the Fisher
information decreases. Hence, D(rt+1, ρt+1) measures the informativeness
of a particular response. However, information is valuable only if it tells us
something we do not already know. In our objective function, σ 2

ρ measures
our uncertainty about the model. Since our objective function depends on
the product of the Fisher information and our uncertainty, our algorithm
will favor experiments providing large amounts of new information.

In equation 4.14 we have reduced the mutual information to a two-
dimensional integration over ρt+1 and rt+1, which depends on (µρ, σ 2

ρ ).
While 2D numerical integration is quite tractable, it could potentially be
too slow for real-time applications. A simple solution is to precompute this
function before training begins on a suitable 2D region of (µρ, σ 2

ρ ) and then
use a lookup table during our experiments.

In certain special cases, we can further simplify the expectations in
equation 4.14, making numerical integration unnecessary. One simplifi-
cation is to use the standard linear approximation log(1 + x) = x + o(x)
when D(rt+1, ρt+1)σ 2

ρ is sufficiently small. Using this linear approximation,
we can simplify equation 4.14 to

Eρt+1 |µρ,σ 2
ρ

Ert+1 | ρt+1 log
(
1 + D(rt+1, ρt+1)σ 2

ρ

)
≈ Eρt+1 |µρ,σ 2

ρ
Ert+1 | ρt+1 D(rt+1, ρt+1)σ 2

ρ , (4.15)

which may be evaluated analytically in some special cases (see below). If
�θ is constant, then this approximation is always justified asymptotically
because the variance in all directions asymptotically converges to zero (see
section 7). Consequently, σ 2

ρ → 0 as t → ∞. Therefore, if D(rt+1, ρt+1) is
bounded, then asymptotically D(rt+1, ρt+1)σ 2

ρ → 0.

4.1 Special Case: Exponential Nonlinearity. When the nonlinear func-
tion f () is the exponential function, we can derive an analytical approx-
imation for the mutual information, equation 4.14, because the Fisher
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information is independent of the observation. This special case is worth
considering because the exponential nonlinearity has proved adequate for
modeling several types of neurons in the visual system (Chichilnisky, 2001;
Pillow, Paninski, Uzzell, Simoncelli, & Chichilnisky, 2005; Rust, Mante,
Simoncelli, & Movshon, 2006). As noted in the previous section, the Fisher
information depends on the variability and sensitivity of the responses to
the model parameters. In general, the Fisher information depends on the
response because we can use it to estimate the variability and sensitivity of
the neuron’s responses. For the Poisson model with convex and increasing
f (),1 a larger response indicates more variability but also more sensitivity of
the response to ρt+1. For the exponential nonlinearity, the decrease in infor-
mation due to increased variability and the increase in information due to
increased sensitivity with the response cancel out, making the Fisher infor-
mation independent of the response. Mathematically this means the second
derivative of the log likelihood with respect to �θ is independent of rt+1,

D(rt+1, ρt+1) = exp(ρt+1). (4.16)

By eliminating the expectation over rt+1 and using the linear approximation
log(1 + x) = x + o(x), we can simplify equation 4.14:

Eρt+1 |µρ,σ 2
ρ

Ert+1 | ρt+1 log
(
1 + D(rt+1, ρt+1)σ 2

ρ

)
= Eρt+1 |µρ,σ 2

ρ
log

(
1 + exp(ρt+1)σ 2

ρ

)+ const. (4.17)

= Eρt+1,µρ ,σ 2
ρ

log
(
1 + exp(ρt+1)σ 2

ρ

)
(4.18)

≈ Eρt+1 |µρ,σ 2
ρ

exp(ρ)σ 2
ρ . (4.19)

We can use the moment-generating function of a gaussian distribution to
evaluate this expectation over ρt+1:

Eρt+1 |µρ,σ 2
ρ

exp(ρt+1)σ 2
ρ = σ 2

ρ exp
(

µρ + 1
2
σ 2

ρ

)
. (4.20)

Our objective function is increasing with µρ and σ 2
ρ . In section 5.2, we

show that this property makes optimizing the design for an exponential
nonlinearity particularly tractable.

4.2 Linear Model. The optimal design for minimizing the posterior
entropy of �θ for the standard linear model is a well-known result in the
statistics and experimental design literature (MacKay, 1992; Chaloner &

1Recall that we can take f () to be increasing without loss of generality.



636 J. Lewi, R. Butera, and L. Paninski

Verdinelli, 1995). It is enlightening to rederive these results using the meth-
ods we have introduced so far and to point out some special features of the
standard linear case.

The linear model is

rt = �θT�st + ε, (4.21)

with ε a zero-mean gaussian random variable with variance σ 2. The linear
model is a GLM with a gaussian distribution for the conditional distribution
and a linear link function:

log p(rt | �st, �θ, σ 2) = − 1
2σ 2 (rt − �θT�st)2 + const (4.22)

= − 1
2σ 2 r2

t + 1
σ 2 ρtrt − 1

2σ 2 ρ2
t + const. (4.23)

For the linear model, the variability, σ 2, is constant. Furthermore, the
sensitivity of the responses to the input and the model parameters is also
constant. Consequently, the Fisher information is independent of both the
response and the input (Chaudhuri & Mykland, 1993). Mathematically this
means that the observed Fisher information D(rt+1, ρt+1) is a constant equal
to the reciprocal of the variance:

D(rt+1, ρt+1) = 1
σ 2 . (4.24)

Plugging D(rt+1, ρt+1) into equation 4.14, we obtain the simple result:

E�θ | �µt,Ct
Ert+1 | �θ,�st+1

I (rt+1; �θ | �st+1, s1:t, r1:t) = log

(
1 + σ 2

ρ

σ 2

)
+ const.

(4.25)

Since σ 2 is a constant, we can increase the mutual information only by
picking stimuli for which σ 2

ρ = �sT
t+1Ct�st+1 is maximized. Under the power

constraint, σ 2
ρ is maximized when all the stimulus energy is parallel to

the maximum eigenvector of Ct , the direction of maximum uncertainty. µρ

does not affect the optimization at all. This property distinguishes the linear
model from the exponential Poisson case described above. Furthermore,
the covariance matrix Ct is independent of past responses because the true
posterior is gaussian with covariance matrix:

C−1
t = C−1

0 +
t∑

i=1

1
σ 2 �si�sT

i . (4.26)
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Consequently, the optimal sampling strategy can be determined a priori,
without having to observe rt or to make any corresponding adjustments in
our sampling strategy (MacKay, 1992).

Like the Poisson model with an exponential link function, the linear
model’s Fisher information is independent of the response. However, for
the linear model, the Fisher information is also independent of the model
parameters. Since the Fisher information is independent of the parameters,
an adaptive design offers no benefit because we do not need to know the pa-
rameters to select the optimal input. In contrast, for the Poisson distribution
with an exponential link function, the Fisher information depends on the
parameters and the input, even though it is independent of the responses.
As a result, we can improve our design by adapting it as our estimate of �θ
improves.

5 Choosing the Optimal Stimulus

The simple expression for the conditional mutual information, equa-
tion 4.14, means that we can find the optimal stimulus by solving the
following simple program:

1.
(
µρ, σ 2

ρ

)∗ = argmax
(µρ,σ 2

ρ )∈Rt+1

Eρt+1 | µρ,σ 2
ρ

Ert+1 | ρt+1

× log
(
1 + D(rt+1, ρt+1)σ 2

ρ

)
(5.1)

Rt+1 = {(
µρ, σ 2

ρ

)
: µρ = �µT

t �st+1 & σ 2
ρ = �sT

t+1Ct�st+1, ∀�st+1 ∈ St+1
}

(5.2)

St+1 = {�st+1 : �st+1 = [�xT
t+1, �sT

f,t+1

]T
, �xt+1 ∈ Xt+1

}
. (5.3)

2. Find �st+1 s.t µ∗
ρ = �µT

t �st+1 σ 2
ρ

∗ = �sT
t+1Ct�st+1. (5.4)

Rt+1 is the range of the mapping �st+1 → (µρ, σ 2
ρ ) corresponding to the stim-

ulus domain, Xt+1. Once we have computed Rt+1, we need to solve a highly
tractable 2D optimization problem numerically. The final step is to map the
optimal (µρ, σ 2

ρ ) back into the input space. In general, computing Rt+1 for
arbitrary stimulus domains is the hardest step.

We first present a general procedure for handling arbitrary stimulus
domains. This procedure selects the optimal stimulus from a set, X̂t+1,
which is a subset of Xt+1. X̂t+1 contains a finite number of inputs; its size
will be denoted | X̂t+1 | . Picking the optimal input in X̂t+1 is easy. We simply
compute (µρ, σ 2

ρ ) for each �xt+1 ∈ X̂t+1.
Picking the optimal stimulus in a finite set, X̂t+1, is flexible and straight-

forward. The informativeness of the resulting design, however, is highly
dependent on how X̂t+1 is constructed. In particular, we want to ensure that
with high probability, X̂t+1 contains inputs in Xt+1 that are nearly optimal.
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If we could compute Rt+1, then we could avoid the problem of picking a
good X̂t+1. One case in which we can compute Rt+1 is when Xt+1 is defined
by a power constraint; that is, Xt+1 is a sphere. Since we can compute Rt+1,
we can optimize the input over its full domain. Unfortunately, our method
for computing Rt+1 cannot be applied to arbitrary input domains.

5.1 Optimizing over a Finite Set of Stimuli. Our first method simulta-
neously addresses two issues: how to deal with arbitrary stimulus domains
and what to do if the stimulus domain is ill defined. In general, we expect
that more efficient procedures for mapping a stimulus domain into Rt+1

could be developed by taking into account the actual stimulus domain.
However, a generalized procedure is needed because efficient algorithms
for a particular stimulus domain may not exist, or their development may
be complex and time-consuming. Furthermore, for many stimulus domains
(i.e., natural images), we have many examples of the stimuli but no quanti-
tative constraints that define the domain. An obvious solution to both prob-
lems is to simply choose the best stimulus from a subset of examples, X̂t+1.

The challenge with this approach is picking the set X̂t+1. For the opti-
mization to be fast, | X̂t+1 | needs to be sufficiently small. However, we also
want to ensure that | X̂t+1 | contains an optimal or nearly optimal input. In
principle, this second criterion means X̂t+1 should contain a large number
of stimuli evenly dispersed over Xt+1. We can in fact satisfy both require-
ments because the informativeness of a stimulus depends on only (µρ, σ 2

ρ ).
Consequently, we can partition Xt+1 into sets of equally informative exper-
iments based on the value of (µρ, σ 2

ρ ). When constructing X̂t+1, there is no
reason to include more than one input for each value of (µρ, σ 2

ρ ) because all
of these inputs are equally informative. Hence, to ensure that X̂t+1 contains
a nearly optimal input, we just need its stimuli to span the two-dimensional
Rt+1 and not the much higher-dimensional space, Xt+1.

Although �µt and Ct change with time, these quantities are known when
optimizing �st+1. Hence, the mapping St+1 → Rt+1 is known and easy to
evaluate for any stimulus. We can use this knowledge to develop simple
heuristics for selecting inputs that tend to be dispersed throughout Rt+1.
We delay until sections 5.3 and 6.1 the presentation of the heuristics that we
used in our simulations so that we can first introduce the specific problems
and stimulus domains for which these heuristics are suited.

5.2 Power Constraint. Ideally, we would like to optimize the input over
its full domain as opposed to restricting ourselves to a subset of inputs. Here
we present a method for computingRt+1 whenXt+1 is defined by the power
constraint ‖�xt+1‖2 ≤ m.2 This is an important stimulus domain because of

2We apply the power constraint to �xt+1, as opposed to the full input �st+1. However,
the power constraint could just as easily have been applied to the full input.
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its connection to white noise, which is often used to study sensory systems
(Eggermont, 1993; Cottaris & De Valois, 1998; Chichilnisky, 2001; Dayan &
Abbot, 2001; Wu, David, & Gallant, 2006). Under an i.i.d. design, the stimuli
sampled fromXt+1 = {�xt+1:||�xt+1||2 ≤ m} resemble white noise. The primary
difference is that we strictly enforce the power constraint, whereas for white
noise, the power constraint applies only to the average power of the input.
The domainXt+1 = {�xt+1 : | | �xt+1 | |2 ≤ m} is also worth considering because
it defines a large space that includes many important subsets of stimuli such
as random dot patterns (DiCarlo, Johnson, & Hsiao, 1998).

Our main result is a simple, efficient procedure for finding the boundary
of Rt+1 as a function of a 1D variable. Our procedure uses the fact that Rt+1

is closed and connected. Furthermore, for fixed µρ , σ 2
ρ is continuous on

the interval between its maximum and minimum values. These properties
of Rt+1 mean we can compute the boundary of Rt+1 by maximizing and
minimizing σ 2

ρ as a function of µρ . Rt+1 consists of all points on this
boundary as well as the points enclosed by this curve (Berkes & Wiskott,
2005):

Rt+1 = {(
µρ, σ 2

ρ

)
:
(− m|| �µx,t||2 + �sT

f,t+1 �µ f,t
) ≤ µρ

≤ (m|| �µx,t||2 + �sT
f,t+1 �µ f,t

)
,

σ 2
ρ,min(µρ) ≤ σ 2

ρ ≤ σ 2
ρ,max(µρ)

}
(5.5)

σ 2
ρ,max(µρ) = max

�xt+1

σ 2
ρ s.t µρ = �µT

t �st+1 & ||�xt+1||2 ≤ m (5.6)

σ 2
ρ,min(µρ) = min

�xt+1

σ 2
ρ s.t µρ = �µT

t �st+1 & ||�xt+1||2 ≤ m. (5.7)

By solving equations 5.6 and 5.7, we can walk along the curves that define
the upper and lower boundaries of Rt+1 as a function of µρ . To move along
these curves, we simply adjust the value of the linear constraint. As we
walk along these curves, the quadratic constraint ensures that we do not
violate the power constraint that defines the stimulus domain.

We have devised a numerically stable and fast procedure for computing
the boundary of Rt+1. Our procedure uses linear algebraic manipulations
to eliminate the linear constraints in equations 5.6 and 5.7. To eliminate the
linear constraint, we derive an alternative quadratic expression for σ 2

ρ in
terms of �xt+1,

σ 2
ρ = �xT

t+1 A�xt+1 + �b(α)T �xt+1 + d(α). (5.8)

Here we discuss only the most important points regarding equation 5.8; the
derivation and definition of the terms are provided in appendix A. The
linear term of this modified quadratic expression ensures that the value of
this expression is independent of the projection of �st+1 on �µt+1. The constant
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term ensures that the value of this expression equals the value of σ 2
ρ if we

forced the projection of �st+1 on �µt to µρ . Maximizing and minimizing
σ 2

ρ subject to linear and quadratic constraints is therefore equivalent to
maximizing and minimizing this modified quadratic expression with just
the quadratic constraint.

To maximize and minimize equation 5.8 subject to the quadratic con-
straint ||�xt+1||2 ≤ m, we use the Karush-Kuhn-Tucker (KKT) conditions. For
these optimization problems, it can be proved that the KKT are necessary
and sufficient (Fortin, 2000). To compute the boundary of Rt+1 as a function
of µρ , we need to solve the KKT for each value of µρ . This approach is
computationally expensive because for each value of µρ , we need to find
the value of the Lagrange multiplier by finding the root of a nonlinear func-
tion. We have devised a much faster solution based on computing µρ as
a function of the Lagrange multiplier; the details are in appendix A. This
approach is faster because to compute µρ as a function of the Lagrange
multiplier, we need only find the root of a 1D quadratic expression.

To solve the KKT conditions, we need the eigendecomposition of A. Com-
puting the eigendecomposition of A is the most expensive operation and,
in the worst case, requires O(d3) operations. A, however, is a rank 2 pertur-
bation of Ct , equation A.11. When these perturbations are orthogonal to
some of the eigenvectors of Ct , we can reduce the number of computations
needed to compute the eigendecomposition of Ct by using the Gu-Eisenstat
algorithm (Gu & Eisenstat, 1994), as discussed in the next section. The key
point is that we can on average compute the eigendecomposition in O(d2)
time.

Having computed Rt+1, we can perform a 2D search to find the pair
(µρ, σ 2

ρ )∗, which maximizes the mutual information, thereby completing
step 1 in our program. To finish the program, we need to find an input
�st+1 such that �µT

t �st+1 = µ∗
ρ and �sT

t+1Ct�st+1 = σ 2
ρ

∗. We can easily find one
solution by solving a one-dimensional quadratic equation. Let �smin and �smax

denote the inputs corresponding to (µ∗
ρ, σ 2

ρ min) and (µ∗
ρ, σ 2

ρ max), respectively.
These inputs are automatically computed when we compute the boundary
of Rt+1. To find a suitable �st+1, we find a linear combination of these two
vectors that yields σ 2

ρ
∗:

find γ s.t σ 2
ρ

∗ = �st+1(γ )T Ct�st+1(γ ) (5.9)

�st+1(γ ) = (1 − γ )�smin(µρ
∗) + γ �smax(µρ

∗) γ ∈ [0, 1]. (5.10)

All �st+1(γ ) necessarily satisfy the power constraint because it defines a con-
vex set, and �st+1(γ ) is a linear combination of two stimuli in this set. Similar
reasoning guarantees that �st+1(γ ) has projection µ∗

ρ on �µt . Although this
�st+1(γ ) maximizes the mutual information with respect to the full stimulus
domain under the power constraint, this solution may not be unique. Find-
ing γ completes the optimization of the input under the power constraint.
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In certain cases, we can reduce the two-dimensional search over Rt+1

to an even simpler one-dimensional search. If the mutual information is
monotonically increasing in σ 2

ρ , then we need to consider only σ 2
ρ ,max(µρ)

for each possible value of µρ . Consequently, a one-dimensional search
over σ 2

ρ ,max(µρ) for µρ ∈ [−m|| �µx,t||2 + �sT
f,t+1 �µ f,t, m|| �µx,t||2 + �sT

f,t+1 �µ f,t] is
sufficient for finding the optimal input. A sufficient condition for guar-
anteeing that the mutual information increases with σ 2

ρ is convexity of
Ert+1 | ρt+1 log(1 + D(rt+1, ρt+1)σ 2

ρ ) in ρt+1 (see appendix B). An important ex-
ample satisfying this condition is f (ρt+1) = exp(ρt+1), which satisfies the
convexity condition because

∂2 log
(
1 + D(rt+1, ρt+1)σ 2

ρ

)
∂ρ2

t+1

= exp(ρt+1)σ 2
ρ(

1 + exp(ρt+1)σ 2
ρ

)2 > 0. (5.11)

5.3 Heuristics for the Power Constraint. Although we can compute
Rt+1 when Xt+1 = {�xt+1 : ||�xt+1||2 ≤ m}, efficient heuristics for picking sub-
sets of stimuli are still worth considering. If the size of the subset of stimuli
is small enough, then computing (µρ, σ 2

ρ ) for each stimulus in the subset is
usually faster than computing Rt+1 for the entire stimulus domain. Since
we can set the size of the set to any positive integer, by decreasing the size
of the set we can sacrifice accuracy, in terms of finding the optimal stimulus,
for speed.

We developed a simple heuristic for constructing finite subsets of
Xt+1 = {�xt+1 : ||�xt+1||2 ≤ m} by taking linear combinations of the mean and
maximum eigenvector. To construct a subset, X̂ball,t+1, of the closed ball, we
use the following procedure:

1. Generate a random number, ω, uniformly from the interval [−m, m],
where m2 is the stimulus power.

2. Generate a random number, φ, uniformly from the interval
[−√

m2 − ω2,
√

m2 − ω2].
3. Add the input �xt+1 = ω

�µx,t
| | �µx,t | |2 + φ�g⊥ to X̂ball,t+1, where �g⊥ =

�gmax− �µT
x,t

| | �µx,t | |2 �gmax

| | �gmax− �µT
x,t

| | �µx,t | |2 �gmax | |2
. �gmax is the maximum eigenvector of Cx,t .

This procedure tends to produce a set of stimuli that are dispersed through-
out Rt+1. By varying the projection of �xt+1 along the MAP, the heuristic
tries to construct a set of stimuli for which the values of µρ are uniformly
distributed on the valid interval. Similarly, by varying the projection of
each stimulus along the maximum eigenvector, we can adjust the value of
σ 2

ρ for each stimulus. Unfortunately, the subspace of the stimulus domain
spanned by the mean and max eigenvector may not contain the stimuli that
map to the boundaries of Rt+1. Nonetheless, since this heuristic produces
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stimuli that tend to be dispersed throughout Rt+1, we can usually find a
stimulus in X̂ball,t+1 that is close to being optimal.

When the mutual information is increasing with σ 2
ρ , we can easily im-

prove this heuristic. In this case, the optimal stimulus always lies on the
sphere Xt+1 = {�xt+1 : ||�xt+1||2 = m}. Therefore, when constructing the stim-
uli in a finite set, we should pick only stimuli that are on this sphere. To
construct such a subset, X̂heur,t+1, we use the heuristic above except we set
φ = √

m2 − ω2. Since the mutual information for the exponential Poisson
model is increasing with σ 2

ρ , our simulations for this model will always use
X̂heur,t+1 as opposed to X̂ball,t+1.

We could also have constructed subsets of the stimulus domain, X̂i id,t+1,
by uniformly sampling the ball or sphere. Unfortunately, this process pro-
duces sets that rarely contain highly informative stimuli, particularly in
high dimensions. Since the uniform distribution on the sphere is radially
symmetric, E�xt+1 (µρ) = 0 and the covariance matrix of �xt+1 is diagonal

with entries
E�xt+1 (||�xt+1||22)

d . As a result, the variance of µρ , || �µt||22
E�xt+1 (||�xt+1||22)

d
decreases as 1/d , ensuring that for high-dimensional systems, the stimuli
in X̂i id,t+1 have µρ close to zero with high probability (see Figure 4). Uni-
formly sampling the ball or sphere therefore does a poor job of selecting
stimuli that are dispersed throughout Rt+1. As a result, X̂i id,t+1 is unlikely
to contain stimuli close to being maximally informative.

5.4 Simulation Results. We tested our algorithm using computer
simulations that roughly emulated typical neurophysiology experiments.
The main conclusion of our simulations is that using our information-
maximizing (infomax) design, we can reduce by an order of magnitude
the number of trials needed to estimate �θ (Paninski, 2005). This means we
can increase the complexity of neural models without having to increase the
number of data points needed to estimate the parameters of these higher-
dimensional models. Furthermore, our results show that we can perform
the computations fast enough—between 10 m and 1 sec depending on
dim(�xt+1)—that our algorithm could be used online, during an experiment,
without requiring expensive or custom hardware.

Our first simulation used our algorithm to learn the receptive field of
a visually sensitive neuron. The simulation tested the performance of our
algorithm with a high-dimensional input space. We took the neuron’s re-
ceptive field to be a Gabor function as a proxy model of a V1 simple cell
(Ringach, 2002). We generated synthetic responses by sampling equation 2.3
with �θ set to a 40 × 40 Gabor patch. The nonlinearity was the exponential
function.

Plots of the posterior means (recall these are equivalent to the MAP esti-
mate of �θ ) for several designs are shown in Figure 5. The results show that all
infomax designs do better than an i.i.d. design, and an infomax design that
optimizes over the full domain of the input, Xt+1 = {�xt+1 : | | �xt+1 | |2 = m},
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Figure 4: A plot showing Rt+1, equation 5.5. The gray scale indicates the ob-
jective function, the log of equation 4.20. The dots and crosses show the points
corresponding to the stimuli in X̂heur,t+1 and X̂ball,t+1 respectively. The dark gray
region centered at µρ = 0 shows the region containing all stimuli in X̂i id,t+1. To
make the points easy to see, we kept the size of X̂heur,t+1 and X̂ball,t+1 small:
| X̂heur,t+1 | = | X̂heur,t+1 | = 100, | X̂i id,t+1 | = 104. The points on the boundary
corresponding to the largest and smallest values of µρ correspond to stim-
uli that are parallel and antiparallel to �µt . The posterior used to compute these
quantities was the posterior after 3000 trials for the Gabor simulation described
in the text. The posterior was taken from the design, which picked the optimal
stimulus in Xt+1 (i.e., �µt is the image shown in the first row and third column
of Figure 5).

does much better than choosing the best stimulus in a subset constructed
by uniformly sampling Xt+1.

The results in Figures 5 and 6 show that if we choose the optimal stimulus
from a finite set, then intelligently constructing the set is critical to achieving
good performance. We compared two approaches for creating the set when
Xt+1 = {�xt+1 : | | �xt+1 | |2 = m}. The first approach selected a set of stimuli,
X̂i id,t+1, by uniformly samplingXt+1. The second approach constructed a set
X̂heur,t+1 for each trial using the heuristic presented in section 5.3. Picking
the optimal stimulus in X̂heur,t+1 produced much better estimates of �θ than
picking the optimal stimulus in X̂i id,t+1. In particular, the design using
X̂heur,t+1 converged to �θ nearly as fast as the design that optimized over
the full stimulus domain, Xt+1. These results show that using X̂heur,t+1 is
more efficient than reusing the same set of stimuli for all trials. To achieve
comparable results using X̂i id,t+1, we would have to increase the number
of stimuli by several orders of magnitude. Consequently, the added cost of
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Figure 5: The receptive field, �µt , of a simulated neuron estimated using differ-
ent designs. The neuron’s receptive field �θ was the 40 × 40 Gabor patch shown in
the last column (spike history effects were set to zero for simplicity, �θ f = 0). The
stimulus domain was defined by a power constraint Xt+1 = {�xt+1 : ‖�xt+1‖2 = m}.
The top three rows show the MAP if we pick the optimal stimulus in Xt+1,
X̂heur,t+1, and X̂i id,t+1 respectively. X̂heur,t+1, and X̂i id,t+1 contained 1000 stim-
uli. The final four rows show the results for an i.i.d. design, a design that set
�xt+1 = �µt , a design that set the stimulus to the maximum eigenvector of Ct , and
a design that used sinusoidal gratings with random spatial frequency, orienta-
tion, and phase. Selecting the optimal stimulus in Xt+1 or X̂heur,t+1 leads to much
better estimates of �θ using fewer stimuli than the other methods.

constructing a new stimulus set after each trial is more than offset by our
ability to use fewer stimuli compared to using a constant set of stimuli.

We also compared the infomax designs to the limiting cases where we put
all stimulus energy along the mean or maximum eigenvector (see Figures 5
and 6). Putting all energy along the maximum eigenvector performs nearly
as well as an i.i.d. design. Our update, equation 3.12, ensures that if the stim-
ulus is an eigenvector of Ct , the updated covariance matrix is the result of
shrinking the eigenvalue corresponding to that eigenvector. Consequently,
setting the stimulus to the maximum eigenvector ends up scanning through
the different eigenvectors on successive trials. The resulting sequence of
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Figure 6: The posterior entropies for the simulations shown in Figure 5. Picking
the optimal input from Xt+1 decreases the entropy much faster than restricting
ourselves to a subset of Xt+1. However, if we pick a subset of stimuli using our
heuristic, then we can decrease the entropy almost as fast as when we optimize
over the full input domain. Note that the gray squares corresponding to the
i.i.d. design are being obscured by the black triangles.

stimuli is statistically similar to that of an i.i.d. design because the stimuli
are highly uncorrelated with each other and with �θ . As a result, both meth-
ods generate similar marginal distributions p(�θT�st+1) with sharp peaks at 0.
Since the Fisher information of a stimulus under the power constraint varies
only with ρt+1 = �θT�st+1, both methods pick stimuli that are roughly equally
informative. Consequently, both designs end up shrinking the posterior
entropy at similar rates.

In contrast, making the stimulus on each trial parallel to the mean leads
to a much slower initial decrease of the posterior entropy. Since our initial
guess of the mean is highly inaccurate, ρt+1 = �θT�st+1 is close to zero, re-
sulting in a small value for the Fisher information. Furthermore, sequential
stimuli end up being highly correlated. As a result, we converge very slowly
to the true parameters.

We also evaluated a design that used sinusoidal gratings as the stimuli.
In Figure 5, this design produces an estimate of �θ that already has the basic
inhibitory and excitatory pattern of the receptive field after just 1000 trials.
However, on the remaining trials �µt improves very little. Figure 6 shows
that this design decreases the entropy at roughly the same rate as the i.i.d.
design. The reason the coarse structure of the receptive field appears after so
few trials is that the stimuli have a large amount of spatial correlation. This
spatial correlation among the stimuli induces a similar correlation among
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the components of the MAP and explains why the coarse inhibitory and
excitatory pattern of the receptive field appears after so few trials. However,
it also makes it difficult to estimate the higher-resolution features of �θ , which
is why �µt does not improve much between 1000 and 5000 trials.

Similar results to Figure 5 in Paninski (2005) used a brute force com-
putation and optimization of the mutual information. The computation in
Paninski (2005) was possible only because �θ was assumed to be a Gabor
function specified by just three parameters (the 2D location of its center
and its orientation). Similarly, the stimuli were constrained to be Gabor
functions. Our simulations did not assume that �θ or �xt+1 was Gabor. �xt+1

could have been any 40 × 40 image with power m2. Attempting to use brute
force in this high-dimensional space would have been hopeless. Our results
show that a sequential optimal design allows us to perform system identi-
fication in high-dimensional spaces that might otherwise be tractable only
by making strong assumptions about the system.

The fact that we can pick the stimulus to increase the information about
the parameters, �θx , that determine the dependence of the firing rate on the
stimulus is unsurprising. Since we are free to pick any stimulus, by choosing
an appropriate stimulus we can distinguish among different values of �θx .
Our GLM, however, can also include spike history terms. Since we cannot
fully control the spike history, a reasonable question is whether infomax
can improve our estimates of the spike history coefficients, �θ f . Figure 7
shows the results of a simulation characterizing the receptive field of a neu-
ron whose response depends on its past spiking. The unknown parameter
vector, �θ = [�θT

x , �θT
f ]T , consists of the stimulus coefficients �θx , which were a

1D Gabor function, and the spike history coefficients, �θ f , which were in-
hibitory and followed an exponential function. The nonlinearity was the
exponential function.

The results in Figure 7 show that an infomax design leads to better
estimates of both �θx and �θ f . Figure 7 shows the MAPs of both methods
on different trials, as well as the mean squared error (MSE) on all trials.
In Figure 7, the MSE increases on roughly the first 100 trials because the
mean of the prior is zero. The data collected on these early trials tend to
increase the magnitude of �µt . Since the true direction of �θ is still largely
unknown, the increase in the magnitude of �µt tends to increase the MSE.

By converging more rapidly to the stimulus coefficients, the infomax
design produces a better estimate of how much of the response is due to �θx ,
which leads to better estimates of �θ f . The size of this effect is measured by
the correlation between �θx and �θ f , which is given by Cx, f in equation A.3.
Consider a simple example where the first entry of Cx, f is negative and
the remaining entries are zero. In this example, θx1 and θ f1 (the first com-
ponents of �θx and �θ f , respectively) would be anticorrelated. This value of
Cx, f roughly means that the log posterior remains relatively constant if we
increase θx1 but decrease θ f1 . If we knew the value of θx1 , then we would
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Figure 7: A comparison of parameter estimates using an infomax design versus
an i.i.d. design for a neuron whose conditional intensity depends on both the
stimulus and the spike history. (a) Estimated stimulus coefficients �θx , after 500
and 1000 trials for the true model (dashed gray), infomax design (solid black)
and an i.i.d. design (solid gray). (b) MSE of the estimated stimulus coefficients
for the infomax design (solid black line) and i.i.d. design (solid gray line).
(c) Estimated spike history coefficients, �θ f , after 500 and 1000 trials. (d) MSE of
the estimated spike history coefficients.

know where along this line of equal probability the true parameters were
located. As a result, increasing our knowledge about θx1 also reduces our
uncertainty about θ f1 .

5.4.1 Running Time. Our algorithm is suited to high-dimensional, real-
time applications because it reduces the exponential complexity of choosing
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Figure 8: (a) Running time of the four steps that must be performed on each it-
eration as a function of the dimensionality of �θ . The total running time as well as
the running times of the eigendecomposition of the covariance matrix (eigen.),
eigendecomposition of A in equation A.11 (quadratic modification), and pos-
terior update were well fit by polynomials of degree 2. The time required to
optimize the stimulus as a function of λ was well fit by a line. The times are the
median over many iterations. (b) The running time of the eigendecomposition
of the posterior covariance on average grows quadratically because many of
our eigenvectors remain unchanged by the rank 1 perturbation. We verified
this claim empirically for one simulation by plotting the number of modified
eigenvectors as a function of the trial. The data are from a 20 × 10 Gabor simu-
lation.

the optimal design to on average quadratic and at worst cubic running time.
We verified this claim empirically by measuring the running time for each
step of the algorithm as a function of the dimensionality of �θ , Figure 8a.3

These simulations used a GLM with an exponential link function. This
nonlinearity leads to a special case of our algorithm because we can derive
an analytical approximation of our objective function, equation 4.20, and
only a one-dimensional search in Rt+1 is required to find the optimal input.
These properties facilitate implementation but do not affect the complexity
of the algorithm with respect to d . Using a lookup table instead of an
analytical expression to estimate the mutual information as a function of
(µρ, σ 2

ρ ) would not change the running time with respect to d becauseRt+1 is
always 2D. Similarly, the increased complexity of a full 2D search compared
to a 1D search in Rt+1 is independent of d .

The main conclusion of Figure 8a is that the complexity of our algo-
rithm on average grows quadratically with the dimensionality. The solid
black line shows a polynomial of degree 2 fitted to the total running time.
We also measured the running time of the four steps that make up our

3These results were obtained on a machine with a dual core Intel 2.80GHz XEON
processor running Matlab.
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algorithm: (1) updating the posterior, (2) computing the eigendecomposi-
tion of the covariance matrix, (3) modifying the quadratic form for σ 2

ρ to
eliminate the linear constraint (i.e., finding the eigendecomposition of A in
equation A.11) and (4) finding the optimal stimulus. The solid lines indicate
fitted polynomials of degree 1 for optimizing the stimulus and degree 2 for
the remaining curves. Optimizing the stimulus entails searching along the
upper boundary of Rt+1 for the optimal pair (µ∗

ρ, σ 2
ρ

∗) and then finding an
input that maps to (µ∗

ρ, σ 2
ρ

∗). The running time of these operations scales
as O(d) because computing σ 2

ρ ,max as a function of λ requires summing d
terms, equation A.17. When �θ was 100 dimensions, the total running time
was about 10 ms, which is within the range of tolerable latencies for many
experiments. Consequently, these results support our conclusion that our
algorithm can be used in high-dimensional, real-time applications.

When we optimize under the power constraint, the bottleneck is com-
puting the eigendecomposition. In the worst case, the cost of computing the
eigendecomposition will grow as O(d3). Figure 8a, however, shows that the
average running time of the eigendecomposition grows only quadratically
with the dimensionality. The average running time grows as O(d2) because
most of the eigenvectors remain unchanged after each trial. The covariance
matrix after each trial is a rank 1 perturbation of the covariance matrix from
the previous trial, and every eigenvector orthogonal to the perturbation
remains unchanged. A rank 1 update can be written as

M′ = M + �z�zT , (5.12)

where M and M′ are the old and perturbed matrices, respectively. Clearly,
any eigenvector, �g, of M orthogonal to the perturbation, �z, is also an eigen-
vector of M′ because

M′ �g = M�g + �z�zT �g = M�g = c�s, (5.13)

where c is the eigenvalue corresponding to �g.
If the perturbation leaves most of our eigenvectors and eigenvalues un-

changed, then we can use the Gu-Eisenstat algorithm to compute fewer than
d eigenvalues and eigenvectors, thereby achieving on average quadratic
running time (Gu & Eisenstat, 1994; Demmel, 1997; Seeger, 2007). Asymp-
totically, we can prove that the perturbation is correlated with at most two
eigenvectors (see section 7). Consequently, asymptotically we need to com-
pute at most two new eigenvectors on each trial. These asymptotic results,
however, are not as relevant for the actual running time as empirical re-
sults. In Figure 8b, we plot, for one simulation, the number of eigenvectors
that are perturbed by the rank 1 modification. On most trials, fewer than
d eigenvectors are perturbed by the update. These results rely to some
extent on the fact that our prior covariance matrix was white and hence
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Figure 9: A GLM in which we first transform the input into some feature space
defined by the nonlinear functions Wi (�xt)—in this case, squaring functions.

had only one distinct eigenvalue. On each subsequent iteration, we can
reduce the multiplicity of this eigenvalue by at most one. Our choice of
prior covariance matrix therefore helps us manage the complexity of the
eigendecomposition.

6 Important Extensions

In this section we consider two extensions of the basic GLM that expand
the range of neurophysiology experiments to which we can apply our al-
gorithm: handling nonlinear transformations of the input and dealing with
time-varying �θ . In both cases, our method for picking the optimal stimulus
from a finite set requires only slight modifications. Unfortunately, our pro-
cedure for picking the stimulus under a power constraint will not work if
the input is pushed through a nonlinearity.

6.1 Input Nonlinearities. Neurophysiologists routinely record from
neurons that are not primary sensory neurons. In these experiments, the
input to a neuron is a nonlinear function of the stimulus due to the process-
ing in earlier layers. To make our algorithm work in these experiments, we
need to extend our GLM to model the processing in these earlier layers. The
extended model shown in Figure 9 is a nonlinear-linear-nonlinear (NLN)
cascade model (Wu et al., 2006; Ahrens, Paninski, & Sahani, 2008; Paninski
et al., 2007). The only difference from the original GLM is how we define
the input:

�st = [
W1(�xt), . . . , Wnw

(�xt), rt−1, . . . , rt−ta

]T
. (6.1)

The input now consists of nonlinear transformations of the stimulus. The
nonlinear transformations are denoted by the functions Wi . These functions
map the stimulus into feature space a simple example being the case where
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the functions Wi represent a filter bank. nw denotes the number of nonlinear
basis functions used to transform the input. For convenience, we denote
the output of these transformations as �W(�xt) = [W1(�xt), . . . , Wnw

(�xt)]
T . As

before, our objective is picking the stimulus that maximizes the mutual
information about the parameters, �θ . For simplicity, we have assumed that
the response does not depend on past stimuli, but this assumption could
easily be dropped.

NLN models are frequently used to explain how sensory systems process
information. In vision, for example, MT cells can be modeled as a GLM
whose input is the output of a population of V1 cells (Rust et al., 2006). In
this model, V1 is modeled as a population of tuning curves whose output
is divisively normalized. Similarly in audition, cochlear processing is often
represented as a spectral decomposition using gammatone filters (de Boer
& de Jongh, 1978; Patterson et al., 1992; Lewicki, 2002; Smith & Lewicki,
2006). NLN models can be used to model this spectral decomposition of
the auditory input, as well as the subsequent integration of information
across frequency (Gollisch, Schutze, Benda, & Herz, 2002). One of the most
important NLN models in neuroscience is the energy model. In vision,
energy models are used to explain the spatial invariance of complex cells
in V1 (Adelson & Bergen, 1985; Dayan & Abbot, 2001). In audition, energy
models are used to explain frequency integration and phase insensitivity in
auditory processing (Gollisch et al., 2002; Carlyon & Shamma, 2003).

Energy models integrate information by summing the energy of the
different input signals. The expected firing rate is a nonlinear function of
the integrated energy,

E(rt) = f

(∑
i

(�φi,T �xt)2

)
. (6.2)

Each linear filter, �φi , models the processing in an earlier layer or neuron.
For simplicity, we present the energy model assuming the firing rate does
not depend on past spiking. As an example of the energy model, consider a
complex cell. In this model, each �φi models a simple cell. The complex cell
then sums the energy of the outputs of the simple cells.

Energy models are an important class of models compatible with the
extended GLM shown in Figure 9. To represent an energy model in our
framework, we need to express energy integration as an NLN cascade. We
start by expressing the energy of each channel as a vector matrix multipli-
cation by introducing the matrices Qi ,

(�φi,T �xt)2 = �xT
t

�φi �φi,T �xt = �xT
t Qi �xt. (6.3)

The right-hand side of this expression has more degrees of freedom than our
original energy model unless we restrict Qi to be a rank 1 matrix. Letting
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Q = ∑
i Qi , we can write the energy model as

E(rt) = f
(�xT

t Q�xt
) = f


∑

i, j

Qi, j xi,tx j,t


 (6.4)

Q =
∑

i

�φi �φi,T ,

where xi,t denotes the ith component of �xt . This model is linear in the matrix
coefficients Qi, j and the products of the stimulus components xi,tx j,t . To
obtain a GLM, we use the input nonlinearity, �W, to map �xt to the vector
[x1,tx1,t, . . . , xi,tx j,t, . . .]T . The parameter vector for the energy model is the
matrix Q rearranged as a vector �θ = [Q1,1, . . . , Qi, j , . . .]T , which acts on
feature space not stimulus space.

Using the functions, Wi , to project the input into feature space does not
affect our strategy for picking the optimal stimulus from a finite set. We
simply have to compute �W(�xt+1) for each stimulus before projecting it into
Rt+1 and computing the mutual information. Our solution for optimizing
the stimulus under a power constraint, however, no longer works for two
reasons. First, a power constraint on �xt+1 does not in general translate into
a power constraint on the values of �W(�xt+1). As a result, we cannot use
the algorithm of section 5.2 to find the optimal values of �W(�xt+1). Second,
assuming we could find the optimal values of �W(�xt+1), we would need to
invert �W to find the actual stimulus. For many nonlinearities, the energy
model being one example, �W is not invertible.

To estimate the parameters of an energy model, we use our existing
update method to construct a gaussian approximation of the posterior in
feature space, p(�θ | �µt, Ct). We can then use the MAP to estimate the input
filters �φi . The first step is to rearrange the terms of the mean, �µt , as a
matrix, Q̂. We then estimate the input filters, �φi , by computing the singular
value decomposition (SVD) of Q̂. If Q̂ converges to the true value, then
the subspace corresponding to its nonzero singular values should equal the
subspace spanned by the true filters, �φi .

Since we can optimize the design only with respect to a finite set of stim-
uli, we devised a heuristic for making this set more dispersed throughout
Rt+1. For the energy model,

µρ = �µT
t �st+1 (6.5)

=
nw∑
i=1

µi,tWi (�xt+1) (6.6)

= �xT
t+1 Q̂�xt+1 (6.7)

Q̂i, j = µi+( j−1)·dim(�x),t, (6.8)
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where µi,t is the ith component of �µt . rt in this example has no dependence
on past responses; hence, we do not need to sum over the past responses
to compute µρ (i.e., ta = 0). Q̂ is just the MAP, �µt , rearranged as a dim(�x) ×
dim(�x) matrix. We construct each stimulus in X̂heur,t+1 as follows:

1. We randomly pick an eigenvector, �ν, of Q̂ with the probability of
picking each eigenvector being proportional to the relative energy of
the corresponding eigenvalue.

2. We pick a random number, ω, by uniformly sampling the interval
[−m, m], where m2 is the maximum allowed stimulus power.

3. We choose a direction, �ω, orthogonal to �ν by uniformly sampling the
d − 1 unit sphere orthogonal to �ν.

4. We add the stimulus,

�x = ω�ν +
√

m2 − ω2 �ω, (6.9)

to X̂heur,t+1.

This heuristic works because for the energy model, ρt+1 = �xT
t+1 Q�xt+1 mea-

sures the energy of the stimulus in feature space. For this model, feature
space is defined by the eigenvectors of Q. Naturally, if we want to increase
ρt+1, we should increase the energy of the stimulus along one of the basis
vectors of feature space. The eigenvectors of Q̂ are our best estimate for
the basis vectors of feature space. Hence, µρ , the expected value of ρt+1,
varies linearly with the energy of the input along each eigenvector of Q̂,
equation 6.7.

The effectiveness of our heuristic is illustrated in Figure 10. This fig-
ure illustrates the mapping of stimuli into Rt+1 space for stimulus sets
constructed using our heuristic, X̂heur,t+1, and stimulus sets produced by
uniformly sampling the sphere, X̂i id,t+1. Our heuristic produces a set of
stimuli that is more spread out on the range of µρ . As a result, X̂heur,t+1

contains more informative stimuli than X̂i id,t+1.

6.1.1 Auditory Simulation. We applied these estimation and optimization
procedures to a simulation of an auditory neuron. We modeled the neuron
using an energy model. For simplicity, our hypothetical neuron received in-
put from just two neurons in earlier layers. We modeled these input neurons
as gammatone filters that were identical except for a 90 degree difference
in phase (de Boer & de Jongh, 1978; Patterson et al., 1992). We generated
spikes by sampling a conditional Poisson process whose instantaneous, con-
ditional firing rate was set by equation 6.2 with Qtrue = �φ1 �φ1,T + �φ2 �φ2,T , �φ1

and �φ2 being the gammatone filters, and f (ρt+1) = exp(ρt+1). We estimated
the parameters, Q, using an i.i.d. and two infomax designs. The i.i.d. design
uniformly sampled the stimulus from the sphere ‖�xt+1‖2 = m2. The two info-
max designs picked the optimal stimulus in a subset of stimuli drawn from
the sphere. In one case, this set was constructed using our heuristic, while
in the other case, it was constructed by uniformly sampling the sphere.
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Figure 10: Plot shows the mapping of different stimulus sets into Rt+1 after
500 trials. X̂heur,t+1 consists of 1000 stimuli selected using the heuristic described
in the text. X̂i id,t+1 consists of 1000 stimuli randomly sampled from the sphere
||�xt+1||2 = m. X̂tones is a set of 1000 pure tones with random phase and frequency,
and power equal to m2. All mappings were computed using the same poste-
rior, which was taken from the simulation that picked the optimal stimulus in
X̂heur,t+1 on each trial. The shading of the dots is proportional to the mutual
information of each input, equation 4.20. The plots show that X̂heur,t+1 contains
more informative stimuli than X̂i id,t+1 and X̂tones and that the stimuli in X̂heur,t+1

are more dispersed in (µρ, σ
2
ρ ) space.

The results of our simulations are shown in Figure 11. When finding the
MAP of �θ , we restricted �µt such that the corresponding matrices, Q̂, were
symmetric but not necessarily rank 2. The rank 2 restriction is unnecessary
because the number of linear filters can be recovered from the number of
nonzero singular values of Q̂. To show how well the true gammatone filters
can be estimated from the principal components of Q̂, we show in Figure 11
the reconstruction of �φ1 and �φ2 using the first two principal components of
Q̂ that is, the linear combination of the projections of each filter along the
first two principal components.

Figures 11 and 12 show that when the optimal stimulus in X̂heur,t+1 is
picked, the MAP converges more rapidly to the true gammatone filters.
In Figure 11, the design that uses pure tones as the inputs appears to
produce good estimates of the filters. These results, however, are somewhat
misleading. Since these inputs are restricted to tones, the inputs that cause
the neuron to fire are highly correlated. As a result, the estimated receptive
field is biased by the correlations in the input. Since gammatone filters
are similar to sine waves, in some sense, this bias means that using pure
tones will rapidly produce a coarse estimate of the gammatone filters.
However, since the pure tones are highly correlated, it is difficult to remove
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Figure 11: Simulation results for the hypothetical auditory neuron described
in the text. Simulated responses were generated using equation 6.2 with �φ1

and �φ2 being gammatone filters. These filters were identical except for the
phase, which differed by 90 degrees. The results compare an i.i.d. design, two
infomax designs, and a design using pure tones. The two infomax designs
picked the optimal stimulus in the sets X̂heur,t+1 and X̂i id,t+1 respectively; both sets
contained 1000 inputs. The i.i.d. design picked the input by uniformly sampling
the sphere ||�xt+1||2 = m. The pure tones had random frequency and phase but
power equal to m2. To illustrate how well �φ1 and �φ2 can be estimated, we plot
the reconstruction of �φ1 and �φ2 using the first two principal components of the
estimated Q. The infomax design using a heuristic does much better than an
i.i.d. design. For the infomax design, the gammatone structure of the two filters
is evident starting around 100 and 500 trials, respectively. By 1000 trials, the
infomax design using X̂heur,t+1 has essentially converged to the true parameters,
whereas for the i.i.d. design, the gammatone structure is starting to be revealed
only after 1000 trials.

these correlations from the estimated receptive field and resolve the finer
structure of the filters. This behavior is evident in Figure 12, which shows
that after 1000 trials, the MSE for the pure tones design does not decrease
as fast as for the alternative designs.

Also evident in the infomax results is the exploitation-exploration
trade-off (Kaelbling, Littman, & Moore, 1996). To increase the information
about one of the expected filters, we need to pick stimuli that are correlated
with this filter. Since the input filters are orthogonal and the stimulus
power is constrained, we can only effectively probe one filter at a time.
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Figure 12: The MSE of the estimated filters shown in Figure 11. (a) MSE of �φ1.
(b) MSE of �φ2. The solid black and dashed black lines show the results for
designs that picked the optimal stimulus in X̂heur,t+1 and X̂i id,t+1, respectively.
The solid gray line is for pure tones. The dashed gray line is for an i.i.d. design.

The exploitation-exploration trade-off explains why on trials 100 to 500,
the estimate of the first filter improves much more than the second filter.
On these trials, the algorithm exploits its knowledge of the first filter
rather than searching for other filters. After roughly 500 trials, exploring
becomes more rewarding than exploiting our estimate of �φ1. Hence, the
infomax design picks stimuli orthogonal to the first gammatone filter,
which eventually leads to our finding the second filter.

6.2 Time-Varying �θ . Neural responses often change slowly over the
course of an experiment due to changes in the health, arousal, or attentive
state of the preparation (Lesica & Stanley, 2005). If we knew the underlying
dynamics of �θ , we could try to model these changes. Unfortunately, incor-
porating arbitrary, nonlinear dynamical models of �θ into our information-
maximizing strategy is nontrivial because we would have to compute and
maximize the expectation of the mutual information with respect to the
unobserved changes in �θ . Furthermore, even when we expect that �θ is vary-
ing systematically, we often have very little a priori knowledge about these
dynamics. Therefore, instead of trying to model the actual changes in �θ ,
we simply model the fact that the changes in �θ will cause our uncertainty
about �θ to increase over time in the absence of additional observations. We
can capture this increasing uncertainty by assuming that after each trial �θ
changes in some small and unknown way (Ergun, Barbieri, Eden, Wilson,
& Brown, 2007),

�θt+1 = �θt + �wt, (6.10)
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where �wt is normally distributed with a known mean and covariance ma-
trix, �. Using this simple model, we can factor into our optimization the
loss of information about �θ due to its unobserved dynamics. Our use of
gaussian noise can be justified using a maximum entropy argument. Since
the gaussian distribution maximizes the entropy for a particular mean and
covariance, we are in some sense overestimating the loss of information due
to changes in �θ . As a result, our uncertainty no longer converges to zero
even asymptotically. This is the key property that our model must capture
to ensure that our infomax algorithm will pick optimal stimuli. If we as-
sume �θ is constant, then we would underestimate our uncertainty and, by
extension, the amount of new information each stimulus would provide.
Consequently, the infomax algorithm would do a poor job of picking the
optimal stimulus.

To update the posterior and choose the optimal stimulus, we use the
procedures described in sections 3 and 5. The only difference due to a time-
varying �θ is that the covariance matrix of p(�θt+1 | s1:t+1, r1:t+1) is in general no
longer just a rank 1 modification of the covariance matrix of p(�θt | s1:t, r1:t).
Therefore, we cannot use the rank 1 update to compute the eigendecom-
position. However, since we may not have any a priori knowledge about
the direction of changes in �θ , it is often reasonable to assume �wt has mean
zero and white covariance matrix, � = c I . In this case, the eigenvectors of
Ct + � are those of Ct , and the eigenvalues are ci + c where ci is the ith
eigenvalue of Ct ; in this case, our methods may be applied without mod-
ification. In cases where we expect that �θ varies systematically, we could
try to model those dynamics more accurately by selecting an appropriate
mean and covariance matrix for �wt .

Figure 13 shows the results of using an infomax design to fit a GLM
to a neuron whose receptive field drifts nonsystematically with time. The
receptive field was a one-dimensional Gabor function whose center moved
according to a random walk (we have in mind a slow random drift of eye
position during a visual experiment). Although only the center of �θ moved,
we still modeled changes in �θ using equation 6.10. The results demon-
strate the benefits of using an infomax design to estimate a time-varying
�θ . Although we cannot reduce our uncertainty below a level determined
by �, the infomax design can still improve our estimate of �θ compared to
using random stimuli.

7 Asymptotically Optimal Design

Our simulation results have shown that our algorithm can decrease our
uncertainty more rapidly than an i.i.d. design. Naturally we would also like
to know how well we do compared to the truly optimal design. To efficiently
maximize I (rt+1; �θ | s1:t+1, r1:t), we approximated the posterior as a gaussian
distribution. We would like to know how much this approximation costs us.
In this section, we use an asymptotic analysis to investigate this question.
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Figure 13: Estimating the receptive field when �θ is not constant. (a) The pos-
terior means �µt and true �θt plotted after each trial. �θ was 100-dimensional,
with its components following a Gabor function. To simulate slow drifts in eye
position, the center of the Gabor function was moved according to a random
walk between trials. We modeled the changes in �θ as a random walk with a
white covariance matrix, �, with variance .01. In addition to the results for ran-
dom and information-maximizing stimuli, we also show the �µt estimated using
stimuli chosen to maximize the information under the (mistaken) assumption
that �θ was constant. Each row of the images plots �µt using intensity to indicate
the value of the different components. (b) Details of the posterior means �µt on
selected trials. (c) Plots of the posterior entropies as a function of trial number;
once again, we see that information-maximizing stimuli constrain the posterior
of �θ more effectively. The infomax design selected the optimal stimulus from
the sphere ||�xt+1||2 = m. The i.i.d. design picked stimuli by uniformly sampling
this sphere.

The basis of this section is a central-limit-like theorem for infomax de-
signs proved in Paninski (2005). This theorem states that asymptotically, the
infomax design decreases our uncertainty at the same rate as a design that
maximizes the expected Fisher information. This theorem uses the fact that
the posterior of the infomax design is asymptotically normal, with mean
and covariance

�µt
p→ �θ (7.1)

(1/t)C−1
t

p→ E�x(Jexp(�θ, �x)) (7.2)

popt(�x) = arg max
p(�x)

log | E�x(Jexp(�θ, �x)) | . (7.3)

Here the convergence, denoted by p, is in probability. Jexp is the expected
Fisher information (evaluated at the true parameters). The expectation over
�x is with respect to the distribution popt(�x); the lack of the temporal sub-
script on �x means the distribution is independent of time. popt represents an
experimental design that picks the stimulus by sampling the stimulus dis-
tribution that maximizes the expected Fisher information, equation 7.3. This
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design is nonadaptive (i.e., independent of the data already observed) be-
cause, unlike our infomax design, popt(�x) is independent of the posterior at
time t. Asymptotically, the infomax design decreases our uncertainty at the
same rate as popt because our uncertainty at time t is our prior uncertainty
minus the information in the observations. As t → ∞, the contribution of
the prior information to the posterior entropy becomes negligible since we
are dealing with an infinite series. Consequently, as t → ∞, minimizing the
posterior entropy becomes equivalent to maximizing the rate at which in-
formation is acquired, that is, the expected information of each observation,
equation 7.3. Even though the infomax design is asymptotically equivalent
to popt(�x), we cannot use popt(�x) instead of the infomax design in actual
experiments because to compute popt(�x), we need to know �θ .

The limit theorem for infomax designs, equations 7.1 and 7.2, holds only
if the order of the trials does not matter as t → ∞ (Paninski, 2005). Conse-
quently, we can apply equation 7.2 only to situations where rt depends on
only the current stimulus, that is, �st = �xt . Hence, in the remainder of this
section, we use �xt instead of �st .

popt(�x) is the maximizer of a concave function over the convex set of
valid stimulus distributions p(�x). Finding popt(�x) is closely related to “D-
optimality” in the experimental design literature (Fedorov, 1972). Since the
log determinant is concave, finding popt(�x) should be numerically stable
because there are no local optima. In reality, numerical approaches become
impractical when the stimulus domain is large. However, approximate ap-
proaches are still feasible; for example, we could search for the best p
within some suitably chosen lower-dimensional subspace of the ( |X | − 1)-
dimensional set of all possible p(�x).

Fortunately, when the stimulus domain is defined by a power constraint,
there exists a semianalytical solution for popt . The complexity of this solution
turns out to be independent of the dimensionality of the stimulus �x. We
derive this result in the next section. In section 7.3, we present results
showing that our infomax designs converge to the limiting design. These
results show that our implementation is asymptotically optimal, despite the
approximations we have made for numerical efficiency.

These asymptotic results allow us to quantify the relative efficiency of
the infomax design compared to an i.i.d. design. For an i.i.d. design, equa-
tions 7.1 and 7.2 still hold, under appropriate conditions, provided we take
the expectation in equation 7.2 with respect to the distribution, piid (�x), from
which stimuli are selected on each trial (van der Vaart, 1998). As a result we
can use equation 7.2 to compute and compare the asymptotic performance
of our infomax design and piid (�x). In this section, the stimulus distribution
piid (�x) refers to a uniform distribution on the sphere ||�x||2 = m.

7.1 Asymptotically Optimal Design Under a Power Constraint. In
this section, we discuss the problem of finding popt(�x) under the power con-
straint ||�x||2 ≤ m. This turns out to be surprisingly tractable: in particular,
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we may reduce this apparently infinite-dimensional problem to a two-
dimensional optimization problem that we can easily solve numerically.

Without loss of generality, we choose a coordinate system in which �x is
aligned with �θ : θi = 0 ∀ i �= 1. Using this parameterization, we may write
our objective function as

F (p(�x)) = log | E�x Jexp(�θ, �x) | (7.4)

= log
∣∣Ex1

(
Er | x1 D(r, x1θ1)Ex2,...,xd | x1

(�x�xT) )∣∣. (7.5)

Recall the subscripts of �x denote its components. The second integral above
is just the correlation matrix of �x taken over the stimulus distribution con-
ditioned on x1. A simple symmetry argument, along with the log concavity
of the determinant, establishes that we may always find a spherically sym-
metric distribution p(x2, . . . , xd | x1), which maximizes F for some p(x1) (the
proof is in appendix E).

If we consider only spherically symmetric p(x2, . . . , xd | x1), we can easily
evaluate the inner integral in equation 7.5:

E�x2,...,xd | x1 �x�xT =
[

x2
1

1
d−1

(
E||�x||2 | x1 ||�x||22 − x2

1

)
Idim(�x)−1

]
, (7.6)

where Idim(�x)−1 is the dim(�x) − 1-dimensional identity matrix. Using this
result, we can easily evaluate the log determinant of the asymptotic covari-
ance matrix:

log | E�x Jexp(�θ, �x) | = log Ex1 Er | x1 D(r, x1θ1)x2
1

+ (d−1) log Ex1 Er | x1 D(r, x1θ1)
E||�x||22 | x1

||�x||22 − x2
1

d − 1
.

(7.7)

To maximize the second term under a power constraint, p(||�x||2
∣∣x1) should

have all its support on ||�x||2 = m. Since we also know popt(x2, . . . , xd | x1)
is spherically symmetric, popt(x2, . . . , xd | x1) is just a uniform distribution

on the d − 1-dimensional sphere of radius
√

m2 − x2
1 . To find the optimal

distribution on x1, we solve

popt(x1) = arg max
p(x1)

[
log φ + (d − 1) log

(
m2β − φ

d − 1

)]
(7.8)

φ = Ex1 (Er | x1 D(r, x1θ1)x1
2) (7.9)

β = Ex1 (Er | x1 D(r, x1θ1)).



Sequential Optimal Design of Neurophysiology Experiments 661

This objective function depends on p(x1) only through the two scalars φ

and β, each of which is simply a linear projection of p(x1). As a result, we
can always find a popt(x1) supported on just two values of x1.4 Thus, we
have reduced our objective function to

log φ + (d − 1) log
(

m2β − φ

d − 1

)

= log
(
wEr | y1 D(r, y1θ1)y2

1 + (1 − w)Er | y2 D(r, y2θ1)y2
2

)
+ (d − 1) log

(
wEr | y1 D(r, y1θ1)

(
m2 − y2

1

)
+ (1 − w)Er | y2 D(r, y2θ1)

(
m2 − y2

2

))+ const., (7.10)

which has just three unknown parameters: the two support points (y1, y2) of
p(x1), where −m ≤ y1 ≤ y2 ≤ m, and the relative probability mass on these
support points (w here denotes the mass on the point y1). w can be computed
analytically as a function of (y1, y2) by setting the derivative of equation 7.10
with respect to w to zero. As a result, solving for the best values of (y1, y2, w)
requires a simple two-dimensional numerical search over all pairs (y1, y2).
In practice, we have found that the optimal p(x1) has support on a single
point, y1 = y2, which reduces our problem to a one-dimensional search.
While we cannot prove that this reduction holds in general, we can prove
that it holds asymptotically as we increase d .

To prove that popt(x1) converges to a distribution with support on a single
point as d → ∞, we show that for any (y1, y2), the optimal weight on y1

asymptotically tends to w = 0 or w = 1. For any (y1, y2), we compute w by
setting the derivative of equation 7.10 with respect to w to 0:

w = bd y2
2

(
am2 − bm2 − ay2

1 + by2
2

)− abm2 y2
1 + abm2 y2

2

d
(
by2

2 − ay2
1

) (
am2 − bm2 − ay2

1 + by2
2

) (7.11)

a = Er | y1 D(r, y1θ1) (7.12)

b = Er | y2 D(r, y2θ2). (7.13)

Now, whenever the above equation yields w ∈ [0, 1], that w is the optimal
weight on y1. If w is outside this interval, then w = 0 or w = 1, depending
on which of these two values maximizes equation 7.10.

4Suppose we can find some optimal distribution q (x1) supported on more than two
points. We can simply change q (x1) without changing our objective function by moving
in some direction orthogonal to the two projections φ and β of q (x1). We may continue
moving until we hit the boundary of the simplex of acceptable q (x1) (i.e., until q (x1) = 0
for some value of x1). By iterating this argument, we may reduce the number of points
for which popt(x1) > 0 down to two.
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We can easily evaluate the limit of w as d → ∞:

lim
d→∞

w = by2
2

by2
2 − ay2

1

. (7.14)

b and a are positive because the Fisher information is always positive.
Furthermore, y2 > y1 by assumption. These facts ensure that

lim
d→∞

w ≤ 0 or lim
d→∞

w ≥ 1. (7.15)

In either case, the optimal weight ends up being w = 1 or w = 0, so the
optimal distribution has support on only a single point as d → ∞.

7.2 Relative Efficiency of the Infomax Design. We can quantify the
relative efficiency of the infomax design to the i.i.d. design by computing
the ratio of the asymptotic variances: the ratio of the dotted gray lines to
the dotted black lines in Figures 14 and 15. The ratio

σ 2
i id (�ω)

σ 2
inf o(�ω)

�= �ωT Ci id �ω
�ωT Cinf o �ω, (7.16)

measures how much faster the infomax design decreases the variance in
direction �ω (a unit vector) than the i.i.d. design. Cinf o and Ci id are the
asymptotic covariance matrices that come from equation 7.2:

Cinf o = (E popt (�x)(Jexp(�θ, �x)))−1 Ciid = (E piid (�x)(Jexp(�θ, �x)))−1. (7.17)

We know from section 7.1 that for both designs, one eigenvector of E�x(Jexp

(�θ, �x)) is parallel to �θ and has an eigenvalue of E�x Er | �x D(r, �xT �θ ) (�xT �θ)2

||�θ ||22
. The

remaining eigenvectors of E�x(Jexp(�θ, �x)) all have an eigenvalue of E�x Er | �x
D(r, �xT �θ )(m2 − (�xT �θ )2

||�θ ||22
). These results lead to simple expressions for σ 2(�ω) for

both designs,

σ 2(�ω‖) =
(

E�x Er | �x D(r, �xT �θ )
(�xT �θ )2

||�θ ||22

)−1

(7.18)

σ 2(�ω⊥) =

E�x Er | �x D(r, �xT �θ )

m2 − (�xT �θ)2

||�θ ||22
d − 1




−1

, (7.19)

where p(�x) depends on whether we are computing σ 2
inf o(�ω) or σ 2

i id (�ω). �ω‖ is a
unit vector parallel to �θ , and �ω⊥ is a unit vector orthogonal to �θ . Using these
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Figure 14: Comparison of the empirical posterior covariance matrix to the
asymptotic variance predicted by equation 7.2. Despite our approximations,
the empirical covariance matrix under an infomax design converged to the pre-
dicted value. (a) The top axis shows the variance in the direction of the posterior
mean. The bottom axis is the geometric mean of the variances in directions or-
thogonal to the mean; asymptotically the variances in these directions are equal.
The unknown �θ was a 11 × 15 Gabor patch. Stimuli were selected under the
power constraint using an i.i.d. or infomax design. (b) The mean squared error
between the empirical variance and the asymptotic variance.

expressions for σ 2(�ω), we can compute the efficiency, σ 2
i id (�ω)

σ 2
inf o (�ω)

, numerically for
any nonlinearity. For the exponential Poisson model, we can derive some
illustrative analytical results about the scaling of σ 2

i id (�ω)
σ 2

inf o (�ω)
with respect to d

and ||�θ ||2.
For the exponential nonlinearity,

σ 2
i id (�ω‖)

σ 2
inf o(�ω‖)

=
E popt (�x) exp(�xT �θ ) (�xT �θ )2

||�θ ||22
E piid (�x) exp(�xT �θ ) (�xT �θ)2

||�θ ||22

(7.20)

σ 2
i id (�ω⊥)

σ 2
inf o(�ω⊥)

=
E popt (�x) exp(�xT �θ )

(
m2 − (�xT �θ )2

||�θ ||22
)

E piid (�x) exp(�xT �θ )
(
m2 − (�xT �θ )2

||�θ ||22
) (7.21)

Naturally, both σ 2
i id (�ω) and σ 2

inf o(�ω) increase with d because as the dimen-
sionality increases, we collect fewer observations in each direction for a
fixed number of trials. Hence, as d increases, the variance increases.
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Figure 15: Comparison of the empirical variance of the posterior in our simu-
lations to the asymptotic variance predicted based on the central limit theorem.
The infomax design picked the optimal stimulus from a small number of stimuli
(see text for details). (a) The axes compare the minimum eigenvalue and maxi-
mum eigenvalue of the asymptotic covariance matrix to the empirical variance
in the direction of the corresponding eigenvalue. (b) A plot of the MSE between
the empirical variance and the asymptotic variance.

Since the information of any stimulus depends on ρt , we would expect
that the infomax design would become more efficient as d increases. Intu-
itively, as d increases, the probability of an i.i.d. design picking a direction
that is highly correlated with �θ decreases because the variance of (�xT �θ) de-
creases linearly with d (see section 5.3). In contrast, the infomax design can
use knowledge of �θ to ensure ρt is large with high probability even as the
dimensionality grows.

We can in fact show that σ 2
i id (�ω‖)

σ 2
inf o (�ω‖)

is asymptotically linear in d . The d−1

scaling of the variance of (�xT �θ ) for the i.i.d. design means that σ 2
i id (�ω‖) and

σ 2
i id (�ω⊥) increase linearly with d .5 For the i.i.d. design, each stimulus is

equally likely. Therefore, the number of observations in any direction
should decrease linearly with d . As a result, the variance in any direction
increases linearly with d .

5For the i.i.d. design, p(�xT �θ
||�θ ||2

) has mean zero and variance m2/d (see section 5.3 and
Paninski, 2005; note that Paninski mistakenly had a scaling of d−2 here instead of the
correct rate of d−1). This result ensures that �xT �θ

||�θ ||2
converges to zero at the rate d−1/2.

Since the power of �x is constrained and the variance of �xT �θ
||�θ ||2

decreases as 1/d, it follows
that both σ 2

i id (�ω‖) and σ 2
i id (�ω⊥) increase linearly with d.
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In contrast, the infomax design can use the exponential increase of the
Fisher information with �xT �θ

||�θ ||2 to produce a slower increase of σ 2
inf o with

d . To analyze the infomax design, we use the fact that as d → ∞, popt(x1)
converges to a distribution that has support on a single point, x1. Further-
more, we can easily show (see appendix F) that as d → ∞, x1 converges
to a constant away from 0 and m. This result means that σ 2

inf o( �ω‖) is con-
stant asymptotically with d , while σ 2

inf o( �ω⊥) increases linearly with d . Since
σ 2

i id (�ω‖) scales linearly with d and σ 2
inf o(�ω‖) is asymptotically constant with

respect to d , the relative efficiency of the infomax design in direction �ω‖
increases linearly with d :

σ 2
i id (�ω‖)

σ 2
inf o(�ω‖)

= O(d). (7.22)

In directions orthogonal to �θ , the relative efficiency of the infomax design
is constant with respect to d because σ 2

i id (�ω⊥) and σ 2
inf o(�ω⊥) both increase

linearly with d :

σ 2
i id (�ω⊥)

σ 2
inf o(�ω⊥)

= O(1). (7.23)

These results are also plotted in Figure 16. The important conclusion is that
as d increases, we can reduce our uncertainty about �θ by a factor of d by
using an infomax design as opposed to an i.i.d. design.

We can also consider the effect of increasing ||�θ ||2 for the exponential
Poisson model. For this model, increasing ||�θ ||2 is roughly equivalent to
increasing the signal-to-noise ratio because the Fisher information increases
exponentially with ||�θ ||2. The infomax design can take advantage of the
increase in the Fisher information by putting more stimulus energy along
�θ . For the i.i.d. design, most stimuli are orthogonal or nearly orthogonal to �θ .
Therefore, we would expect an increase in ||�θ ||2 to produce a much smaller
decrease in the variances for the i.i.d. design than for the infomax design.

We can easily show that σ 2
i.i.d.(�ω)/σ 2

inf o(�ω) increases at least exponentially
with ||�θ ||2 by assuming that popt(x1) is supported on a single point, x1. As
we showed earlier, this assumption is always valid in the limit d → ∞. By
taking the limit of x1 as ||�θ ||2 → ∞ (see appendix F), we can show that x1

converges to m. In contrast, for the i.i.d. design, the probability of �xT �θ
||�θ ||2

being close to m is bounded away from 1. These differences in the marginal
distribution of p(�xT �θ

||�θ ||2 ) for the i.i.d. and infomax design imply that the
ratios in equations 7.20 and 7.21 grow exponentially with ||�θ ||2.

7.3 Convergence to the Asymptotically Optimal Covariance Matrix.
We can verify whether our design converges to the asymptotic design by
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Figure 16: We measure the relative efficiency of the infomax design to the i.i.d.
as the ratio of the variances, equation 7.16, for the exponential Poisson model.
(a) σ 2

i id (�ω)

σ 2
inf o (�ω)

as a function of the dimensionality of �θ . The ratio is computed with
�ω set to a unit vector in the direction of �θ and a direction orthogonal to �θ . The
infomax design decreases the variance in the direction of �θ faster than the i.i.d.
design by a factor that increases linearly with d . σ 2

i id (�ω⊥)

σ 2
inf o (�ω⊥)

has a value greater than
one and is relatively flat with respect to d . Consequently, as d increases, the
infomax design becomes more efficient at reducing the variance in the direction
of �θ but not in directions orthogonal to �θ . The stimulus domain was the unit
sphere. The magnitude of �θ was also set to one. (b) σ 2

i id (�ω)

σ 2
inf o (�ω)

as a function of the
magnitude of �θ when dim(�θ) = 1000. The graph shows that the infomax design
becomes exponentially more efficient than the i.i.d. design as we increase ||�θ ||2.
The stimulus domain was again the unit sphere.

testing whether the covariance matrix of the posterior converges to the value
predicted by equation 7.2 (see Figures 14 and 15). If the covariance matrix
does not converge, then we conclude that our design is not decreasing our
uncertainty as fast as the asymptotically optimal design.

Since the complexity of computing popt under a power constraint is
independent of the dimensionality, we were able to perform this analysis
for the high-dimensional Gabor results presented earlier. The symmetry
of p(x2, . . . , xd | x1) for the optimal and i.i.d. designs means the asymptotic
covariance matrix has a simple structure: one eigenvector is parallel to �θ ,
and the eigenvalues corresponding to all of the other eigenvectors (which
are orthogonal to �θ ) are equal. Therefore, we just plot and compare the
variance in the direction �θ and the geometric mean of the variances in
directions orthogonal to �θ .

We also wanted to test our infomax design when we picked the stim-
ulus from a finite set. We chose a low five-dimensional example with just
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100 stimuli to make computing popt numerically tractable. When �xt+1 is
restricted to a finite set, the asymptotic covariance matrix is no longer di-
agonal with directions orthogonal to �θ having equal variance. Therefore,
in Figure 15, we compare the maximum and minimum eigenvalues of the
asymptotic covariance matrix to the empirical variance in these directions.
We also plot the MSE between the empirical and asymptotic covariance
matrices. For comparison, we also computed the asymptotic variance for
an i.i.d. design.

In the figures, the variances are relatively flat at the beginning because of
the one-dimensionality of our GLM and the flatness of our prior. Since the
one-dimensional GLM collects information in only one direction, we need
to make d observations in order to decrease our initial uncertainty in all
directions. Until we make d observations, the probability of the stimuli being
correlated with �θ is low, and the variance in this direction remains high.

The main point of these figures is that our design does converge to the
asymptotically optimal design. Furthermore, we see that maximizing the
information decreases the variance much faster than an i.i.d. design. This is
the expected result based on a theorem in Paninski (2005) that ensures the
posterior entropy of an infomax design will in general be asymptotically
no greater than that of an i.i.d. design. Infomax does better whenever
the limiting design popt(�x) depends on �θ , as this ensures there is not a
single distribution that simultaneously maximizes the efficiency for all (a
priori unknown) values of �θ . For our GLM with a conditional Poisson (see
Figure 2), the Fisher information depends on the stimulus and �θ . Therefore,
the optimal design cannot be determined a priori.

8 Misspecified Models

We used simulations to investigate the performance of the infomax algo-
rithm when the link function, f (), is incorrect. The two primary questions
we are interested in are whether the estimated �θ converges to the true value
and how fast the uncertainty decreases compared to using i.i.d. stimuli.

A well-known result is that the parameters of a GLM can be estimated
up to a scaling factor even if the link function is misspecified, provided
the input distribution, p(�st+1), is elliptically symmetric (Li & Duan, 1989;
Paninski, 2004). A distribution is elliptically symmetric if there exists a ma-
trix A such that stimuli lying on the ellipse defined by ‖A�st+1 | |2 = const

are equally likely. Our infomax design does not in general produce ellipti-
cally symmetric stimulus distributions because the 1D Fisher information,
D(rt+1, ρt+1), is not symmetric about ρt+1 = 0. As a result, maximizing the
mutual information leads to a marginal distribution p(ρt+1 = �µT

t �st+1) that is
not symmetric about zero. We would therefore expect the infomax design to
produce a biased estimate of �θ if the model is misspecified. This bias is due
to an inevitable trade-off between efficiency and robustness. Ultimately, the
only way to reduce the number of data points we need to fit a model is by
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Figure 17: Effect of model misspecification. Infomax stimuli were selected us-
ing the wrong nonlinearity. The results compare the accuracy of the estimated �θ
using i.i.d. stimuli versus infomax stimuli. Since the parameters can at best
be estimated up to a scaling factor, (a) shows the angle between the esti-
mated parameters and their true value. (b) Plot of the expected firing rate
as a function of ρt+1 for the true and assumed nonlinearities. The true nonlin-
earity was f (ρt+1) = log(1 + exp(�θT�st+1)), while the assumed nonlinearity was
f (ρt+1) = exp(�θT�st+1).

making assumptions about the model. These assumptions make it possible
to infer the response function without observing the responses to every
possible input. Stronger assumptions allow us to estimate the model using
fewer data points. However, stronger assumptions increase the risk that our
assumed model will be incorrect, which will bias our estimate of �θ . We can
make our design more robust by weakening our assumptions, for example,
by using an elliptically symmetric design, but at the expense of being less
efficient than the infomax design.

Nonetheless, our simulations showed that the estimates produced by
the infomax design were comparable and sometimes better than those pro-
duced with i.i.d. data when the link function was misspecified. Figures 17
and 18 show the results for two different nonlinearities. In Figure 17, the
simulated data were generated using the nonlinearity f (ρt+1) = log(1 +
exp(�θT�st+1)). The infomax design, however, assumed the nonlinearity was
f (ρt+1) = exp(�θT�st+1). In this case, the assumed nonlinearity differs sig-
nificantly from the true nonlinearity. In particular, for large ρt+1, the true
nonlinearity is approximately linear in ρt+1. As a result, for the true model,
the Fisher information is decreasing for very large ρt+1 because the sensitiv-
ity of the response to the input is constant, but the variability of the response
increases with ρt+1. Under the assumed model, however, the Fisher infor-
mation is increasing with ρt+1. Consequently, the infomax design does a
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Figure 18: Same plots as in Figure 17 except here, the true nonlinearity was
f (ρt+1) = (��θT�st+1�+)2 (��+ denotes half-wave rectification) and the assumed
nonlinearity was f (ρt+1) = exp(�θT�st+1).

poor job of picking optimal stimuli. Nonetheless, using an infomax design
leads to estimates that are nearly as good as those obtained with an i.i.d.
design.

In Figure 18, the responses were simulated using the nonlinearity
f (ρt+1) = (��θT�st+1�+)2 (��+ denotes half-wave rectification). The infomax
design, however, took the nonlinearity to be f (ρt+1) = exp(�θT�st+1). As a
result, even though the infomax design miscalculates the Fisher informa-
tion, it correctly predicts that the Fisher information is increasing with ρt+1.
Consequently, the infomax design produced smaller errors in the estimated
�θ . Even though the predicted mutual information is inaccurate, it is close
enough to the true value that we can on average pick more informative
stimuli than using an i.i.d. design.

9 Discussion

Previous work (MacKay, 1992; Chaloner & Verdinelli, 1995; Paninski, 2005)
established a rigorous Bayesian framework for optimal sequential experi-
mental design based on mutual information. Our work is a practical imple-
mentation suitable for high-dimensional, near-real-time applications using
GLMs. Our algorithm depends on certain log concavity and asymptotic
normality properties that models of neural systems often possess.

Our algorithm uses several ideas that are frequently employed in ex-
perimental design. The mutual information as a design criterion has been
proposed by many authors (Lindley, 1956; Bernardo, 1979; Fedorov, 1972;
MacKay, 1992; Paninski, 2005). To evaluate the mutual information, we use
a normal approximation of the posterior. While we rely on a theorem due to



670 J. Lewi, R. Butera, and L. Paninski

Paninski (2005), which proves asymptotic normality for the mutual infor-
mation criterion, similar results concerning the asymptotics of sequential
designs exist in the statistics literature (Wu, 1985; Chaudhuri & Mykland,
1993; Rosenberger & Hu, 2002). Furthermore, evaluating complicated, high-
dimensional integrals by first approximating the function using an easily
integrable function is a basic numerical quadrature technique. In addition to
normality, we also rely on the structure of the GLM to facilitate the required
computations. Sequential design has been successfully applied to GLMs
before, but primarily with low-dimensional input spaces (Paninski, 2005;
Roy et al., in press). The logistic model in particular has received a great
deal of attention because it is frequently used for classification (Kontsevich
& Tyler, 1999; Gilad-Bachrach, Navot, & Tishby, 2005; Schein, 2005; Roy
et al., in press). Compared to our algorithm, previous algorithms for se-
quential design with GLMs do not scale nearly as well in high dimensions
(Chaudhuri & Mykland, 1993; McLeish, 1999).

Optimal experimental design is also closely related to problems in op-
timal control (Movellan, 2005; Todorov, 2006) and reinforcement learning
(Kaelbling et al., 1996; Boutilier, Dean, & Hanks, 1999). In reinforcement
learning, the goal is to find the set of actions that maximize an agent’s
reward. Since the payoff of different actions is usually unknown a priori,
the agent must simultaneously learn the payoffs of different actions while
maximizing the reward. One important difference between our work and
most formulations of reinforcement learning is that our reward signal, the
mutual information, is not provided by the system being studied. Unlike
most external reward signals, the payoff of (�xt, rt) is highly dependent on
the agent because the informativeness of any observation depends on the
agent’s existing knowledge.

9.1 Optimal Design in Neurophysiology. The application of sequential
design to neurophysiology is not new (Benda, Gollisch, Machens, & Herz,
2007). A common approach to stimulus optimization in neurophysiology
is to use model-free, finite-difference methods to measure the gradient of
an objective function with respect to small perturbations in the stimulus
(Foldiak, 2001; Gollisch et al., 2002; Edin, Machens, Schutze, & Herz, 2004;
Machens, Gollisch, Kolesnikova, & Herz, 2005; O’Connor, Petkov, & Sutter,
2005). The firing rate and stimulus reconstruction error are two objective
functions frequently optimized with this approach. Maximizing the firing
rate is typically used to find a neuron’s “preferred stimulus,” which by def-
inition is the stimulus that maximizes the firing rate of the neuron (Nelken,
Prut, Vaadia, & Abeles, 1994; deCharms, Blake, & Merzenich, 1998; Foldiak,
2001; Zhang, Anderson, & Young, 2004; O’Connor et al., 2005). There is a nat-
ural connection between our objective function and maximizing the firing
rate because, given our convexity conditions on f (), the preferred stimulus
is closely related to �θ . When encoding in sensory systems is studied, natural
objective functions are the mutual information between the stimulus and
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response (Machens et al., 2005) and the stimulus reconstruction error (Edin
et al., 2004). These metrics are used to find stimuli that can be reconstructed
with high fidelity from the neural responses.

An advantage of a finite-difference approach to stimulus adaptation is
that an explicit model of the input-output function of a neuron is often
unnecessary (Foldiak, 2001; Gollisch et al., 2002; O’Connor et al., 2005).
However, these methods generally assume that the objective function with
respect to the stimulus is fairly constant on successive trials. As a result,
these methods can be highly susceptible to firing rate adaptation. In con-
trast, our method estimates the information using a model of the neuron’s
behavior. Our method is therefore highly dependent on the suitability of
the GLM. However, since we can explicitly model adaptation and other
potential nonstationarities, we automatically take their impact on the infor-
mativeness of different designs into account when optimizing our design.

9.2 Future Work. In most experiments, neurophysiologists are inter-
ested in how well we can model the neuron after all the data have been col-
lected. We can measure the utility of the data set as the mutual information
between all observations and �θ , I ({r1:t, �θ} | x1:t) where t represents the total
number of trials. Unfortunately, there is no guarantee that a design based
on maximizing I (rt+1 | �θ, �xt+1, s1:t, r1:t), will also maximize I ({r1:t, �θ} | x1:t).
When we pick stimuli by maximizing I (rt+1 | �θ, �xt+1, s1:t, r1:t), we ignore
any effect �xt+1 has on future trials. Ignoring future trials (i.e., using a
greedy algorithm) simplifies the optimization problem. Greedy optimiza-
tion, however, can be suboptimal because �xt+1 can restrict the experiments
we can conduct in future trials (Dasgupta, 2005). If the neuron’s response
depends on past stimuli or responses, then the choice of �xt+1 will obviously
constrain the input on trials after t + 1. Consequently, using a greedy al-
gorithm limits our ability to optimize the experimental design to learn the
neuron’s dependence on past stimuli or responses (i.e., �θ f ). Our algorithm
can increase the information obtained about �θ f only by exploiting the cor-
relation between �θ f and �θx . In contrast, if we select a set of ordered stimuli
to present on the next several trials, then we can directly control the entire
stimulus history of the last trial in this sequence. We can also attempt to
control the responses that are part of the input on the last trial. For these
reasons, selecting a set of ordered stimuli allows us to change our design to
maximize the information about the unknown parameters in a more direct
fashion than greedy optimization.

Nongreedy optimization is more challenging than maximizing I (rt+1 | �θ,

�xt+1, s1:t, r1:t). One of the primary challenges of nongreedy optimization
is that the number of remaining trials is usually unknown because neu-
rophysiologists will continue gathering data as long as the neuron is re-
sponding in a normal fashion. Assuming we pick some finite, arbitrary
value for the number of remaining trials, the complexity of choosing the
most informative sequence of stimuli will grow exponentially with the
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number of trials because the dimensionality of the input and output spaces
grows exponentially with the length of the sequence. The inclusion of spike
history effects introduces additional complexity because the trials are no
longer independent. Despite these challenges, nongreedy optimization is
worth pursuing because if we can optimally learn spike history depen-
dence, then we can begin to learn the structure of neural networks. To learn
network structure, we simply modify the input of the GLM model so that
a neuron’s firing rate depends on the spiking of other neurons. Efficiently
probing the network structure requires generating maximally informative
patterns of stimuli and network activity. Generating these patterns requires
nongreedy optimization because we can only influence future spiking, not
past spiking.

Another extension that we are pursuing is how to incorporate more re-
alistic priors. In our current algorithm, we can only represent prior beliefs
as a gaussian prior on �θ . This representation of prior knowledge is not
flexible enough to represent the assumptions that are frequently adopted
in real experiments. For example, we cannot represent the knowledge that
�θ is sparse (Seeger, Gerwinn, & Bethge, 2007), low-rank (Depireux, Simon,
Klein, & Shamma, 2001; Linden, Liu, Sahani, Schreiner, & Merzenich, 2003),
or in some parametric family. In the near future, we hope to exploit knowl-
edge that �θ lies in some parametric family of functions to help regularize
our estimate of �θ in the absence of data, thereby improving the optimization
of the stimuli.

Ultimately the goal of both improvements, nongreedy optimization and
more refined priors, is to permit experiments that can help us understand
the complex, nonlinear behavior of real neurons. These extensions will build
on the solid mathematical framework we have developed in this article. We
plan to apply this methodology to real experimental data in the near future.

Appendix A: Computing Rt+1 Under the Power Constraint

In section 5.2 we outlined the procedure for computing Rt+1 when X =
{�xt+1 : ||�xt+1||2 ≤ m}. We find the boundary of Rt+1 by maximizing and
minimizing σ 2

ρ , equations 5.6 and 5.7, as a function of µρ . To solve these
optimization problems, we use the Karush-Kuhn-Tucker (KKT) conditions.

Since we can vary only �xt+1 = �sx,t+1, we rewrite σ 2
ρ as

σ 2
ρ =�sT

t+1Ct�st+1 (A.1)

=�sT
x,t+1Cx�sx,t+1 + 2�sT

f,t+1C f x�sx,t+1 + �sT
f,t+1C f �s f,t+1, (A.2)

using the block matrix form for Ct :

Ct =
[

Cx Cx f

C f x C f

]
. (A.3)
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To find the limits of σ 2
ρ as a function of µρ , we need to solve

max σ 2
ρ = max

�sx,t+1

�sT
x,t+1Cx�sx,t+1 + 2�sT

f,t+1C f x�sx,t+1 + �sT
f,t+1C f �s f,t+1 (A.4)

min σ 2
ρ = min

�sx,t+1

�sT
x,t+1Cx�sx,t+1 + 2�sT

f,t+1C f x�sx,t+1 + �sT
f,t+1C f �s f,t+1 (A.5)

s.t µρ =�sT
t+1 �µt ‖�sx,t+1 | |2 ≤ m. (A.6)

We can compute the limits of σ 2
ρ as a function of µρ by introducing

two Lagrange multipliers to enforce the linear and quadratic constraints,
respectively. Using a Lagrange multiplier to enforce the linear constraint,
however, leads to a numerically unstable solution. A more stable approach
is to use linear algebraic manipulations to derive an equivalent expression
for σ 2

ρ for which the linear constraint always holds. We start by rewriting
µρ as a 1D function of, α, the projection of �sx,t+1 along the mean:

µρ = α|| �µx,t||2 + �µT
f,t�s f,t+1. (A.7)

To enforce the linear constraint, we first subtract from �sx,t+1 its projection
along �µx,t and then add to it a vector of length α in the direction of �µx,t :

�s ′
x,t+1

�= �sx,t+1 − �µT
x,t�sx,t+1

|| �µx,t||22
�µx,t + α

|| �µx,t||2 �µx,t. (A.8)

To enforce the linear constraint, we compute σ 2
ρ by substituting �s ′

x,t+1 for
�sx,t+1 and then expanding using equation A.8:

σ 2
ρ =�s ′

x,t+1
T Ct�s ′

x,t+1 (A.9)

=�sT
x,t+1 A�sx,t+1 + �b(α)T�sx,t+1 + d(α) (A.10)

A= Cx − 1
2
�v�vT + 1

2
�u�u (A.11)

�v = −�µT
x,t Cx �µx,t + 2|| �µx||22

2|| �µx,t||32
�µx,t + Cx

�µx,t

|| �µx,t||2 (A.12)

�u = −�µT
x,t Cx �µx,t − 2|| �µx||22

2|| �µx,t||32
�µx,t + Cx

�µx,t

|| �µx,t||2 (A.13)

�b(α) = 2αCx
�µx,t

|| �µx,t||2 − 2α(�µT
x,t Cx �µx,t)

�µx,t

|| �µx,t||32
+ 2(Cx f �s f,t+1) − 2(�µT

x,t Cx f �s f,t+1)
�µx,t

|| �µx,t||22
(A.14)
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d(α) =α2 (�µT
x,t Cx �µx,t)

|| �µx,t||22
+ 2α

�µT
x,t

|| �µx,t||2 Cx f �s f,t+1 + �sT
f,t+1C f �s f,t+1. (A.15)

The most important property of these quantities is that A is a rank 2 pertur-
bation of Cx such that �µT

x,t A�µx,t = 0. As a result, one of the eigenvectors of A
is parallel to �µx,t and has an eigenvalue of zero. Geometrically, equation A.10
defines the intersection of the ellipses defined by �sT

t+1Ct�st+1 = const with
the plane defined by the linear constraint, µρ = const. Since equation A.10
is constant with respect to �µT

x,t�sT
x,t+1, we can always find a global maximum

and minimum of σ 2
ρ with �µT

x,t�sx,t+1 = 0. Therefore, we can drop the lin-
ear constraint and just optimize equation A.10 under the power constraint
‖�sx,t+1‖2

2 ≤ m2 − α2. Once we have found the optimal �µx,t , we compute
�s ′

x,t+1. �s ′
x,t+1 satisfies the linear constraint while still maximizing or mini-

mizing σ 2
ρ .

Optimizing a quadratic expression with a quadratic constraint is a well-
studied optimization problem known as the trust region subproblem (TRS)
(Fortin, 2000; Berkes & Wiskott, 2005). For the TRS, the KKT conditions are
both necessary and sufficient (Fortin, 2000). Therefore, we can find all local
minima and maxima by solving the KKT conditions.

Before we compute the KKT conditions, we transform our coordinates
using the eigenbasis of A:

A = Gt�t GT
t �yt+1 = GT

t �sx,t+1 �wt(α) = GT
t
�b(α). (A.16)

This transformation simplifies the expression for σ 2
ρ because the value of σ 2

ρ

does not depend on interactions between the components of �yt+1,

max
�yt+1

σ 2
ρ = max

�yt+1

∑
i

ci,t

(
yi,t+1 + wi,t(α)

2ci,t

)2

− w2
i,t(α)
4ci,t

(A.17)

min
�yt+1

σ 2
ρ = min

�yt+1

∑
i

ci,t

(
yi,t+1 + wi,t(α)

2ci,t

)2

− w2
i,t(α)
4ci,t

(A.18)

s.t ||�yt+1||22 ≤ m2 − α2, (A.19)

where ci denotes the ith eigenvalue of A. To enforce the power constraint,
we introduce a Lagrange multiplier:

∑
i

ci,t

(
yi,t+1 + wi,t(α)

2ci,t

)2

− w2
i,t(α)
4ci,t

− λy2
i,t+1. (A.20)

All local minima and maxima of σ 2
ρ must either have a gradient equal

to zero or else be located on the boundary. These necessary conditions, the
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first-order KKT conditions, result in a system of d equations for the gradient
of σ 2

ρ with respect to �yt+1:

2yi,t+1(ci,t − λ) = −wi (α) ∀i. (A.21)

When λ �= ci,t , we can solve the first-order KKT for yi,t+1:

yi,t+1 = −wi,t(α)
2(ci,t − λ)

. (A.22)

For a point not on the boundary to be a local maximum (minimum), the
function must be concave (convex) at that point. These conditions, the
second-order KKT conditions, can be checked by looking at the sign of
the second derivative of σ 2

ρ with respect to �yt+1. For σ 2
ρ,max, the second-

order conditions are

ci,t − λ ≤ 0 ∀i. (A.23)

Therefore, σ 2
ρ,max must occur with λ ≥ cmax, where cmax is the maximum

eigenvalue. The corresponding conditions for the local minima are

ci,t − λ ≥ 0 ∀i, (A.24)

that is, σ 2
ρ,min must occur for λ ≤ cmin = 0.

By solving the KKT conditions as a function of λ, we can find the points
(µρ, σ 2

ρ ) corresponding to the boundary of Rt+1. In this section, we assume
the eigenvalues ci,t of Gt , equation A.16, are sorted in increasing order.
Hence, yd,t+1 is the projection of the stimulus along the maximum eigen-
vector of Gt . We also use cmax,t to denote the maximum eigenvalue. We
refer to the set of (µρ, σ 2

ρ ) that solve the KKT conditions as B. We divide B
into subsets, denoted by subscripts, based on the corresponding value of
the Lagrange multiplier for the points in that subset.

Since the second-order KKT conditions for σ 2
ρ,max are satisfied only if λ ≥

cmax,t , the set Bλ=cmax,t ∪ Bλ>cmax,t must contain all (µρ, σ 2
ρ ) corresponding to

σ 2
ρ,max. We can easily find all points in Bλ>cmax,t , as follows:

1. For λ > cmax,t , compute yi,t+1 in terms of α by plugging λ into
equation A.22.

2. Find α by solving
∑

i y2
i,t+1 = m2 − α2.

3. If α ∈ [−m, m] then compute (µρ, σ 2
ρ ) ∈ Bλ>cmax .

We find α in step 2 by using the fact that the power constraint is always
satisfied with equality for any local maximum of σ 2

ρ because the eigenvalues
are positive (Fortin, 2000). Hence, we can always increase σ 2

ρ without
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changing µρ by increasing the energy of the stimulus along an eigenvector
orthogonal to the mean. If the solution in step 2 satisfies α ∈ [−m, m], then
the corresponding stimulus, �yt+1(λ, α), is a local maximum of σ 2

ρ .
The set Bλ=cmax is nonempty only if wd,t(α) = 0. If the maximum eigen-

value has a multiplicity greater than one, then this condition must hold
for the projection of �sx,t+1 along all eigenvectors corresponding to the
maximum eigenvalue; otherwise, it is impossible to satisfy the first-order
optimality conditions, equation A.22. Therefore, a simple test can tell us
if we have to consider this harder case. To test for and find solutions at
λ = cmax, we consider two cases: (1) there is a finite number of α such that
wd,t(α) = 0, and (2) wd,t(α) = 0 ∀ α.

The first case is easy. Since we set λ = cmax,t , we can find α by solving
wd,t(α) = 0. We can then compute all components of the stimulus except
yd,t+1 by plugging α and λ into equation A.22. Since σ 2

ρ,max is increasing with
the stimulus power, we set yd,t+1 so that the power constraint is satisfied
with equality:

y2
d,t+1 = m2 − α2 −

d−1∑
i=1

yi,t+1(cmax, α)2. (A.25)

If a real solution for yd,t+1 exists, then the corresponding pair (µρ, σ 2
ρ ) is in

Bλ=cmax .
The second case, wd,t(α) = 0 ∀ α, is more complicated because setting

λ = cmax,t does not completely determine α. We find (µρ, σ 2
ρ ) ∈ Bλ=cmax as

follows:

1. Vary y2
d,t+1 on the interval [0, m2], and for each value evaluate steps 2

to 4.
2. Use λ = cmax,t and equation A.22 to compute yi,t+1 for 1 ≤ i < d in

terms of α.
3. Compute α by solving equation A.25 using the results from steps 1

and 2.
4. If α ∈ [−m, m], then compute (µρ, σ 2

ρ ) ∈ Bλ=cmax .

If the maximum eigenvector has multiplicity greater than one, then in step 1,
we simply vary the energy in the eigenspace of the maximum eigenvector.
We can distribute the energy any way we like because the value of σ 2

ρ

is invariant to the distribution of the energy among the maximum eigen-
vectors. Since the KKT conditions are necessary and sufficient, the union
Bλ=cmax ∪ Bλ>cmax contains all the points on the upper boundary of Rt+1.

Since the second-order KKT conditions for σ 2
ρ,min are satisfied only for

λ ≤ 0, all points on the lower boundary of Rt+1 must be in Bλ<0 ∪ Bλ=0. We
can easily find the points in Bλ=0 as follows:



Sequential Optimal Design of Neurophysiology Experiments 677

1. Let

� =
{

α :
∑

i

yi,t+1(α)2 =
∑

i

w2
i,t

4c2
i,t

≤ m2 − α2 & α ∈ [−m, m]

}
.

(A.26)

2. For each α ∈ �, compute �yt+1(α) by plugging λ = 0 and α into equa-
tion A.22.

3. For each �yt+1(α) and α ∈ �, compute (µρ, σ 2
ρ ) ∈ Bλ=0.

Clearly, equation A.18 is minimized by setting yi,t+1(α) = − wi,t
2ci,t

. Unfortu-
nately, this solution may not satisfy the power constraint for all values of α.
The above procedure finds the values of α for which yi,t+1(α) = − wi,t

2ci,t
does

not violate the power constraint.
The points in Bλ<0 correspond to the values of α for which yi,t+1(α) =

− wi,t
2ci,t

violates the power constraint. We can find the corresponding value of
σ 2

ρ,min for these points as follows:

1. Vary λ on the interval (−∞, cmin).
2. For each λ, find α by solving

∑
i y2

i,t+1 = m2 − α2.
3. For each real α found in step 2, compute �yt+1 by plugging λ and α

into equation A.22.
4. Compute (µρ, σ 2

ρ ) ∈ Bλ<0.

Taken together, these procedures find all local maxima and minima of σ 2
ρ

as a function of µρ . Consequently, Rt+1 is the largest set of (µρ, σ 2
ρ ) enclosed

by the points in Bλ<0 ∪ Bλ=0 ∪ Bλ=cmax,t ∪ Bλ>cmax,t .
Numerically, this parameterization of the boundary is very stable. In par-

ticular, errors in small eigenvalues, ci,t , will not cause problems provided
cmax,t is not close to zero. As long as cmax,t is large relative to the small-
est eigenvalues, σ 2

ρ will be nearly invariant to errors in small eigenvalues.
Consequently, the border of Rt+1 will be insensitive to errors in the small
eigenvalues. When all eigenvalues are close to zero, the lower and upper
boundaries of Rt+1 approach σ 2

ρ (µρ) = 0, and the solution remains stable.
To summarize, we can rapidly and stably compute the boundary of Rt+1

by solving the KKT conditions as a function of the Lagrange multiplier.
The most expensive operation is obtaining the eigendecomposition of A,
which in the worst case is O(d3). However, as discussed in section 5.4.1, the
average running time of computing the eigendecomposition of A scales as
O(d2) in practice.

Appendix B: Proof of Convexity Condition

We now prove the lemma used in section 5.2 to establish conditions under
which the mutual information is increasing with σ 2

ρ :
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Lemma. If x ∼ N(µ, σ 2) and g(x, σ 2) is,

1. convex in x and
2. increasing in σ 2

then Exg(x, σ 2
ρ ) is increasing in σ 2.

Proof. We start by defining the following change of variables,

y = x − µ

σ
, (B.1)

where σ is the positive square root of σ 2. Using this change of variables,

Exg(x, σ 2) =
∫ ∞

−∞
g(x, σ 2)

1

σ
√

2π
exp

(
− (x − µ)2

2σ 2

)
dx (B.2)

=
∫ ∞

−∞
g(yσ + µ, σ 2)

1√
2π

exp
(

− y2

2

)
dy. (B.3)

To show the expected value of g() is increasing with σ 2, we need to show
that the derivative with respect to σ 2 is positive:

d Exg(x, σ 2)
dσ 2 =

∫ ∞

0

exp(− 1
2 y2)√

2π
[
(
gσ 2 (yσ + µ, σ 2) + gσ 2 (−yσ + µ, σ 2)

)
+ y

2σ

(
gx(yσ + µ, σ 2) − gx(−yσ + µ, σ 2)

)
] > 0 (B.4)

gx(x, σ 2) = ∂g(x, σ 2)
∂x

gσ 2 (x, σ 2) = ∂g(x, σ 2)
∂σ 2 . (B.5)

Since g(x, σ 2) is increasing with σ 2, gσ 2 (yσ + µ, σ 2) is always positive.
The difference gx(yσ + µ, σ 2) − gx(−yσ + µ, σ 2) is always positive because
g(x, σ 2) is convex in x. Therefore, d Ex g(x,σ 2)

dσ 2 is positive, which guarantees
Exg(x, σ 2) is monotonically increasing in σ 2.

Appendix C: Generalization of the Power Constraint

We can easily modify our solution for optimizing the stimulus under the
power constraint, section 5.2, so that we can choose the stimulus from an
ellipsoid with arbitrary center and radii. In this case, the stimulus domain
is defined as

�st+1 = �sc,t+1 + �sr,t+1 �sT
r,t+1 M�sr,t+1 ≤ m2, (C.1)
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where M is a symmetric, positive semidefinite matrix that defines the extent
of the ellipsoid, and �sc defines the center of the ellipsoid. Unlike our initial
power constraint, this generalization no longer maps to a well-defined
physical constraint.

Computing the feasible region in (µρ, σ 2
ρ ) space under these constraints

requires only slight modifications to the procedure already described. As
before, we just need to compute the maximum and minimum of σ 2

ρ as a
function of µρ , where

σ 2
ρ = �sT

r,t+1 A�sr,t+1 + (2�sT
c,t+1 A+ �b)T�sr,t+1 + �sT

c,t+1 A�sc,t+1 + �bT�sc,t+1 + d.

(C.2)

We can easily eliminate the matrix M from our quadratic constraint by
rotating and scaling �sr,t+1 using the eigenvalues and eigenvectors of M:

M = GM�MGT
M �yr,t+1 = �1/2GT

M�sr,t+1. (C.3)

In the new coordinate system, the quadratic constraint becomes ||�yr ||2 ≤ m.
Therefore, we can compute the feasible region in (µρ, σ 2

ρ ) space exactly
as before. Computing the eigendecomposition of M does not affect the
time complexity of our algorithm because it can be computed before the
experiment starts.

Appendix D: Minimizing the MSE of �θ

The mean squared error (MSE) of the parameters provides an alternative
metric for our uncertainty about �θ . The MSE is advantageous if we care
about some components of �θ more than others. In this case, we can use the
weighted MSE to represent our priorities. This alternative objective function
leads to only a slightly modified optimization problem, which can be solved
using essentially the same procedure.

The primary difference from maximizing the mutual information is that
our objective function depends on the trace of the covariance matrix instead
of the determinant. The MSE is

E�θ | {x1:t,r1:t}(||�θ − �θo ||22) = E�θ | {x1:t,r1:t}(�θT �θ ) − 2�θT
o E�θ | {x1:t,r1:t}(�θ ) + �θT

o
�θo

(D.1)

= E�θ | {x1:t,r1:t}(�θT �θ ) − 2�θT
o �µt + const, (D.2)

where �θo is the true value of �θ . Since �θo is unknown, the best we can do
is estimate the MSE by taking the expectation with respect to our current
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posterior,

E�θ | {x1:t,r1:t}(||�θ − �θo ||22) ≈ E�θ | �µt ,Ct

(�θT �θ − �θT �µt
)+ const (D.3)

= Tr (Ct) + const, (D.4)

where Tr is the trace.
To optimize the accuracy of the predicted responses, we pick the stimulus

that will minimize the MSE once we add that stimulus and its response to
our training set. Since Ct+1 depends on the unknown observation, rt+1, we
compute Ct+1 as a function of rt+1 and then take the expectation over the
responses. The expected MSE if we pick �st+1 is

E�θ Ert+1 | �st+1,�θ Tr (Ct+1)

= Eρt+1 Ert+1 | ρt+1 (Tr Ct+1) (D.5)

= Eρt+1 Ert+1 | ρt+1 Tr

(
Ct − Ct�st+1 D(rt+1, ρt+1)�sT

t+1Ct

1 + D(rt+1, ρt+1)�sT
t+1Ct�st+1

)
(D.6)

= Tr (Ct) − Eρt+1 Ert+1 | ρt+1

D(rt+1, ρt+1)�sT
t+1Ct Ct�st+1

1 + D(rt+1, ρt+1)�sT
t+1Ct�st+1

+ const. (D.7)

The expected MSE is very similar to I (rt+1; �θ | �xt+1, r1:t, x1:t). The primary
difference is that it depends on an additional scalar quantity, �sT

t+1Ct Ct�st+1.
Nonetheless, we can continue to pick the stimulus from a finite set using
the methods presented in section 5.1.

Appendix E: Spherical Symmetry of popt(x2, . . . , xd | x1)

To derive the optimal asymptotic design in section 7.1, we used the fact
that there always exists an optimal p(x2, . . . , xd | x1) that is spherically sym-
metric. Here we prove this claim using a proof by contradiction. Let us
assume that some distribution p̂(�x) = p̂(x1) p̂(x2, . . . , xd | x1) with nonsym-
metric p̂(x2, . . . , xd | x1) maximizes our objective function F (). We will show
that we can construct a spherically symmetric p∗(x2, . . . , xd | x1) such that
F (p∗(�x)) is never smaller than F ( p̂(�x)). We can construct a spherically sym-
metric distribution by taking an average of p̂(x2, . . . , xd | x1) over all possible
rotations �R. We define these rotations as

�R p(�x) = p(R�x) (E.1)

R =
[

1 0

0 Rd−1

]
, (E.2)
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where Rd−1 is a d − 1 orthonormal matrix. Since all directions orthogonal
to �θ are equally informative, F is invariant to these transformations:

F (�R p(�x)) = log
∣∣∣∣
∫

D(r, x1θ1)�x�xT p(R�x) d�x
∣∣∣∣ (E.3)

= log
∣∣∣∣
∫

D(r, x1θ1)RT �x′ �x′T Rp(�x′) d�x′
∣∣∣∣ (E.4)

= 2 log |R| + F (p(�x)) (E.5)

= F (p(�x)) . (E.6)

Here �x′ is the new stimulus after applying the transformation �x′ = R�x. The
last equality is true because for an orthonormal matrix, the determinant is
1. p∗(�x) is the average of p̂(�x) over all possible transformations �R:

p∗(�x) = E�R (�R( p̂(�x)). (E.7)

Since F is concave, Jensen’s inequality guarantees F (p∗(�x)) is never smaller
than F ( p̂(�x)):

F (p∗(�x)) = F (E�R�R p̂(�x)) ≥ E�R F (�R p̂(�x)) = F ( p̂(�x)). (E.8)

The last equality is obviously true since F (�R p̂(�x)) = F ( p̂(�x)).

Appendix F: Support of popt(�x)

In section 7.2, we derived some analytical results regarding the relative ef-
ficiency of the infomax to i.i.d. designs for the exponential Poisson model.
These results use the fact that we can compute analytically the optimal sup-
port point when the marginal distribution popt(x1 = �xT �θ

||�θ ||2 ) is supported
on a single point. To compute the optimal support point, x1, we set popt(x1)
to a distribution with support only on x1. We then find the value of x1,
which maximizes equation 7.10 by setting the derivative of the equation
equal to zero. The derivative of equation 7.10 with respect to x1 is the cubic
polynomial:

h(x1) = −d||�θ ||2x3
1 − 2dx2

1 + dm2||�θ ||2x1 + 2m2. (F.1)

We can easily show that h(x1) only has one root in the interval (0, m), and
this root is the optimal value of x1. To prove h(x1) has two negative roots,
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we compute the second derivative of h(x1):

d2h(x1)
dx2

1

= −6d||�θ ||2x1 − 4d. (F.2)

Since the second derivative of h(x1) is negative for x1 ≥ 0, h(x1) is concave
for x1 ≥ 0. This fact ensures that h(x1) can have at most two positive roots.
However, since h(0) = 2m2, h(x1) can in fact have only one positive root,
which means that the other two roots are negative or zero. The positive root
of h(x1) must lie in the interval (0, m) because h(m) = −2(d − 1)m2, which
is negative for all d > 1. To show that the positive root is the optimal value
of x1, we show that x1 ≤ 0 cannot be optimal. x1 = 0 is not optimal because
if the stimuli are orthogonal to �θ , then we never collect any information in
the direction of �θ . We can easily rule out x1 < 0 by computing the Fisher
information:

log
∣∣∣E�x exp(x1||�θ ||2)�x�xT

∣∣∣ = dx1||�θ ||2 + log x2
1 + (d − 1) log(m2 − x2

1 ).

(F.3)

Clearly if x1 is negative, we can increase this expression by multiplying x1

by negative one. So the optimal x1 must be in the interval (0, m). By using the
cubic formula, we can obtain an analytical, albeit complicated, expression
for x1. In certain limiting cases, however, much simpler expressions for x1

can be derived.
We can easily compute the limit of x1 as d → ∞. To compute the limit,

we divide both sides of the equation h(x1) = 0 by d and take the limit:

lim
d→∞

h(x1)
d

= x1(−||�θ ||2x2
1 − 2x1 + m2||�θ ||2). (F.4)

The roots of this polynomial are

x1 = 0 & x1 =
−1 ±

√
1 + ||�θ ||22m2

||�θ ||2
. (F.5)

We showed earlier that the optimal value of x1 must be greater than zero.
So as d → ∞, x1 converges to the positive root, which is a constant away
from 0 and m.

Similarly, we can prove that as ||�θ ||2 increases, x1 converges to m. As ||�θ ||2
goes to infinity,

lim
||�θ ||2→∞

h(x1)

||�θ ||2
= −dx3

1 + dm2x1, (F.6)
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which has roots x1 = 0 and x1 ± m. We can rule out the roots x1 = −m and
x1 = 0 because we know that for any finite ||�θ ||2, h(x1) has two negative
roots and one root on the interval (0, m). Therefore, as ||�θ ||2 increases, the
two negative roots of h(x1) must approach x1 = 0 and x1 = −m, respectively,
while the positive root converges to x1 = m. Since we showed earlier that
the positive root is always optimal, x1 must approach m as ||�θ ||2 increases.
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