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Spiking neurons make inviting targets for analytical methods based on stochastic pro-
cesses: spike trains carry information in their temporal patterning, yet they are often highly
irregular across time and across experimental replications. The bulk of this volume is devoted
to mathematical and biophysical models useful in understanding neurophysiological processes.
In this chapter we consider statistical models for analyzing spike train data.

Strictly speaking, what we would call a statistical model for spike trains is simply a
probabilistic description of the sequence of spikes. But it is somewhat misleading to ignore
the data-analytical context of these models. In particular, we want to make use of these
probabilistic tools for the purpose of scientific inference.

The leap from simple descriptive uses of probability to inferential applications is worth
emphasizing for two reasons. First, this leap was one of the great conceptual advances in
science, taking roughly two hundred years. It was not until the late 1700s that there emerged
any clear notion of inductive (or what we would now call statistical) reasoning; it was not
until the first half of the twentieth century that modern methods began to be developed
systematically; and it was only in the second half of the twentieth century that these methods
became well understood in terms of both theory and practice. Second, the focus on inference
changes the way one goes about the modeling process. It is this change in perspective we
want to highlight here, and we will do so by discussing one of the most important models in
neuroscience, the stochastic integrate-and-fire (IF) model for spike trains.

The stochastic IF model has a long history (Gerstein and Mandelbrot, 1964; Stein, 1965;
Knight, 1972; Burkitt, 2006): it is the simplest dynamical model that captures the basic
properties of neurons, including the temporal integration of noisy subthreshold inputs, all-
or-none spiking, and refractoriness. Of course, the IF model is a caricature of true neural
dynamics (see, e.g., (Ermentrout and Kopell, 1986; Brunel and Latham, 2003; Izhikevich,
2007) for more elaborate models) but, as demonstrated in this book and others (Ricciardi,
1977; Tuckwell, 1989; Gerstner and Kistler, 2002), it has provided much insight into the
behavior of single neurons and neural populations.

In this chapter we explore some of the key statistical questions that arise when we use
this model to perform inference with real neuronal spike train data. How can we efficiently fit
the model to spike train data? Once we have estimated the model parameters, what can the
model tell us about the encoding properties of the observed neuron? We also briefly consider
some more general approaches to statistical modeling of spike train data.

We begin, in section 1, by discussing three distinct useful ways of approaching the IF
model, via the language of stochastic (diffusion) processes, hidden Markov models, and point
processes, respectively. Each of these viewpoints comes equipped with its own specialized
analytical tools, and the power of the IF model is most evident when all of these tools may
be brought to bear simultaneously. We discuss three applications of these methods in section
2, and then close in 3 by indicating the scope of the general point process framework of which
the IF model is a part, and the possibilities for solving some key outstanding data-analytic
problems in systems neuroscience.

1 The IF model from three different points of view

The leaky stochastic IF model is defined, in the simplest case, in terms of a one-dimensional
stochastic voltage process V (t) that follows the linear stochastic dynamics

dV (t) =
(

− g(t)V (t) + I(t)
)

dt + σdBt, (1)
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where the random term Bt denotes a standard Brownian motion1. We model the observed
spike train as the passage times of the random process V (t) through the threshold voltage
Vth; after each threshold crossing, V (t) is reset to Vreset < Vth.

Here I(t) and g(t) denote the input current and membrane conductance at time t, re-
spectively. In the simplest case, we take the membrane conductance and input current to be
constant, g(t) = g, I(t) = I. However, it is natural to consider the time-varying case as well.
For example, in the popular “spike-response” model (Gerstner and Kistler, 2002; Paninski
et al., 2004c), we add a time-varying current h(t− ti) into the cell after each spike time ti, i.e.,
I(t) = I +

∑

ti<t h(t − ti); this post-spike current models the lumped effects of all currents
that enter a real neuron following an action potential. By changing the shape and magnitude
of h(.), we can model a variety of interspike interval behavior. For example, a negative but
sharply time-limited h(.) can extend the relative refractory period of the IF neuron, since it
will take longer for the voltage V to climb back up to the threshold Vth; this in turn leads to
firing rate saturation or spike-rate adaptation, since increasing the input current I will just
increase the hyperpolarizing effect of the total spike history effect

∑

ti<t h(t− ti). Similarly, a
positive or biphasic h(.) can induce burst effects in the spike train; see (Gerstner and Kistler,
2002; Paninski et al., 2004c) for further examples. It is also natural to consider similar models
for the conductance g(t) following a spike time (Stevens and Zador, 1998; Jolivet et al., 2004).

Just as importantly, we would like to model the effects of an external stimulus on the
observed spike train. One natural way to include stimulus effects in the model is to let the
input current I(t) depend on the stimulus ~x(t). In the simplest case, this dependence could
be linear,

I(t) =
∑

i

aixi(t), (2)

but of course it is possible to include nonlinear effects as well (Paninski et al., 2004c).
When we turn to fitting models to data, and using them for scientific inference, there are

various approaches we may consider. Some of the most powerful methods are based on the
likelihood function which, in turn, is defined in terms of the joint probability density function
(pdf) for the spike train. Let us write the pdf for the sequence of spike times {ti} as p({ti}|θ),
where θ is a multidimensional parameter vector. In the setting described above, θ could
include {Vth, Vreset, σ,~a, h(.), g}. The likelihood function reverses the dependence displayed in
the pdf: the pdf is a function of {ti} for each fixed θ, while the likelihood function is a function
of θ for each fixed {ti}. In other words, the pdf fixes the parameter θ and assigns probability to
the spike trains that might then occur, while the likelihood function fixes the spike train that
was actually observed, and assigns relative likelihood to the parameter values that might have
produced it. Because likelihood-based methods use the information in the data as efficiently
as possible (see, e.g., (Brown et al., 2003; Kass et al., 2005) and the references therein), a great
deal of effort has been devoted to developing such methods and for carrying out the relevant
computations. In the next subsections we discuss three different conceptual approaches for
performing statistical inference with the IF model via likelihood-based methods.

However, before we dive into these different approaches for computing and maximizing
the likelihood, it is worth noting a surprising and important fact about the likelihood in this
model: the logarithm of the likelihood turns out to be concave as a function of many of the

1Or in discrete time,
V (t + dt) − V (t) =

`

− g(t)V (t) + I(t)
´

dt + σ
√

dtǫt,

where ǫt is an i.i.d. standard normal random variable.
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model parameter values θ (Paninski et al., 2004c; Paninski, 2005; Mullowney and Iyengar,
2007). This makes model fitting via maximum likelihood or Bayesian methods surprisingly
tractable, since concave functions lack any suboptimal local maxima that could trap a numer-
ical optimizer. (This concavity property is also extremely useful in the context of decoding,
i.e., inferring the stimulus ~x given the observed spike train data {ti} (Pillow and Paninski,
2007; Ahmadian et al., 2008); we will discuss some simple decoding applications of the IF
model below.) Indeed, without this concavity property the IF model would be much less
attractive from a statistical point of view.

1.1 The IF model as a diffusion process

The most direct, and probably best-explored, view of the IF model is as a linear diffusion

process (Ricciardi, 1977; Tuckwell, 1989; Burkitt, 2006). This connection allows us to ap-
ply powerful tools from stochastic calculus (Karatzas and Shreve, 1997) to understand the
behavior of this model. For example, in the nonleaky case (g(t) = 0) with constant current
input (I(t) = I), we may employ the “reflection principle” from the basic theory of Brownian
motion to derive the so-called “inverse Gaussian” first passage time density (Gerstein and
Mandelbrot, 1964; Seshadri, 1993; Iyengar and Liao, 1997; Brown, 2005); denoting p(τ |θ) as
the probability density that the next interspike interval will be of length τ , we may explicitly
calculate

p(τ |θ) =
Vth − Vreset√

2πσ2τ3
e−[(Vth−Vreset)−Iτ ]2/2σ2τ .

In this simplest case, each interspike interval is independent and identically distributed (this
point process is a special case of a “renewal” process, since it resets itself after each spike), and
therefore the likelihood of a full spike train is obtained by taking products over the observed
interspike intervals τi = ti+1 − ti:

p({ti}|θ) =
∏

i

p(τi|θ).

This explicit analytical formula for the spike train likelihood allows us, for example, to derive
closed-form expressions for the maximum likelihood estimate of the model parameters θ here
(Seshadri, 1993); thus the classical stochastic process theory makes model fitting in this simple
case quite straightforward.

In the more general case of nonconstant I(t) and nonzero g(t), things are somewhat
more complicated; we have no explicit general formula for p(τ |θ), for example. However, the
stochastic calculus leads directly to partial differential equation (Risken, 1996; Paninski et al.,
2004c) or integral equation (Siegert, 1951; Buoncore et al., 1987; Plesser and Tanaka, 1997;
Burkitt and Clark, 1999; DiNardo et al., 2001; Paninski et al., 2007a; Mullowney and Iyengar,
2007) methods for computing the likelihood. For example, it is well-known (Tuckwell, 1989)
that the probability density of the next spike satisfies

p(τ |θ) = − ∂

∂t

(
∫

P (v, t)dv

) ∣

∣

∣

∣

t=τ

,

where the density P (v, t) = p(V (t) = v, τi > t) satisfies the Kolmogorov “forward” (Fokker-
Planck) PDE

∂P (v, t)

∂t
=

σ2

2

∂2P (v, t)

∂v2
+ g(t)

∂
[(

v − I(t)/g(t)
)

P (v, t)
]

∂v
(3)
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with boundary conditions
P (v, t+i−1) = δ(v − Vreset),

corresponding to the fact that the voltage resets to Vreset following the last spike, and

P (Vth, t) = 0,

corresponding to the fact that the voltage V (t) is never greater than the threshold Vth. In the
constant-current, zero-leak case this PDE may be solved explicitly by the method of images
(Daniels, 1982; Paninski, 2006b); more generally, we may solve the PDE numerically via
efficient implicit techniques such as the Crank-Nicholson method (Press et al., 1992; Paninski
et al., 2004c). These methods are mathematically closely related to techniques developed to
understand the behavior of populations of neurons (Brunel and Hakim, 1999; Nykamp and
Tranchina, 2000; Knight et al., 2000; Fourcaud and Brunel, 2002), though the application
here is very different.

Alternately, p(τ |θ) solves a number of integral equations of the form

f(t) =

∫ t

0
K(τ, t)p(τ |θ)dτ

(Siegert, 1951; Ricciardi, 1977; Plesser and Tanaka, 1997; Burkitt and Clark, 1999; DiNardo
et al., 2001; Paninski et al., 2007a; Mullowney and Iyengar, 2007), where the kernel func-
tion K(τ, t) and the left-hand-side f(t) may be computed as simple functions of the model
parameters θ. In the case of constant current and conductance (I(t) = I, g(t) = g), this
integral equation may be solved efficiently by Laplace transform techniques (Mullowney and
Iyengar, 2007); more generally, the equation may be solved by numerical integration meth-
ods (Plesser and Tanaka, 1997; DiNardo et al., 2001) or by direct matrix inversion methods
(Paninski et al., 2007a) (the latter methods also lead to simple formulas for the derivative
of the likelihood with respect to the model parameters; this gradient information is useful
for optimization of the model parameters, and for assessing the accuracy of the parameter
estimates).

Thus, to summarize, stochastic process methods may be used to derive efficient schemes
for computing the likelihood in this model. However, this approach leaves some questions
open. For example, it is unclear how to use the methods described above to obtain various
conditional quantities of interest given observed spike train data. One such important quantity
is the probability p(V (t)|{ti}, θ) that the voltage at time t is at a certain level, given the
observed spike sequence {ti} and model parameters θ. To address these questions, we adopt
a “state-space” approach to the IF model.

1.2 The IF model as a state-space model

A second way to approach the IF model is by considering a broader class of statistical models,
known as “state space,” or “hidden Markov” models. As the name implies, this model consists
of two processes: an unobserved (“hidden”) Markovian process, and an observed process which
is related to the hidden process in a simple instantaneous manner (Rabiner, 1989).

Because this hidden Markov framework is natural in a wide variety of contexts, from
speech recognition to genetic transcription, statisticians have developed a number of useful
inference tools for models of this form. State-space models have recently been introduced in a
number of neural contexts (Brown et al., 1998; Smith and Brown, 2003; Czanner et al., 2008;
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Yu et al., 2006; Srinivasan et al., 2006; Kulkarni and Paninski, 2007; Huys and Paninski,
2007; Dombeck et al., 2007; Vogelstein and Paninski, 2007), with applications ranging from
neural prosthetic design to signal processing of calcium imaging data.

The IF model may be cast in this framework easily. V (t) is a hidden Markovian process
which we observe only indirectly, through the spike times {ti}, which may be considered a
simple function of V (t): the observed spike variable at time t is zero if V (t) is below threshold,
and one if V (t) = Vth. Now we may easily exploit standard methods from the state-space
literature for computing the likelihood: for example, the standard “forward recursion” for the
computation of the likelihood in hidden Markov models (Rabiner, 1989) corresponds exactly
to the computation of the Kolmogorov forward density P (v, t) discussed in the previous section
(Paninski et al., 2004c; Nikitchenko and Paninski, 2007).

The standard method for computing the maximum likelihood estimate for the model pa-
rameter θ in a hidden Markov model is based on the so-called “Expectation-Maximization”
(EM) algorithm (Dempster et al., 1977; Rabiner, 1989). This algorithm is guaranteed to
increase the likelihood with each iteration (i.e., EM serves as a likelihood ascent algorithm —
though interestingly, the basic algorithm does not require a direct computation of the likeli-
hood itself). In a nutshell, the EM algorithm applied to the IF model iterates between two
conceptually straightforward steps (Czanner and Iyengar, 2004; Nikitchenko and Paninski,
2007). In the Expectation step, we compute the conditional expectation E(V (t)|{ti}, θ) of
the voltage V (t) at each time t, given all the observed spike data, via the standard “forward-
backward” recursive algorithm from hidden Markov models (we will discuss an interesting
application of this conditional expectation computation below, in section 2.1); in the Max-
imization step, we fit the parameters of model (1) directly, using the inferred conditional
expectations E(V (t)|{ti}, θ) as a substitute for the expectations (sufficient statistics) com-
puted from the actual subthreshold voltages V (t). This M step is straightforward because
it is much easier to fit model (1) given direct voltage observations; in this case, the model
reduces to a fairly standard autoregressive model, for which the estimation theory is quite
well-established. See, for example, (Jolivet et al., 2004; Paninski et al., 2004b; Huys et al.,
2006; Lansky et al., 2006) for some examples in which autoregressive models similar to our
equation (1) have been fit directly to intracellularly recorded voltage data.

Thus the state-space setting provides a very useful framework for optimizing the IF model
parameters θ, and for making inferences about the hidden subthreshold voltage V (t) (see
section 2.1 below). One additional major advantage of the state-space representation is its
flexibility: it turns out to be fairly straightforward to generalize these techniques to include
other important dynamical biophysical variables in our model beyond just the voltage V (t).
We will discuss some of these extensions in section 3 below.

1.3 Approximating the IF model via simpler point-process models

The diffusion- and state-space-based approaches above are conceptually elegant but compu-
tationally somewhat expensive. A third approach for performing inference with integrate-
and-fire data is not to fit the IF model at all, but rather to use a simpler model that retains
the IF model’s key properties. (It is worth recalling here the adage that all models are wrong,
but some are useful. In other words, when performing statistical analysis we are not bound
to any one model in particular; instead, we should choose the model which best suits our
needs.) A particularly simple framework for analysis of point process data involves likelihood
methods based on the conditional intensity function λ(t|Ht, θ), the instantaneous firing rate
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at time t given Ht, the complete stimulus and spiking history preceding time t (see (Brown
et al., 2003; Brown, 2005; Kass et al., 2005) and references therein for further discussion). To
be concrete, we define P (spike at time t|Ht) = λ(t|Ht, θ)dt or, more precisely,

λ(t|Ht, θ) = lim
∆t→0

P (spike in (t, t + ∆t)|Ht, θ)

∆t
.

The point-process likelihood function is then given by the simple and explicit pdf (Snyder
and Miller, 1991; Brown et al., 2003; Paninski, 2004; Brown, 2005; Truccolo et al., 2005)

p({ti}|θ) = e−
R

T

0
λ(t|Ht,θ)dt

∏

i

λ(ti|Hti , θ), (4)

where [0, T ] indicates the time interval over which the spike train is observed. With this
formula in hand it becomes natural to approach the fitting of spike-train data by trying to
find tractable and useful forms for the conditional intensity function.

With this in mind, let us write the time of the spike preceding t as s∗(t), and note that
the usual stimulus-driven IF model (without effects h(.) that involve spikes prior to s∗(t))
depends only on the experimental clock time t, relative to stimulus onset, and the elapsed
time t − s∗(t), i.e., it satisfies

λ(t|Ht, θ) = λ(t, t − s∗(t)) (5)

for a suitable nonnegative function λ(., .). (More generally, this equation is a good approx-
imation whenever the spike history effect h(τ) is negligible for τ larger than the typical
interspike interval in the data.) Models of the general form of Equation (5) have been called
“inhomogeneous Markov interval (IMI) models” by (Kass and Ventura, 2001).

We may consider three special cases of Equation (5):

• The multiplicative IMI (m-IMI) model:

λ(t, s∗(t)) = λ0(t)r(t − s∗(t)). (6)

Here, λ0(t) modulates the firing rate only as a function of the experimental clock time,
while r(t−s∗(t)) represents non-Poisson spiking behavior. See (Kass and Ventura, 2001)
and references therein.

• The time-rescaled renewal process (TRRP) model:

λ(t, s∗(t)) = λ0(t)r
(

Λ0(t) − Λ0(s∗(t))
)

, (7)

where r is the hazard function of a renewal process (basically, a nonnegative function
such that limt→∞

∫ t
r(s)ds = ∞), and Λ0(t) has the time-rescaling form (Brown et al.,

2002)

Λ0(t) =

∫ t

0
λ0(u)du. (8)

• The additive IMI model:

λ(t, s∗(t)) = f [y(t) + h(t − s∗(t)], (9)

where f(.) is some smooth nonnegative function, y(t) is a scalar function of time, and
the spike-history effect h(.) only looks back at the last spike time s∗(t), instead of over
the full spike history as discussed in the models above.
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Of course, Equation (5) may be generalized to include multi-spike history effects (see, e.g.,
(Kass and Ventura, 2001)).

Each of these models separate the dependence on t from the dependence on the time
since the last spike t − s∗(t), but they do so differently. Here, we may call λ0 or f [y(t)]
the excitability function to indicate that this modulates the amplitude of the firing rate, and
r the recovery function, since it affects the way the neuron recovers its ability to fire after
generating an action potential. The fundamental difference between the models is the way
the excitability interacts with the recovery function. In the m-IMI model, for example, the
refractory period represented in the recovery function is not affected by excitability or firing
rate variations, while in the TRRP model the refractory period is no longer fixed but is scaled
by the firing rate (Reich et al., 1998; Barbieri et al., 2001).

(Koyama and Kass, 2008) investigated the relationship of m-IMI and TRRP models to the
stimulus-driven IF model. Specifically, given a joint probability distribution of spike trains
generated by an IF model, they asked how close this distribution is to each of the best-fitting
m-IMI and TRRP models. Some of the main results in Koyama and Kass (2007) are provided
by Figure 1. The authors considered the case that the input to the IF neuron was periodic, and
numerically computed the probability that a test (specifically, a time-rescaled Kolmogorov-
Smirnov test, as described in (Brown et al., 2002)) will reject the (false) hypothesis that the
data were generated by a Poisson, m-IMI, or TRPP model, instead of the true IF model.
Figure 1 displays the rate of rejecting the models as a function of the number of spikes. It
takes very little data to reject the inhomogeneous Poisson process, while it takes much larger
data sets to reject the m-IMI model and the TRRP. Because the recovery functions in the
m-IMI and TRRP models allow us to mimic the interspike interval distributions of the IF
cell, for many data-analytic applications the results using the m-IMI, TRRP, and IF models
will be very similar to one another—but very different from those based on a Poisson model.

Clearly these three model classes overlap somewhat. For example, if the nonlinearity f(.)
in equation (9) is taken to be the exponential function, then the multiplicative and additive
IMI models coincide. The additive formulation has become popular recently (Brillinger, 1988;
Chornoboy et al., 1988; Brillinger, 1992; Paninski, 2004; Truccolo et al., 2005; Paninski et al.,
2007b), largely because stimulus terms (e.g., if we set y(t) =

∑

aixi(t), given the stimulus
~x(t)) and spike history terms are treated in a unified, linear manner within the nonlinear
function f(.) (for this reason, the additive model is often described as a “generalized linear
model”). It is worth making the connection between the IF and this additive model more
explicit. Consider the inhomogeneous Poisson process with rate given by f [V (t)], where V (t)
is the solution of the leaky-integrator differential equation dV/dt = −gV (t) + I(t), starting
at the initial value Vreset after every spike. This model is a simple version of the “escape-
rate” approximation to the noisy integrate-and-fire (IF) model described in (Gerstner and
Kistler, 2002). Since this differential equation is linear, V (t) here may be written (up to
boundary conditions) as the convolution of I(t) with the exponential function e−gt; that is,
this soft-threshold IF model is just a version of the additive IMI model (with the input current
redefined suitably; see (Paninski, 2004; Paninski et al., 2007b) for details), and therefore the
additive parameters may be indirectly interpreted in biophysical terms. See (Paninski et al.,
2007b) for an explicit comparison of the additive and IF models applied to data from a retinal
ganglion neuron; again, as in Fig. 1, the additive model provides an excellent approximation
to the behavior of the IF neuron.

Thus, to summarize, these point process models may be used to provide good approxima-
tions to the IF model. Some biophysical interpretability may be lost, because the “intracellu-
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Figure 1: Probability of rejecting three statistical models as a function of the number of
ISIs. The spike trains were generated from a IF neuron with periodic input. The solid line,
dotted line and dashed represent the m-IMI model, the TRRP model and the inhomogeneous
Poisson process. The mean and the standard deviation at each point were calculated with
10 repetitions. With relatively small sample sizes it can be easy to reject the hypothesis of
Poisson firing, but impossible to distinguish either the m-IMI model or the TRRP model
from the IF model. Even after 10,000 spikes the m-IMI model is, for practical purposes,
statistically indistinguishable from the IF model. Modified from (Koyama and Kass, 2008).

lar” noise in the IF model (due to the diffusion term) is replaced by “point-process” variability
(due to the randomness of the spike times). What we gain is a simpler, more tractable, and
more general framework; in particular, the explicit likelihood formula (Eq. (4)) makes various
inference tasks much more straightforward and computationally tractable (Paninski et al.,
2007b).

2 Applications

2.1 Computing the spike-triggered average and the most likely voltage

path

The simplicity of the IF model allows us to analytically compute certain quantities of great
theoretical interest. A key question in neural coding is: what does a single spike “mean” (Rieke
et al., 1997)? More generally, what does a pattern of spikes mean (de Ruyter van Steveninck
and Bialek, 1988)? We may make this question quantitative by computing the conditional
distribution of a behaviorally-relevant signal given the observation of a spike pattern; if we
can characterize these conditional distributions for every conceivable spike pattern, we can
reasonably say that we have answered the question, “what is the neural code”?

As is well-known, these questions may be answered explicitly in the case of simple “cas-
cade” Poisson-based models (Chichilnisky, 2001; Schnitzer and Meister, 2003; Simoncelli et al.,
2004). It turns out we can also solve this problem in the case of some of the more biophysical
encoding models we have been working with so far. For a concrete example, let’s look at the
“doublet-triggered density” P (V (t)|[t1, t2]), the probability density on voltage of a nonleaky
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Figure 2: The doublet-triggered average of the nonleaky IF model (adapted from (Paninski,
2006b)). Panels 1-3 show evolution of densities Pf (t), Pb(t), and P (V (t)|[t1, t2]), for t ∈ [0, 1];
grayscale indicates height of density. Panel 4 shows some samples from the conditional voltage
path distribution given spikes at t1 = 0 and t2 = 1 (the standard forward-backward sampling
method for hidden Markov models was employed here, after discretizing the state space V (t)),
with the empirical mean conditional voltage given 100 samples shown in black. The bottom
panel shows the most likely path (dotted trace), the analytical doublet-triggered average
(dashed), and the empirical doublet-triggered average (solid). Parameters: Vth = 1, Vreset =
0, σ2 = 1, I = 1, t1 = 0, t2 = 1. Note that the conditional mean voltage “sags” below Vth, since
voltage paths that cross Vth are killed and are therefore subtracted out of the expectation
E(V (t)|[t1, t2]); see (Paninski, 2006b) for further discussion of this effect.

integrate-and-fire cell that has been observed to fire at times t1 and t2 (with t2 > t1, and no
spikes observed in the intervening period).

This density may be computed exactly (Paninski, 2006b) by applying simple stochastic
calculus tools, similar to those we have discussed above in section 1.1. We condition the
voltage to start at V (t+1 ) = Vreset and end at V (t−2 ) = Vth, because we observed spikes at time
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t1 and t2. The nonleaky IF model with constant current inputs may be described in terms of a
Brownian motion with constant drift (Gerstein and Mandelbrot, 1964; Karatzas and Shreve,
1997). Because the Brownian motion is a Gaussian process, and our constraints are linear
equality constraints, the conditioned process (known as a “Brownian bridge”) is also Gaussian,
with mean and variance which may be calculated by the usual Gaussian conditioning formulas.
We denote the marginal density of the Brownian bridge at time t as

P (V (t)|V (t1) = Vreset, V (t2) = Vth) = N (Vreset + m(t), s(t)) ,

where N (µ, σ2) denotes the Gaussian density with mean µ and variance σ2, and we have made
the abbreviations m(t) = (t− t1)(Vth −Vreset)/(t2 − t1) and s(t) = σ2(t− t1)(t2 − t)/(t2 − t1).

Now we know not only that the cell has fired at two specific times t1 and t2, but also
that the voltage is below threshold for all times t1 < t < t2. Thus we need to compute the
conditional density of the Brownian bridge given that the process lies below threshold,

P (V (t)|[t1, t2]) = P (V (t)|V (t1) = Vreset; V (t2) = Vth; V (t) < Vth, t1 < t < t2).

Now we may apply the method of images, as in the unconditioned case, to obtain the remark-
ably simple solution

P (V (t)|[t1, t2]) =
1

Z

[

N
(

Vreset + m(t), s(t)
)

−N
(

Vth + (Vth − Vreset) − m(t), s(t)
)]

.

This solves our doublet-triggered density problem for the simple nonleaky, linear integrate-
and-fire model. What about the leaky case, or more generally if the neuron obeys nonlinear
and/or multidimensional subthreshold dynamics (Badel et al., 2005)? Here we may apply
the state-space techniques discussed in section 1.2 above: we use a version of the forward-
backward method to obtain (Paninski, 2006b):

P (V (t)|[t1, t2]) =
1

Z(t)
Pf (V, t)Pb(V, t)

where Pf (V, t) = P (V (t), τ1 > t) satisfies the forward Kolmogorov PDE discussed in section
1.1, and Pb(V, t) = P (τ1 = t2|V (t)) satisfies a corresponding Kolmogorov “backward” PDE.
See (Paninski, 2006b) for further details of the computation of these forward and backward
probabilities; Figure 2 illustrates the components of this solution.

Once we have obtained the doublet-triggered average voltage E(V (t)|[t1, t2]), it turns out
to be straightforward to apply renewal theory techniques (recalling that the spike trains of
the IF model with constant coefficients may be described as a renewal model, as mentioned
in section 1.1) to obtain the single-spike-triggered average E(V (t)|[t1]); again, see (Paninski,
2006b) for details.

While obtaining the conditional average voltage E(V (t)|{ti}) given some observed spike
data {ti} is conceptually straightforward, it does require some numerical computation in the
case of a nonconstant input current I(t), or a nonzero membrane conductance g > 0. It turns
out to be even easier to obtain the most likely conditional voltage path,

VML = arg max
V∈C

p(V|{ti}),

than to compute the conditional average path. Here the optimization is taken over the
constraint space

C = {V : V (t) ≤ Vth ∀t; V (t−i ) = Vth; V (t+i ) = Vreset}

11
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Figure 3: Computing the most likely voltage path given in vitro physiological data. Top:
Comparison of true voltage path (bold black trace) with computed VML(t) (bold gray trace)
and samples from conditional distribution p(V (t)|spikes, {I(t)}0≤t≤T , θ̂) (thin traces, partially
obscured; here θ̂ denotes the IF model parameters estimated from a separate sequence of
training data, and I(t) is the observed fluctuating input current). Trace shown is a randomly
chosen segment of a 25-second long white noise experiment; dashed trace indicates estimated
threshold. Bottom: Conditional distributions p(V (t)|spikes, {I(t)}0≤t≤T , θ̂). White space
indicates gaps in time where voltage was superthreshold, and thus not modeled. Note small
scale of estimated noise σ (Mainen and Sejnowski, 1995). Adapted from (Paninski, 2006a).

of all subthreshold voltage paths consistent with the observed spike train {ti}. By using
the state-space representation, it is straightforward to show that p(V|{ti}) is in fact just a
linearly-constrained quadratic function of V, and may therefore be optimized quite easily
(Paninski, 2006a; Koyama et al., 2008). In fact, it turns out to be possible to obtain the most
likely path analytically in greater generality than is possible for the conditional average path
E(V (t)|{ti}); further, one can prove that the conditional average and conditionally most likely
voltage paths coincide in the case of small noise σ (Paninski, 2006a; Badel et al., 2005). See
Fig. 3 for an application to real data, in which the most likely voltage path provides a very
accurate prediction of the unobserved subthreshold voltage V (t), given the superthreshold
observed spike train {ti} and the input current I(t) (Paninski, 2006a).
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2.2 Tracking plasticity in hippocampal place fields

Neural receptive fields are frequently plastic: a neural response to a stimulus can change
over time as a result of experience. (Frank et al., 2002) used a multiplicative IMI model to
characterize spatial receptive fields of neurons from both the CA1 region of the hippocampus
and the deep layers of the entorhinal cortex (EC) in awake, behaving rats. In their model,
each neuronal spike train was described in terms of a conditional intensity function

λ(t|Ht, θ) = λS(x(t))r(t − s∗), (10)

which is of the form (6), except that the spatial intensity factor λS has replaced the temporal
factor λ0. In Equation (6), both the factors λS(x(t)) and r(t − s∗) are dynamic, evolving
simultaneously according to a state-space model specified by a point process adaptive filter
(Brown et al., 2001; Brown et al., 2003). This allowed the authors to describe the way the
receptive fields evolve across space and time. They found consistent patterns of plasticity in
both CA1 and deep EC neurons, which were distinct: the spatial intensity functions of CA1
neurons showed a consistent increase over time, whereas those of deep EC neurons tended
to decrease (Fig. 4). They also found that the ISI-modulating factor r(t − s∗(t)) of CA1
neurons increased only in the “theta” region (75-150 milliseconds), whereas those of deep EC
neurons decreased in the region between 20 and 75 milliseconds. In addition, the minority
of deep EC neurons whose spatial intensity functions increased in area over time fired in a
significantly more spatially specific manner than non-increasing deep EC neurons. This led
them to suggest that this subset of deep EC neurons may receive more direct input from CA1
and may be part of a neural circuit that transmits information about the animal’s location
to the neocortex.

2.3 Encoding and decoding spike train information in the retina

Our final application illustrates that the IF model may be tractably fit to data via maximum
likelihood, and that the model allows us to: 1) predict the spike times of a sensory neuron
at near-millisecond precision and 2) decode the responses of these sensory neurons with an
accuracy greater than is possible with a Poisson model of the responses (Pillow et al., 2005).
The basic results are illustrated in Figs. 5-6. The authors recorded the spike train responses of
primate retinal ganglion cells which were stimulated with a temporally varying full-field light
stimulus. Data from a long sequence of nonrepeated training stimuli were used to fit both
the IF model and a simpler inhomogeneous Poisson model; Figure 5 compares the predictions
of these two models given a novel repeated test stimulus. The IF model does a significantly
better job of capturing the true neuron’s time-varying mean response, variability, and fine
spike timing details.

See also (Keat et al., 2001) for some related results using a similar model fit using non-
likelihood-based methods, and (Iyengar and Liao, 1997) for an illustration of a generalized
inverse Gaussian model’s ability to capture the interspike interval properties of a goldfish
retinal ganglion cell under constant illumination (i.e., no time-varying stimulus).

Figure 6 illustrates an important application of the likelihood-based approach. Once we
have obtained an accurate approximation for p({ti}|~x), the probability of a spike response
{ti} given the stimulus ~x (namely, the approximation is provided by our estimated model,
p({ti}|~x) ≈ p({ti}|~x, θ̂), with θ̂ denoting our estimate of the parameter), then we may invert
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Figure 4: The instantaneous spatial intensity function for a CA1 neuron at the outset of the
experiment (upper left) and at the end of the experiment (loer left) illustrating the increasing
in the spatial firing pattern typical of these neurons in this experiment. The instantaneous
spatial intensity function for a deep EC neuron at the outset of the experiment (upper right)
and at the end of the experiment (lower right) illustrating the decreasing in the spatial firing
pattern typical of these neurons in this experiment. Reprinted with permission of the Journal
of Neursocience.

this likelihood via Bayes’ rule to obtain the decoding posterior probability,

p(~x|{ti}) ∝ p({ti}|~x)p(~x).

In many cases the prior probability p(~x) is known, allowing us to compute the posterior
p(~x|{ti}) explicitly, and then we may use this posterior distribution to decode ~x optimally,
given the observed data {ti}. This is what was done in the experiment illustrated in Fig. 6.
The authors asked how well it was possible to discriminate two possible stimuli, given a short
observed segment of the retinal spike train response. As expected, the IF model permits more
accurate posterior decoding than does the inhomogeneous Poisson model, since (as we saw in
Fig. 5) the IF model provides a better approximation to the true likelihood p({ti}|~x).

3 Conclusion

Integrate-and-fire models play a distinguished role in theoretical neuroscience, but only re-
cently have they been taken seriously as statistical models for analyzing spike train data.
We have placed the IF neuron within a more general point process modeling framework, and
have described several useful variations on the general likelihood-based modeling theme. In
particular, the three applications we reviewed show how this class of models may be used to
describe stimulus-related effects: the first and third via IF models, the second via an explicit
conditional-intensity model.
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Figure 5: Responses of an OFF-type retinal ganglion cell (RGC) to a repeated stimulus. Top
left: recorded responses of a single macaque RGC to repeated full-field temporally-varying
light stimulus (top; inset trace indicates light intensity as a function of time), simulated
inhomogeneous Poisson model (middle; LNP), and IF model (bottom) spike trains. (Both
the IF and Poisson models were based on covariates including multiple time lags of the
temporally-varying stimulus; the models were fit via ML to a nonoverlapping, nonrepeating
segment of training data not shown here.) Each row corresponds to the response during a
single stimulus repeat; 167 repeats are shown. Bottom left: peri-stimulus time histogram
(mean observed spike rate) and variance for the RGC, Poisson model, and IF model. For
this cell, the IF model accounts for 91% of the variance of the PSTH, whereas the Poisson
model accounts for 75%. Right: magnified sections of rasters, with rows sorted in order of
first spike time within the window. The four sections shown are indicated by black brackets
in the upper left panels. Note that the IF model matches the true precision of the spike train
much more accurately than does the Poisson model, as expected, since the Poisson model
does not incorporate any spike-history effects. See (Pillow et al., 2005) for details. Reprinted
with permission of the Journal of Neursocience.

Statistical models may have varying degrees of interpretability and biophysical plausibil-
ity. The primary goal of any statistical analysis of neural data is to develop an accurate
and parsimonious description of the experimental data that is interpretable and consistent
to the extent possible with known neurophysiological principles. The accuracy of the data
description should be guided by formal goodness-of-fit assesments (Brown et al., 2002) and
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Figure 6: Decoding responses using model-derived likelihoods. a, Two stimulus (Stim) frag-
ments and corresponding fragments of the RGC response (Resp) raster. Gray boxes highlight
a 50 ms interval of the first row of each response raster. A two-alternative forced-choice
(2AFC) discrimination task was performed on these response fragments, in which the task
was to determine which stimulus gave rise to each response. The IF and Poisson (LNP) mod-
els were used to compute the likelihood of these responses given the “correct” and “incorrect”
pairing of stimuli and responses, and the pairing with the higher likelihood was selected. This
discrimination procedure was applied to each row of the response raster and used to obtain
the percentage correct for the discrimination performance of each model. b, Discrimination
performance of the IF and Poisson models. Each point corresponds to the percentage correct
of a 2AFC discrimination task using two randomly selected 50 ms windows of the response.
Although both models attain perfect performance (100%) for a majority of such randomly
selected response windows, the scatter of points above the diagonal shows that when dis-
crimination performance is imperfect, the IF model is far better at decoding the neural spike
responses. See (Pillow et al., 2005) for full details. Reprinted with permission of the Journal
of Neursocience.

the standard model selection approaches (Burnham and Anderson, 2002; Truccolo et al.,
2005). From the point of view of analyzing a particular set of spike-train data, the decision
whether to rely on IF models must consider interpretation, computational effort, and ability
to account for apparent features of the data.

Several extensions of the IF models presented here are possible. In principle, the random
term in equation (1) could be replaced with more realistic random term with positive temporal
correlations, though this introduces substantial new computational issues (Haskell et al.,
2001; Fourcaud and Brunel, 2002; Moreno et al., 2002). However, the state-space methods
discussed above may still be applied in a straightforward manner. One interesting application
is to model not just the voltage in a single somatic compartment, as we have discussed here,
but also other dynamical variables (Badel et al., 2005; Vogelstein and Paninski, 2007) or
the voltage in other unobserved compartments (Huys and Paninski, 2007). Along similar
lines, state-space techniques may be used to include synaptic conductance noise effects in
the IF model (Paninski, 2007), though the Gaussian noise assumption needs to be modified
somewhat here, since conductances are nonnegative.

The general conditional-intensity framework allows inclusion of a wide variety of measured
effects, including trial-to-trial variation terms, the local field potential (LFP), etc. In informal
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schematic form, we would have

log conditional intensity = stimulus + stimulus history + spiking history + trial + LFP.

History effects may be of the IMI form discussed here, or they may reach back further in
time, incoporating effects of many spikes (Kass and Ventura, 2001; Paninski, 2004; Kass
et al., 2005; Truccolo et al., 2005; Paninski et al., 2007b), while trial-to-trial variation may
be accommodated using slowly-varying, trial-dependent contributions to firing rate (Ventura
et al., 2005; Czanner et al., 2008). The advantages of this sort of model become more apparent
when one considers multiple simultaneously-recorded spike trains (Brown et al., 2004), where
interactions among neurons may be modeled by inclusion of additional terms that define the
conditional intensity (Chornoboy et al., 1988; Paninski et al., 2004a; Okatan et al., 2005;
Truccolo et al., 2005; Kulkarni and Paninski, 2007; Pillow et al., 2008; Czanner et al., 2008).
IF models have been successfully employed, for example, to explore the cross-correlation
properties of pairs of simultaneously-recorded neurons (Iyengar, 1985; de la Rocha et al.,
2007; Carandini et al., 2007). We expect the future of spike train data analysis to be driven
by insightful extensions of these point process modeling techniques.
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